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ARTICLE INFO ABSTRACT

Keywords Titanium dioxide (TiO2) nanocrystalline thin films were synthesized
Ag/TiOs, thin-film using chemical bath deposition (CBD) on glass slides and FTO/glass
substrates. Silver (Ag) nanoparticles (NPs) were subsequently

photocatalysts,
photoelectrochemical deposited onto the surface of the TiO: thin films via electrochemical
cell methods. The size of Ag NPs on TiO; films ranged from 10 to 79 nm

on both glass and FTO substrates. The photocatalytic performance of
the Ag/TiO> thin films, both untreated and heattreated at 200 °C and
300 °C for 1 h, was evaluated through the photodegradation of
methylene blue dye (MB) under white light (0.33 mW/cm?) and
sunlight irradiation. Remarkably, TiO> thin films heat-treated at 300
°C achieved a degradation ratio of 96% after 240 minutes under white
light. Under sunlight and at a pH 10, the degradation ratio reached
100% within 150 minutes. Cyclic voltammetry revealed faradaic behavior
in the Ag/TiO: thin films. The photoconversion efficiencies (1) of the
films, measured in their as-prepared state and after heat treatment at
200 °C and 300 °C, were determined to be 1.5%, 1.6%, and 0.5%,
respectively. Mott-Schottky analysis confirmed n-type behavior,
indicated a negative shift in the flat band potential (Veg).
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1. Introduction

Metal oxide nanostructured semiconductor materials such as ZnO, MnQO., CeO2, NiO, and
titanium dioxide (TiO7) have gained more interest in various applications, such as photosensors
[1], biological, pharmacological fields [2] LEDs [3], gas sensors [4], and dyesensitized solar cells
(DSSCs) [5]. Lately, researchers have focused on utilizing these metal oxides for the elimination
of organic contaminants, showcasing an effective photocatalytic process for treating polluted water
when exposed to ultraviolet UV light [5,6]. Two parameters can limit the efficiency of metal oxide
nanostructured compounds in photocatalysis. The first factor is the high recombination rate of
electron/hole pairs within the lattice of material. When these pairs recombine before participating
in redox reaction process, the overall photocatalytic activity decreases, limiting the effectiveness
of the process. Another factor is the high energy band gap of many metal oxide photocatalysts.
These materials, like (TiO2), have a wide optical bandgap that only allows them to absorb in UV
light region, which makes up about 5% of the solar spectrum. However, visible light, which makes
up about 57% of the solar spectrum, is not effectively absorbed by these materials. This mismatch
in light absorption limits their ability to use sunlight fully and reduces photocatalytic performance
under sunlight. To overcome these issues, strategies like doping with foreign elements, creating
heterojunctions, or designing composite materials are often used. These strategies help enhance
charge separation and extend light absorption into the visible range [7, 8]. In addition, metal
nanoparticles NPs-semiconductor heterojunction forms Schottky contact at the interface, which is
an effective way to enhance e-h separation and improve the efficiency of photocatalytic activity.
Thus, decorated noble metal NPs on the TiO: surface is a favourable method to decrease the
recombination of photogenerated charge carriers and enhance photodegradation activity [9].
Visible light can be used to excitsome metal NPs through the oscillating electric field of the light
interacts with electrons in the conduction band [10]. Consequently, these electrons oscillate
pronouncedly when the frequency of the input photon approaches that of the collective oscillation
of the conduction electrons [9, 10]. The large energygap of 3.2 eV of TiO> greatly limits the ability
of visible light to be absorbed, resulting in a decrease in its photocatalytic effectiveness [11,12].
In addition, the low quantum efficiency of TiO», caused by rapid recombination of photogenerated
carriers, is another factor contributing to the decrease in photocatalytic efficiency and hydrogen
generation during water splitting [13]. In order to overcome these challenges, it is necessary to
modify the broad energygap of TiO: by adding of metal nanoparticles on its surface. This
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modification will result in a drop in the recombination rate [10]. However, TiO2 is commonly
utilized as a photocatalyst due to its robust catalytic activity and excellent chemical stability [14].
Silver (Ag) NPs are used to modify TiO; for photocatalytic applications due to their catalytic
activity [15]. Furthermore, the coupling of Ag NPs with TiO, is considered a promising way for
water splitting under visible light irradiation [16]. The water splitting using photocatalyist depends
on the absorbed light with energy that is higher than its energygap to produce electron-hole pairs.
The separated excited carriers are moved toward different sites on the surface of the catalyst
material to avoid recombination. At these sites, oxidation and reduction of water occur by the
photogenerated charge carriers to generate hydrogen and oxygen gas [17]. In this work, TiO> was
prepared using the CBD method. Then, Ag NPs were deposited on the prepared TiO; thin films
deposited via an electrochemical method. The photocatalytic performance of the as-prepared
Ag/TiO; thin film and those annealed were investigated under a pH of 6 and a pH of 10 under the
low intensity of white light and sunlight. The properties studied of the PEC cell are based on the
Ag/TiO2 photoelectrode where electrochemical performance and electric properties are measured
for Ag/TiO; thin film.

2. Experimental part

The structural and morphological characteristics of the thin films were assessed utilizing X-
ray diffraction (XRD, X’Pert PROMPDPANalytical) and Field Emission Scanning Electron
Microscopy (FESEM, NovananoSEM450, FEI), respectively. Optical properties were examined
via UV-Vis spectroscopy (UV1800 Shimadzu). PEC analysis for all thin films was performed

using a three-electrode potentiostatic configuration of the CorrTest electrochemical workstation.
2.1 Synthesis of Ag/TiO2 nanocrystalline thin films

TiO2 nanocrystalline were deposited using CBD on glass and FTO-glass substrates. Substrates
are ultrasonically cleaned using 2-propanol, ethanol, and distilled water (DW). The precursor was
prepared using a 4 mL solution of titanium chloride (III) (TiClz), 50 mL of DI and 0.1 M of urea
(NH2CONHz2), which was added to fixed the pH at 0.5 [18]. A homogeneous solution with violet
color was obtained after stirring RT for 1h. Then, the substrates were vertically immersed inside
the beaker containing the above precursor, and the temperature of the solution was increased to 55
°C for 3 hours. Then, the prepared samples were washed with distilled water, followed by annealed

at 350 °C for 1 hour to enhance the crystal structure and evaporate the remaining unwanted
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materials. Ag/TiO2 nanocrystalline thin films were fabricated by immersing the prepared TiO2
thin films in Ag NP solution for 5 h within an electrochemical process using two pure silver
electrodes in 100 mL distilled water. After the power was turned off, the TiO» thin film samples
were left in the solution for 19 hours at room temperature. Then, Ag/TiO> nanocrystalline thin
films are dried, and other samples are annealed at 200 °C and 300 °C for 1 h. The surface
morphology was investigated using Field-Emission Scanning Electron Microscope (FESEM) type
NOVA nano 450 SEM, and optical properties were measured through UV-vis spectroscopy using
1800 Shimadzu equipment to evaluate absorption spectra and energygap of Ag/TiO:

nanocrystalline thin films and the degradation ratio of MB dye solutions.
2.2 Photocatalytic measurements

Photocatalytic measurements of prepared Ag/TiO2/glass nanocrystalline thin films and for
samples annealed at 200 °C and 300 °C for 1 h were investigated by an aqueous solution containing
0.005 M of MB dye. The prepared Ag/Ti0O2/glass nanocrystalline thin film is placed inside a beaker
containing 40 ml solution of MB dye and illuminated by 0.33 mW/cm? of white light with various
values of pH (6 and 10) and exposure times of 30—240 min. The pH of the MB dye solution was
justified using NaOH and some drops of HNOs3 acid. However, the pH control the surface charge
of the photocatalyst which makes the photocatalyst positively charged in an acidic medium and
negatively charged in a basic medium [19]. The acidic medium was represented by a pH of 6 while

the basal media was represented by a pH of 10.
2.3 Photoelectrochemical measurements

The photoelectrochemical cell (PEC) contains three electrodes: a counter electrode constructed
of a platinum plate with a dimension of (1x1) cm, a working electrode with a dimension of 1.5%2.5
cm, and a reference electrode constructed of Ag/AgCl (KCl saturated). The electrolyte was a KOH
solution with 1.0M and pH of 13.6 under irradiation by 0.33 mW/cm? of white light. Cycle
voltammetry (CV) was performed to estimate the PEC efficiency under dark conditions, while
linear sweep voltammetry (LSV) measurement was performed under dark and light conditions to

measure the J-V characteristic with a different scan rate of 0.05-0.5 V/s
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3. Results and discussion
3.1 Optical properties

Figure 1A shows the optical absorption spectra of prepared Ag/TiO> nanocrystalline thin films
as well as after being heated to 200 and 300 °C, which appear at 367, 446, and 379 nm, respectively.
The absorbance visible light isf due to the surface plasmon resonance (SPR) effect of Ag NPs
prepared on the surface of TiO» thin films [20]. SPR events and the synchronized oscillation of free
electrons in resonance with incident photons boost photocatalytic effectiveness by increasing light
absorption and scattering, as well as causing separation of charge in semiconductors. Nonetheless,
a Schottky connection can be established between metallic nanoparticles and semiconductors. The
equilibrium alignment of the Fermi levels between metal and semiconductor materials generates a
built-in electric field in the space-charge region adjacent to the interface, facilitating the separation
of photogenerated charge carriers [17]. The energygap Ag/TiO> nanocrystalline thin film prepared
onto glass substrates and those annealed at 200 and 300 °C are 3.38, 2.78, and 3.27 eV,
respectively, as shown in Fig. 1B. These values are associated with the rutile phase of TiO: [4, 6,
13]. However, the decreasing energy gap with increasing annealing temperature could be because
the samples contain mixed phases of rutile and anatase [6, 13]. As shown in Fig. 2A, peaks of
absorbance spectra-for as-prepared Ag/TiO2/FTO-glass nanocrystalline thin films annealed at 200
°C and 300 °C appear at 364, 400, and 464 nm, respectively. The high absorbance value in the
visible region could be due to the SPR effect of Ag NPs that covered the surface of TiO:
nanocrystalline thin films. The energygap value of Ag/TiO2/FTO-glass nanocrystalline thin films
and those annealed at 200 °C and 300 °C are 3.40 was 3.10, and 2.67 eV, respectively as shown in
Fig. 2B. According to Singh et al. [21], the reduction in energygap value for annealed samples is

could be the density change of film after the structure phase transition [21].
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Fig. 1: (A) The absorbance spectrum of Ag/TiO2 nanocrystalline thin films grown onto

glass substrates and (B) (chv)? vs. photon energy plot for Ag/TiO2/glass

nanocrystalline thin films.
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Fig. 2: (A) The absorbance spectrum Ag/TiO2 nanocrystalline thin films grown on

FTO substrate and (B) (¢hv)? vs. photon energy plot of Ag/TiO2/FTO

nanocrystalline thin films.

3.2 Surface morphology and structural properties

Figures 3A and 3B show the FESEM images of the Ag/TiO: thin films prepared onto FTO/glass

and glass substrates. Figure 3A shows the Ag NPs that were deposited onto Ti0»/glass thin films,

and the particle size of the NPs was calculated to be 10—79 nm using the ImagelJ program. TiO»

thin film that grew onto glass substrates was formed as a semi-flower with semi-plate corollas

having a length of 29.6-99 nm and width of 14.2-69.6 nm covered by Ag NPs. Figure 4A shows

This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0 license)
(http://creativecommons.org/licenses/by-nc/4.0/).

469


http://creativecommons.org/licenses/by-nc/4.0/

M.] Kadhim et al. Bas | Sci 43(2) (2025)464-491)

the XRD pattern of prepared Ag/TiO: thin films deposited onto glass substrates. TiO> thin film
appeared with two diffraction peaks at 36.6° and 44.2° which correspond to the crystal planes of
(101) and (210) of Rutile phase (JCPDS Card no. 00-02-03873), whereas the samples that annealed
at 200 °C showed peak at 54.4° which corresponds to (211) plane. However, annealing prepared
thin films at 300 °C, led to the appearance of a single diffraction peak at 44.06° related to the rutile
phase in addition to other three peaks at 25.75°, 37.9°, and 48.37 corresponding to (101), (004),
and (200) of anatase phase planes (JCPDS card no. 01-078-1508), respectively. The XRD patterns
of prepared Ag/TiO> thin film onto FTO/glass substrate are shown in Fig.4B. The distinct peak
can be observed in the XRD patterns at 37.8° of as-prepared Ag/TiO; thin films and those annealed
which are related to (004) of the anatase phase. Moreover, the Ag/TiO> thin films annealed at 200
°C show a peak at 25.03° which corresponds to the (101) plane of anatase. Further, two peaks have
noted at 27° and 52° corresponding to (110) and (220) crystalline planes of FTO substrate,
respectively according to JCPDS NO.77-0452 [22]. In Figs. 4A and 4B, two diffraction peaks are
shown at 38° and 43.8° corresponding to the (111) and (200) plane of Ag metal according to
JCPDS NO. 04-0783 [23]. Meanwhile, the two peaks of AgO at 32° and 46.5° correspond to (202)
and (132), which agrees with JCPDS NO. 84-1108 [24].

Fig.3: FESEM image of the Ag/TiO: nanocrystalline thin films grown on: (A) glass
substrates (B) FTO/glass substrates.
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Fig.4: XRD patterns of the Ag/TiO: thin films grown on (A) glass substrates (B)
FTO/glass substrates.

3.2 Photocatalyst activity

The absorbance spectra of MB dye, which were catalyzed by the as-prepared Ag/TiO2
nanocrystalline thin film and those annealed at 200 and 300°C, are displayed in Figures 5A, 5B,
and 5C. The measurements were made at a pH of 6 under 0.33 mW/cm? intensity of white light
with varying exposure durations of 30 to 240 minutes. Figures 6A, 6B, and 6C are the absorbance
of MB dye measured with a pH value of 10 for the samples under the same conditions. The
absorption peak decreases with an increasing irradiation time of all samples indicating for
degradation of MB dye. The degradation ratio of the MB dye was calculated using the formula
[25]:

Degradation rate(%) = A‘;l;A x 100, 1

where A, represents the absorbance value before exposure, and A represents the absorbance value
after exposure to light. Figures 7A and 7B show the degradation rate vs. irradiation time of the
preparedAg/TiO; thin films and annealed samplesusing pH of 6 and 10, respectively. The
degradation rate when the pH is 10 (basal medium) is higher than that when the pH is 6. In the
basal medium, increasing hydroxyl ions in the MB solution leads to the form of hydroxyl radicals
OH® that in turn leads to an increase in the photodegradation of the MB dye on the catalytic
material surface [23, 24]. The degradation rate of MB dye with pH of 6 that was irradiated by a
white light for 240 min by prepared Ag/TiO2 nanocrystalline thin films and samples annealed at
200 °C and 300 °C was 68%, 59%, and 56%, respectively. However, when the pH was 10, the
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samples appeared degradation rates of 85%, 92%, and 96%, respectively after 240min of
irradiation by 0.33 mW/cm? intensity of white light. The prepared Ag/TiO> thin films and annealed
samples at 300 °C show higher photocatalytic activity than the other samples which could be due
to the annealing process leading to converting the rutile phase of TiO; to anatase. In addition, the
photocatalysis by mixed phases of TiO is better than that obtained by the rutile phase. The
conduction band of the anatase phase is greater than that of the rutile phase, causing the transfer
of generated electrons from the anatase to rutile TiO2 while holes are transferred from the rutile to
the anatase and prevent recombination of charge carriers [28]. P. Sangpour et al. evaluated the
photocatalytic activity of Ag/TiO2 nanostructure through the degradation of MB dye under white

light irradiation and obtained an efficiency of 75% after 200 min of exposure [29].
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The kinetic rate of the MB dye can be estimated by the first-order Langmuir relation formula [27,

28]:
C=Cye ", 2

where C, and C are the concentration of the MB dye before and after treatment, respectively, ¢ is
the time of the reaction and £ is the kinetics rate of the degradation reaction. The kinetic rate value
for the MB dye with a pH of 6 is 0.0044, 0.0036, and 0.0039 min™! for the as-prepared Ag/TiO
nanocrystalline thin films and annealed samples at 200 °C and 300 °C, respectively increased to
be 0.0073, 0.0114, and 0.0138 min™' for the same samples when pH value was 10. The optical
absorbance spectra of the MB dye solution catalyzed by as-prepared Ag/Ti0; nanocrystalline thin
film and annealed samples with pH of 6 under sunlight and exposure time of 30-240 min are
shown in Figs. 8A, 8B, and 8C. The absorbance spectra for the MB dye solution for pH of 10 that
was catalyzed by the -prepared Ag/TiO: thin film and annealed samples at 200 °C and 300 °C
under sunlight are shown in Figs. 9A, 9B, and 9C. However, the absorbance value of MB dye is
reduced when the illumination time is increased for all prepared samples. Thus, the degradation
rate increases with increasing illumination time and pH value for all MB dyes that are catalyzed
by as-prepared and annealed TiO2 nanocrystalline thin films (Figs. 10A, and 10B). The sample
TiO> thin film annealed at 300 °C showed a degradation rate of 100% after 150 min of sunlight
irradiation with a pH of 10. T. Ngoc et al. evaluated the photocatalytic activity of Ag/TiO>
nanotube through MB dye degradation under the effect of sunlight and obtained an efficiency of
96% after 20 min of irradiation [32] while A. Shet and V. S. K were getting a photodegradation
ratio of Ag/TiO; core-shell through phenol dye under sunlight are 70% after 360 min [33]. Singh
et al. reported that the Photocatalytic Activity of Ag-TiO> Hybrid Plasmonic Nanostructures is 97
% of 10 uM MB at 60 min [34], whereas Aravind et al. [35] mentioned a degradation rate of 94%
in 120 min by using Ag-TiOz nanofibers by synthesies the hydrithermal method as a catalyst under
natural sunlight, but the intensity of sunlight was not mentioned [35]. Preethi et al. [36] studied
RB degradation using Cd>SnO4 microcrystals in cubic and orthorhombic phase catalysts at 120
min and showed degradation of 91% and 82%, respectively. Koppala et al. [37] defect-SnO> under
UV irradiation exceeded 80% degradation of RB in 120 min. The same condition for the previous
study, except for the use of visible light and ZnO-Ag NPs [38]. In the case of this work, Ag NPs
ability for absorb visible light incident and induce coherent collective oscillation of electrons,

which in turn produces e with high kinetic energy in the region of 1 to3 eV, is known as plasmonic
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photocatalysis [39]. Consequently, highly energetic electrons produced by this process transfer
from surface metal NPs toward TiO., these electrons called *’hot electrons’’ have energy greater
than the higher Schottky barrier wherefore TiO> accepts the hot electron because the conduction
band has of state density of high Hot electron transfer leaves behind holes by doing an internal
electric field hence stopping recombination so the electrons are concentrated on the TiO> surface
close to the Ag NPs [39]. Particularly, the fermi levels in TiO, CB highest than most metals noble
which leads to suppressing (e-h") recombination so the material's ability to absorb visible light is
improved by the surface plasmon resonance (SPR) action of Ag [40]. The charge carriers produced
a reaction with the adsorbed H>O and O; molecules and highly reactive superoxide 0; and
hydroxyl radicals OH- eventually. Hence, the Photodegradation of dye under visible light returns
to these radicals [40, 41] as shown in schematic 1. The kinetic rate at pH of 6 was 0.0055, 0.0098,
and 0.0055 min™! for the prepared Ag/TiO; thin films and samples annealed at 200 °C and 300 °C
under sunlight irradiation for 240min, whereas the kinetic rate became 0.0371, 0.0344, and 0.0334
min! for the same samples at pH of 10. Sunlight irradiation causes the transfer the electrons
generated by light from Ag NPs to the conduction band of TiO> through the Schottky junction.
The SPR of metal NPs causes the creation of a highly intense electric field around Ag NPs where
transferred plasmon resonance energy increases the concentration of charge carriers in the Ec and
Ev bands of TiOz. The photogenerated electrons that interact with the surface of oxygen molecules
to form superoxide radicals (¢O2"). When adsorbed H>O molecules react with holes in the Vb of
Ti0; form extremely reactive hydroxyl radicals (OH*®), and these *O> and OH" interact with MB
and led to degrading dye [13].
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Fig.8: Absorbance spectra of MB dye with pH of 6 under the different times of sunlight
irradiation of Ag/TiO: thin films (A) as prepared, (B) annealed at 200 °C, and (C)
annealed at 300 °C.
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Figures 11A, 11B, and 11C show the CV of the prepared Ag/TiO2, nanocrystalline thin films
electrode, and those annealed at 200 and 300 °C at different scan rates, respectively. The as-
prepared samples and samples annealed at 200 °C exhibit a faradaic reaction where anodic and
cathodic peaks of Ag/AgCl appear at 0.39 and 0.0 V, respectively (Figs. 11A and 11B) while
Ag/TiO; nanocrystalline thin film that annealed at 300 °C exhibits an irregular cathodic peak as
shown in Fig. 11C. According to last publised work [43], the absence of reduction and oxidation
peaks is due to several causes including rapid redox reaction, short lifetime of separations,
reversibility, and good electrical conductivity which cause the electric coupling of redox sites. The

areal capacitance C; is described in the following relationship [44]:

area under cycle

Cs =
25VAV

where S, V, and AV are the photoelectrode area, scan rate, and electrolyte potential window ,
respectively. Figure 12 shows that the areal capacitance reduction (Cs) vs. scan rate ranges from
0.05 V/s to 0.5 V/s for Ag/TiO: thin films. The Cs value for as-prepared Ag/TiO; thin films and
samples annealed at 200 °C and 300 °C were 709, 347, and 2866 F/cm?, respectively. This
decreases values of area capacitance with increasing scan rate because of the slow ion diffusion
that led to a quick reduction of ion concentration on the photoelectrode surface [45]. However, the
area of the electrode's inner surface plays a significant role in this process; in particular, the lower
surface area is implicated in electrochemical activities at a fast scan rate [45]. The photoconversion
efficiency () of Ag/TiO: nanocrystalline thin films under irradiation by white light at 0.1 V
applied bias vs. Ag/AgCl is calculated evaluated through [46]:

_ ]phx(1.23—Vb)
Ptotal

, 4

where ], is the photocurrent density, Piotq; is the power density of photon illumination, and V,
is applied voltage versus hydrogen reference electrode. The 1 value of the as-prepared Ag/TiO»
nanocrystalline thin films is 1.5, whereas the samples annealed at 200 °C and 300 °C are 1.6 and
0.5, respectively. However, 1.S. Cho et al. obtained n of 0.17 for TiO> NRs at 0.65 V vs. Pt
electrode [47]. Otherwise, Raja et al [48] reported that TiO2 nanotubular arrays annealed at 350°C
for 6 hours in a nitrogen environment exhibited a peak photo conversion efficiency of

approximately 4% in 1M KOH electrolyte and around 3% in a 3.5wt.% sodium chloride solution.
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The flat band potential (Vrg) of the photoelectrode and the charge carrier density (Np) for the
photoanode were determined using the Mott—Schottky plot under dark conditions. The

semiconductor—liquid junction interfacial capacitance can be described by [49]:

1 2

KT
€2~ eegyNp (Va = Ves _7) 5

where C is the capacitance of the space charge (F/cm?), &, is vacuum permittivity, € is the
dielectric constant of TiO> (41.4 for anatase and 154.2 for rutile) [50], V, is applied potential, e is
the electron charge, T is temperature, and K is Boltzmann constant and Mott—Schottky preferred
measurement in dark conditions. The Np and Vrp are important factors for semiconductors that

affect the charge transport and onset potential, which consequently affect the PEC performance

[49, 50].
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Fig. 11: CV of the Ag/TiO2 nanocrystalline thin films electrode with various scan rates (A)
as prepared (B) annealed at 200 °C (C) annealed at 300 °C
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Fig. 12: Areal capacitance of Ag/TiO2/FTO/glass nanocrystalline thin films photoelectrodes
with various scan rates.
Figures 13A, 13B, and 13C represent the Mott—Schottky plots of prepared and annealed Ag/TiO>
nanocrystalline thin films at frequencies values of 100, 1000, and 10000 Hz, respectively. The
Mott—Schottky behavior of all samples is nonlinear indicating that the three assumptions
mentioned in Eq. 5 are not fulfilled. However, good linearity appears at the interval of -0.2 to 0.5
V versus Ag/AgCl applied bias when the frequency is 100 Hz. The calculated Vg potential was -
0.17, 0.27, and -0.32 V for the as-prepared Ag/TiO2 nanocrystalline thin films and samples leat
treated at 200 °C and 300 °C, respectively. The calculated Np value for 100 Hz is 9.6x10%!,
1.1x10%2, and 9.4x10%! cm™ for the as-deposited Ag/TiO> nanocrystalline thin films and those
annealed at 200 °C and 300 °C, respectively. The Vs value at the frequency of 1000 Hz is -0.18,
-0.27, and -0.32 V for the nanocrystalline thin films and samples heat treatments at 200 °C and
300 °C, respectively, and the Np value of the same samples was 4.1x10?!, 4.9x10*!, and 4.7x10*!
cm™, respectively. Furthermore, the Vg value of the prepared Ag/TiOx2 nanocrystalline thin films
and samples heat treated at 200 °C and 300 °C are -0.03, -0.08, and -0.15 V, respectively, under
the frequency of 10 000 Hz while the Np value of the same samples is 1.0x10%!, 1.1x10%!, and
9.5x10%° cm™, respectively. However, found that the Np value of prepared samples decreases when
the frequency increases which can be ascribed to the contribution of surface states to the
capacitance [26]. Increasing donor density refers to the extent of band bending at the semiconductor
surface, which boosts charge separation efficiency and subsequently improves photocurrent
density under irradiation [27]. Donor density is a remarkable parameter for metal oxides where
the excess donor concentration converts the semiconductor into metallization, which is a conductor

material of the semiconductor. Metallization reduces the width of the depletion region (W) and the
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field, thereby decreasing the photocurrent density [26]. D.R. Ortega et al. found that the Np is
3.11x10% ¢m™ for TiO2 NPs with homogeneous distribution and agglomerate structure with a
globular shape [53]. These results are comparable with the findings of T. H. Lee et al. that the Np
is 6.9x10%° cm™ for TiO2 NRs synthesized via CBD under 1 kHz and applied potential of -0.7—0
V (vs. SCE) [54]. All obtained values of Vrg are negative indicating that the photoanode electrode
is performing better because of the charge separation ease of photogenerated electron/hole pairs,

thereby improving the water-splitting performance [55].

The depletion region (W) of interface between semiconductor and electrolyte interface can be
computed using the relationship [49]:

W = (w)l/z |

eNp

The calculated W values when the frequency is 100 Hz are 0.69, 0.76, and 0.87 for the as-prepared
Ag/TiO; nanocrystalline thin films and those annealed at 200 °C and 300 °C, respectively. When
the frequency is 1000 Hz, the W values are 1.07, 1.13, and 1.23 nm for the same samples and
increased to 1.46, 1.67, and 2.12 nm under a frequency of 10000 Hz.

The diffusion lengths of electrons and holes or Debye length (Lp) for the photoelectrode can be

calculated using the equation [56]

LD _ (ssokT) 1/2. 7

e2ND

Hence, the Lp at 100 Hz is (2, 1.4, and 1.5) X107 cm of the prepared Ag/TiO> nanocrystalline thin
films and for those annealed. Increasing the frequency to 1000 Hz decreases the Lp to (2.3, 2.1,
and 2.2) x10” cm for the as-prepared and annealed samples, respectively. At a frequency of 10000
Hz, the Lp value increases to 5 x10® cm for the prepared and heat treated Ag/TiO2 nanocrystalline

thin films. The Fermi level (EF) can be calculated from the equation [57]
Er=-eVrp 8

The maxima E},gp and minima E.p can be determined using the following equations:

Egp = Ep — kTn (Z—’-C’) 9
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Eg == ECB - EVB 10

The obtained Mott—Schottky parameters, Fermi energy (Er), conduction band, and valance band
of all prepared and annealed Ag/TiO> nanocrystalline thin films at frequencies of 100, 1000, and
10000 Hz are listed in Tables 1, 2, and 3, respectively. Furthermore, the deposition of Ag onto the
surface of TiO2 nanocrystalline thin films increases the efficiency of photogenerated charge carrier
separation and faster charge transfer at the solid/liquid photoelectrode interface and prevents the
recombination of charge carriers. This phenomenon is led to an increase in the concentration of
photogenerated charge carriers where the photogenerated electrons can fast transfer to the oxygen
absorbed on the TiO> surface [58]. However, the effect of annealing on the photoelectrode

properties did not appear significantly due to the low temperature.
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Fig. 13: Mott-Schottky plots of the TiO: and Ag/TiO: nanocrystalline thin films at a
frequency of (A) 100 Hz, (B) 1000 Hz, and (C) 10000 Hz in the dark
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Table 1: Obtained Mott-Schottky parameters of thin films nanostructures at a frequency of

100 Hz

Sample Np (cm” Vs | W(nm) | Er(eV) | Ecs(eV) | Eve(eV) | Lp(cm)
Y V)

Ag/TiOzas | 9.6x10°' | -0.17 0.69 | 2.8x102° | -1.345 -4.745 2x108

prepared

Ag/TiOz 1.1x10% | -0.27 0.76 | 4.3x102° | -1.349 -4.449 | 1.4x10%
200°C

Ag/TiOz 9.4x10*' | -0.32 0.87 | 5.1x102° | -1.345 -4.015 | 1.5x10*®
300°C

Table 2: Obtained Mott-Schottky parameters of thin films nanostructures at frequency of
1000 Hz

Sample Np (cm™ | Vg (V) | W (nm) | Er(eV) |Ecs(eV)| Eva(eV) | Lp(cm)

Ag/TiOzas | 4.1x10*" | -0.18 1.07 2.9x102° | -1.323 -4.723 | 2.3x108
prepared

Ag/TiOz 4.9x10°! | -0.27 1.13 4.2x102° | -1.328 -4.428 | 2.1x1038
200°C

Ag/TiOz 4.7x10*' | -0.32 1.23 2.0x10% | -1.327 -3.997 | 2.2x1038
300°C
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Table 3: Obtained Mott-Schottky parameters of thin films nanostructures at frequency of

10000 Hz
Sample | Np(cm™ | Veg (V) | W (nm) | Er(eV) Ecs Evs Lp(cm)
Ag/TiOz as | 1.0x10*! -0.03 1.46 4x1072! -1.287 -4.687 5x10°8
prepared
Ag/TiO; 1.1x10%! -0.08 1.67 1.3x10%° | -1.289 -4.389 5x10°8
200°C
Ag/TiO, | 9.5x10° | -0.15 2.12 2.5x102° | -1.285 -3.955 5x10°8
300°C

4. Conclusions

TiO; thin films were prepared by the CBD method. The films were coated by Ag NPs prepared
by electrochemical techniques to prepare Ag/TiO2 nanocrystalline thin films. MB dye was used to
assess the films' photocatalytic efficacy in both low-intensity white light and sunlight. The
degradation rate of the MB dye was found to be greater at a pH of 10 in comparison to a pH of 6.
Moreover, the degrading efficiency exhibited a significant improvement, rising from 85% to 96%,
after subjecting the Ag/T102 nanocrystalline thin films to annealing at a temperature of 300 °C for
a duration of 1 hour, followed by exposure to white light for a total of 240 minutes. The
nanocrystalline thin films composed of Ag/TiO: demonstrated comparable photocatalytic
performance when exposed to sunlight. However, the degradation rate is faster when compared to
white light. Significantly, the MB dye was completely broken down at a pH of 10 in the presence
of sunlight in about 150 min. The Ag/Ti0> nanocrystalline photoelectrodes demonstrated faradaic
performance, as evidenced by cyclic voltammetry (CV) measurements done in the absence of light.
The Ag/TiO2 photoanodes underwent Mott-Schottky analysis, revealing negative flat band
potential (Veg) values. This is consistent with the Nernst equation and indicates efficient separation
of light-induced charges and enhanced efficiency in the process of splitting water. The donor
density (Np) of the Ag/TiO2 photoanodes was seen to have a higher value at a frequency of 100
Hz compared to frequencies of 1000 Hz and 10000 Hz. At a frequency of 10000 Hz, the process
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of metallization causes a decrease in the depletion region, resulting in a reduction in the density of

photocurrent.
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