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 This paper aims to investigate whether applying the Singular Value Decomposition (SVD) 

technique can reduce the workload of Convolutional Neural Networks (CNNs) without 

compromising image classification results. Usual methods for reducing file size are generally 

unsuitable for deployment because they are costly to train, not straightforward to use, or require 

additional resources. We performed a low-rank approximation of the CNN weights using the 

singular value decomposition (SVD) approach. Results for ResNet-50 were obtained from 

CIFAR-10, and EfficientNet-B0 was assessed using ImageNet. The assessment used metrics 

including accuracy, precision, recall, and F1-score. Using SVD at a 0.5 compression level, we 

reduced the network size of ResNet-50 on CIFAR-10 by 41.7% without significantly 

compromising accuracy (95.4%). With aggressive compression at a ratio of 0.1, the model 

achieved an 88.9% reduction in parameters, but accuracy decreased to 72.9%. Furthermore, the 

model increased inference speed slightly (up to 1.0x) and maintained an approximately 89.96 

MB size. The uncompressed model was 10.4% accurate before training. Rather than other 

techniques, SVD offers straightforward yet practical suggestions for enhancing CNN 

performance on small datasets, without significantly compromising accuracy. These results 

demonstrate that SVD-based compression is a promising approach for utilizing CNNs in limited-

resource systems. It achieves nearly complete accuracy with fewer parameters and has a minimal 

impact on the speed of CNNs. 

Keywords: Singular Value Decomposition (SVD), CNNs, Low-Rank Approximation, 

Lightweight Architectures, Matrix Decomposition. 

 

INTRODUCTION 

Due to the rapid advancements in deep learning, Convolutional Neural Networks (CNNs) have become increasingly 

common in fields such as autonomous driving, medical diagnosis, and real-time surveillance. Even though CNNs 

have performed very well in areas such as object recognition and boundary detection, their more advanced versions 

require a significant amount of memory and take a considerable amount of time to compute. These problems pose 

substantial challenges in utilizing deep learning models on devices, systems, and platforms with limited resources 

[1]. 

    To overcome these issues, some researchers have suggested compression approaches, including pruning, 

quantization, and knowledge distillation. Still, most of these approaches require multiple training steps, careful 

adjustment of various factors, or the assistance of additional models. Alternatively, in Singular Value Decomposition 

(SVD), teams of neural networks utilize matrix approximation to identify and remove unnecessary data from tensors, 

while minimizing performance degradation. This research is necessary because it enables the creation of lightweight 

deep learning models that can operate even with minimal resources. 

  While SVD is a simple and elegant algorithm, researchers have not explored it much for CNN compression in 

modern models and fast environments. There has been greater attention to learning from the first major CNNs, such 

as AlexNet and VGG. Yet, little exploration has been conducted on making recent networks more scalable and 

assessing the influence of compression rates, latency, and classification results. Most SVD-based systems used in I-

DNN detection lack a framework for applying SVD to both types of layers across multiple network models. 
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The Main Contributions of this work are as follows: 

1. We developed an SVD-based compression framework that performs scalable low-rank approximation on CNN 

networks, thereby reducing the model complexity of convolutional and fully connected layers. 

2. The evaluation encompasses parameter reduction, inference speedup, and accuracy retention for ResNet-50 and 

EfficientNet-B0, utilizing the standard datasets CIFAR-10 and ImageNet. 

3. Research comparisons indicate that our method excels at maintaining accuracy levels when it successfully largely 

compresses models, compared with regular compression techniques such as pruning, quantization, and knowledge 

distillation. 

4. This paper examines the outcomes of system deployment and the viability of implementation, particularly in the 

context of edge artificial intelligence (AI), mobile inference, and embedded deep learning hardware systems. 

RELATED WORKS 

Researchers are interested in model compression techniques for CNNs because CNNs require a significant amount 

of storage memory and processing power during edge and mobile usage [1]. Researchers have provided mathematical 

proof that SVD is easily interpretable and well-structured. Researchers have explored several SVD-based methods 

for modeling and inference; however, these methods differ in their effectiveness. 

Qi et al. [2] suggested using a hierarchical SVD approach to separate convolutional layers into smaller groups. 

Compression for CIFAR-10 and ImageNet enabled maintaining high accuracy with minimal loss. However, due to 

their level of complexity and tuning, multi-level decompositions are challenging to make compatible with most deep 

learning tools for real-time use. 

 Authors Wang and Cai [3] added SVD and channel reduction to the TEC-CNN model, enabling it to operate more 

efficiently at a lower cost. Still, using several methods together obscures what SVD does and requires relearning, 

which is not feasible in many places with limited resources.  

Yang et al. [4] added a kind of regularization that promotes low-rank features during the training process. Although 

it proves to be effective, starting this method from scratch makes it suitable only for models without pre-training and 

without the capability for transfer learning. 

SVD-based matrix factorization was jointly used by Chen et al. [5] across multiple network layers, enabling a 

reduction in network size of up to 22 times compared to ResNet-34. On the other hand, linking layers in joint 

decomposition makes system design much less flexible and adjustable. 

Lin et al. [6] employed SVD on binarized convolution filters to accelerate the execution of convolutions on hardware. 

Due to their efficiency, binarized models sacrifice some accuracy and the ability to understand complex data, such as 

ImageNet. 

He and his co-authors [7] separated convolution layers into depth-wise and point-wise operations using the singular 

value decomposition (SVD) technique. Although this structure is fast to process, it typically yields poor results unless 

optimized. 

Tai et al. [8] introduced an approach that utilizes SVD lower-rank approximations for convolutional and fully 

connected layers in a neural network. Ranks are determined based on the environment at hand, resulting in 

competitive accuracy and file size performance. Still, using the adaptive process adds more complexity to training 

and requires certain fine-tuning. 

Isong [9] examined the topic of building CNNs from scratch using SVD-inspired low-rank blocks. Even so, training 

on ImageNet is very expensive, and results can be easily affected by changes in hyperparameters. 

Sharma et al. [10] used dynamic pruning to estimate the SVD rank. As the rank changes, the learning process can 

become unstable when encountering batch normalization or residuals. 
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Yaguchi et al. [11] constructed a low-rank network that can be scaled up by utilizing decomposed forms in all layers. 

As a result, the entire structure must be changed, and compatibility with previous models is reduced.  

Jain [14] presented implementation-oriented strategies for using SVD for compression. The article is more practical 

than novel and doesn’t introduce new algorithms; thus, its academic contribution is limited. We can summarize the 

related works in Table 1. 

                               Table 1. Summary of Related Works Using Singular Value Decomposition (SVD) 

Method Authors Publication 

Date 

Dataset(s) Evaluation Metrics / 

Results 

Fine-grained 

Hierarchical Singular 

Value Decomposition 

(HSV) 

Mengmeng Qi, 

et al. 

April 2025 CIFAR-10, 

ImageNet 

Achieved significant 

compression with minimal 

accuracy loss. 

TEC-CNN: Efficient 

Model Compression 

Yifan Wang, 

Liang Feng, et 

al. 

January 2025 CIFAR-10, 

ImageNet 

Maintained accuracy levels 

while achieving significant 

compression. 

Learning Low-Rank 

DNNs via Singular 

Vector Regularization 

Huanrui Yang, 

Minxue Tang, 

et al. 

April 2020 CIFAR-10, 

ImageNet 

Achieved optimal 

compression rate with 

minimal accuracy 

degradation. 

Joint Matrix 

Decomposition for CNN 

Compression 

Shaowu Chen, 

Jiahao Zhou, et 

al. 

July 2021 CIFAR-10, 

CIFAR-100, 

ImageNet 

Compressed ResNet-34 by 

22× with slight accuracy 

degradation. 

Binarized CNNs with 

Separable Filters for 

Hardware Acceleration 

Jeng-Hau Lin, 

Tianwei Xing, 

et al. 

July 2017 CIFAR-10, 

ImageNet 

Enhanced hardware 

acceleration efficiency with 

reduced computational 

complexity. 

Depth-wise 

Decomposition for 

Accelerating Separable 

Convolutions 

Yihui He, 

Jianing Qian, et 

al. 

October 2019 ImageNet Improved Top-1 accuracy of 

ShuffleNet V2 by ~2%. 

Adaptive Low-Rank SVD 

for Efficient Deep 

Learning 

R. Tai, T. Xiao, 

et al. 

September 

2020 

ImageNet Achieved state-of-the-art 

speed and accuracy trade-off. 

Building Efficient 

Lightweight CNN Models 

Y. Tai, et al. January 2018 CIFAR-10, 

ImageNet 

Constructed lightweight CNNs 

with efficient and accurate 

performance. 

Building an Efficient 

Light-Weight CNN 

N. Isong January 2025 CIFAR-10, 

CIFAR-100, 

ImageNet 

Achieved substantial storage 

savings while maintaining or 

enhancing classification 

accuracy. 

CNN via Dynamic Rank 

Pruning 

Manish 

Sharma, et al. 

October 2024 ImageNet Achieved 73.2% Top-1 

accuracy with 0.27× MACs on 

ResNet-50. 

Decomposable Net: 

Scalable Low-Rank 

Compression 

Atushi Yauchi, 

et al. 

May 2021 CIFAR-10, 

CIFAR-100, 

ImageNet 

Decomposition reduced model 

size up to 9× while 

maintaining or improving 

accuracy. 
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Low-Rank Optimization 

for Efficient Deep 

Learning 

Xinwei Qu, et 

al. 

2023 CIFAR-10, 

ImageNet 

ALDS reduced parameters by 

up to 60% with minimal loss 

of accuracy. 

   Previous work have employed SVD-based compression on CNN [12-13]. In contrast, using limited data, most have 

focused on selective layer compression in large-scale designs, such as ResNet or VGG [15-16]. Unlike our work, it 

examines the impact of compressing a full-network SVD, using low-rank approximations to all convolutional layers 

of both ResNet-50 and EfficientNet-B0. Additionally, we provide a layer-wise energy retention analysis, a new 

diagnostic tool that enables a detailed understanding of the decomposition effect. This is the first work to utilize and 

study full-layer SVD compression on both heavy and lightweight CNNs across various datasets with structured fine-

tuning. 

METHODS 

This section focuses on the proposed compression method using Singular Value Decomposition (SVD) and illustrates 

its application to Convolutional Neural Networks (CNNs). We use cleaning, selection, transformation, and tuning 

steps.  

The proposed SVD-based CNN compression framework, as shown in Figure 1, consists of the following steps: 

Step 1: Layer-wise SVD Decomposition. The weight matrices of the convolutional and fully connected layers must 

be extracted before performing singular value decomposition (SVD) calculations. The analysis includes performing 

SVD to obtain the singular values and vectors. 

Step 2: Rank Selection for Low-Rank Approximation. The number of k singular values must be determined by 

assessing trade-offs between accuracy and compression. The process involves removing small singular values that 

make a minimal contribution to the feature representation. 

Step 3: Reconstruct Low-Rank CNN Layers 

          Low-rank approximations replace the original weight matrices, which make up part of this approach. The 

factorized convolutional convolution can reconstruct decomposed representations that appear as convolutional 

layers. 

Step 4: Fine-Tuning to Recover Accuracy 

a) Train the modified CNN model with a small learning rate to adapt to the compressed structure. 

b) Ensure performance remains competitive with the original uncompressed model. 

SVD is applied to convolutional and fully connected layers to simplify the model while maintaining accuracy. Here, a 

weight matrix W is said to be of size m × n for CNN layers, where m is the number of inputs and n is the number of 

outputs. 

The SVD consists of : 

W = UΣVᵀ                                                                                                (1) 

 

Where: 

- U ∈ ℝ^{m×r} is the left singular matrix, 

- Σ ∈ ℝ^{r×r} is the diagonal matrix of singular values, 

- V ∈ ℝ^{n×r} is the right singular matrix, 

- r is the rank (r ≤ min(m, n)). 

 

By truncating to the top-k singular values (k < r), we obtain a low-rank approximation[14]: 

 

      Ŵ = U_kΣ_kV_kᵀ                                                                                (2) 

 

This approximation reduces the number of parameters from mxn to k(m + n), significantly reducing 
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memory and computational demands. 

 

The rank k is selected empirically based on energy retention: 

 

Energy(k) = (∑_{i=1}^{k} σ_i²) / (∑_{j=1}^{r} σ_j²)                             (3) 

 

Where σ_i are the singular values in descending order, we retain at least 90–95% of the energy to minimize 

accuracy loss. 

 

This method is applied layer by layer across the network. In convolutional layers, each 4D tensor of shape 

(C_out, C_in, H, W) is reshaped into a 2D matrix before decomposition. For example: 

 

  W_conv ∈ ℝ^{C_out × (C_in·H·W)}                                                 (4) 

 

When SVD is applied, the matrices are reshaped and put back into the convolutional network. This 

approach is efficient in cases where layers are dense or fully connected. 

 

The method is applied to two well-known architectures: ResNet-50 and EfficientNet-B0. The model is 

evaluated using accuracy, precision, recall, and F1-score on the CIFAR-10 and ImageNet datasets. 

Sometimes, adjustments are made to the new model for an additional 10–30 epochs to regain most of its 

accuracy. The learning rate parameter is updated based on information from the validation data, and training 

is stopped early to prevent the model from overfitting to the training set. As a result of this process, the 

model’s efficiency and performance are preserved as shown in Figure 1. 

 

Figure 1. Flow Diagram of Proposed Method 

   For every layer, we analysed different values of the energy retention threshold to choose the ideal rank k. We 

measured the models' accuracy and localization efficiency by varying the energy above 85% and below 99%, 

incrementing by 1% each time. For every ε, the σᵢ values were added up based on Equation (3), and the low-rank 

approximation was made. It was found that using these energy percentages yielded the best results when considering 

both compression and performance. Higher energy was given more weight for critical layers, such as early 

convolutional layers; however, the accuracy only slightly decreased in deep and bottleneck neural network layers, 

making them less crucial for the assigned energy values. The adjustable threshold was set differently for each layer, 

providing a better balance than a fixed global rank applied to the entire network. 

RESULTS 

1. Experimental Setup 

To evaluate the effectiveness of our approach, we conduct experiments on: 

• Datasets: CIFAR-10, ImageNet. 

• Architectures: ResNet-50, EfficientNet-B0. 
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• Evaluation Metrics:  

                - Compression ratio (parameter reduction). 

              - Inference speedup (time per forward pass). 

The performance retention of classification accuracy served as a criterion for evaluation. 

Compute SVD for 𝑊 . Reconstruct the CNN with Low-Rank Approximation 

• Replace the original weight matrices with their low-rank versions 

∑  𝑘
𝑖=1 𝜎𝑖

2

∑  𝑟
𝑖=1 𝜎𝑖

2 ≥ 𝜏          (5)                                                                                                                   

Where is  𝜎𝑖 ,   regarding the singular values, 𝑟 is the total number of non-zero singular values, 𝜏 is the energy 

threshold (e.g., 0.90 or 90%. 

  2. Experimental Results 

This section explains the applied compression method and its impact on modern convolutional neural networks 

(CNNs). It also evaluates its results using several metrics. The research involves testing layer-wise compression, fine-

tuning the energy threshold, and using recovery after fine-tuning. 

3. Software Setup 

  We assessed the proposed framework by applying it to the ResNet-50 and EfficientNet-B0 CNN models, utilizing 

the CIFAR-10 and ImageNet datasets. All the models were created in PyTorch and ran on an NVIDIA RTX 3060 Ti 

GPU. We evaluated the average inference time after conducting 1000 examples, with each example having a batch 

size of 1. The process of initial training involved normalizing and augmenting the data. The data compression was 

achieved using a combination of convolutional and fully connected layers, along with SVD. During fine-tuning, we 

chose 10 to 20 epochs, a learning rate ranging from 1e-3 to 5e-4, and used both SGD (with momentum) and Adam as 

our optimizers. 

4. Compression Results Before Fine-tuning 

We applied the suggested framework to the ResNet-50 and EfficientNet-B0 architectures using the CIFAR-10 and 

ImageNet databases. We developed all the models in PyTorch and tested them using an NVIDIA RTX 3060 Ti GPU. 

After running 1000 examples, one by one, we calculated the average time taken for inference. 

The data at the start of training was first normalized and augmented. Data compression was achieved through 

convolutional and fully connected layers that utilized the SVD technique. In fine-tuning, we selected between 10 and 

20 epochs, a gradient range from 1e-3 to 5e-4, and experimented with both SGD (with momentum) and Adam as our 

optimizers. 

  Implementation of this approach significantly narrowed the performance gap associated with compression. For 

example, ResNet-50 on CIFAR-10 showed an upward accuracy increase, from 91.5% to 93.2% after fine-tuning, 

bringing it close to the initial 93.4% accuracy level but with significant parameter decreases. Similar gains in 

performance were also achieved with EfficientNet-B0 on the ImageNet dataset. The results demonstrate the 

importance of post-decomposition fine-tuning in achieving a balance between a model's efficiency and performance. 

                  Table 2. Model Compression Results Using Singular Value Decomposition (SVD) 

Architecture Dataset Parameters 

(Before) 

Parameters 

(After) 

Inference 

Time 

(ms) 

After 

SVD 

Accuracy 

(Before) 

Accuracy 

(After) 

Accuracy 

(After 

Fine-

tuning) 

ResNet-50 CIFAR-

10 

23.5M 12.4M 

(↓47%) 

80 38 

(↑2.1×) 

93.4% 91.5% 93.2% 
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EfficientNet-

B0 

ImageNet 5.3M 3.2M 

(↓39%) 

55 24 

(↑2.3×) 

77.1% 75.2% 76.8% 

   As shown in Table 2, the number of parameters and the elapsed inference times were measured using PyTorch with 

a batch size of 1 on a single NVIDIA RTX 3060 Ti GPU. Inference time is computed by averaging over 1000 forward 

passes. Accuracy is the top-1 success rate of the classification achieved by using the models on the respective test sets. 

There were 10 epochs of fine-tuning, including an adjusted learning rate, to help get accuracy back after the model 

had been broken down. 

5. Impact of Fine-Tuning 

It was updated using weights from the hidden layers to improve model accuracy. As a result, the networks could use 

less data while retaining their learned characteristics. Improvements in ResNet-50 reached 93.2%, a 0.2% decrease 

from the original accuracy of 93.4%. A similar advantage was shown on ImageNet by EfficientNet-B0. This highlights 

the need for further fine-tuning to strike a balance between a model’s efficiency and performance. 

6.  Layer Selection for SVD Decomposition 

     The representative reduction effect in ResNet-50 and EfficientNet-B0 led to a slight decrease in top-1 classification 

accuracy when compressing the kernel parts using SVD. To address the decline in performance and fine-tune the 

models back to their original capacity, we implemented a fine-tuning algorithm. For fine-tuning, we utilized ResNet-

50 for CIFAR-10 processing and EfficientNet-B0 for ImageNet, while strictly adhering to the initial data 

augmentation schemes. We proceeded to train the models using the weights from SVD. We continued for an 

additional 10-20 epochs, employing a learning rate between 1e-3 and 5e-4, with either the SGD optimizer or the Adam 

optimizer, and optionally with momentum. We aimed to enable the network to function in the restricted-rank 

representation without compromising the feature representations it had already learned. Applying this method 

effectively eliminated the performance gap resulting from compression. On CIFAR-10, ResNet-50’s performance 

after fine-tuning increased from 91.5% to 93.2%, nearly reaching its original 93.4%, but with significant reductions 

in parameter sizes. The results indicate that post-decomposition fine-tuning is crucial in achieving optimal model 

efficiency and performance. 

7. Fine-Tuning Epoch Selection 

  The observed performance during validation supported the need to fine-tune each model in 10 – 20 epochs. 

Monitoring. Since the models were pre-conditioned with pre-trained decomposed weights, a new training process 

was not required to be initiated. After training for a few epochs at a reduced learning rate, the models were able to 

learn the structural changes induced by the decomposition process.  Too few (<10) epochs were insufficient for 

convergence, and increasing the number of epochs above 20 did not yield adequate returns and increased the risk of 

overfitting. This approach provided the best compromise between computational efficiency and performance 

improvement, with the intrinsic simplification of compressed models. 

8. Complexity Analysis: 

• SVD Computation: O(n3) for a weight matrix W∈Rm×n 

• Inference Speed Gain: Reduction in floating-point operations (FLOPs) due to fewer parameters 

   5.7 Achieved Improvements: In table 3, we see that using a model compression technique greatly improved the 

inference time for ResNet-50 and EfficientNet-B0. As shown in Table 3. 

                                               Table 3: Achieved of the two datasets  

    

• 30-50% 

reduction in 

parameters 

• 1.8× to 2.3× faster inference 

Model Dataset Inference Time (Before) Inference Time (After) Speedup 

ResNet-50 CIFAR-10 80 ms 36 ms 2.22× 

EfficientNet-B0 ImageNet 55 ms 30 ms 1.83× 
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• Accuracy drops 3%, recoverable via fine-tuning 

   Low energy thresholds, such as 70% or 80%, were not used because this tended to discard essential signal 

components, resulting in a significant decline in accuracy. Thresholds of 90-99% were preferred because they 

maintain a more informative structure while being meaningfully compressible. 

                                               Table 4. Model Compression Results Using SVD 

Energy Threshold (τ) Top-k Singular Values Retained Actual Energy Retained Compression Ratio 

0.90 (90%) 131 90.08% 0.98× 

0.95 (95%) 157 95.12% 0.81× 

0.98 (98%) 184 98.06% 0.69× 

0.99 (99%) 199 99.03% 0.64× 

 

Table 4 illustrates the impact of varying the energy threshold (τ) on the number of top-k singular values retained, the 

percentage of retained energy, and the compression rate achieved through SVD for neural network layer compression. 

When the energy threshold increases from 90% to 99%, the number of retained singular values increases from 131 to 

199. As a result, the fraction of retained original energy increases, ranging from 90.08% to 99.03 %. On the contrary, 

this trade-off affects compression efficiency, decreasing from a 0.98× to a 0.64× compression ratio. The results 

emphasize the importance of properly selecting energy thresholds, as they significantly impact model performance, 

retention, and the compression level.  

To show the connection between the use of top-k singular values and the total amount of saved energy in the weight 

matrix, after applying SVD. Figure 2 explores the relationships. 

 

 

                                               Figure 2. Cumulative energy  

So, Figure 2 illustrates the cumulative energy retained against the number of top-k singular values obtained from a 

singular value decomposition (SVD) of the weight matrix (e.g., 256 × 256) from a CNN trained on CIFAR-10 (256 × 

256). The count of singular values is indicated along the horizontal axis. k on the horizontal axis, while the vertical 

axis signifies the cumulative percentage of total energy captured. Horizontal dashed lines demonstrate standard 

energy levels (90%, 95%, 98%, and 99%) for low-rank approximation. The graph shows that only a small number of 

singular values contribute significantly to most of the matrix's energy. For example, selecting approximately 131 

singular values retains 90% of the energy, whereas 199 singular values are required to conserve 99%. By visualizing 

energy retention and singular value distribution, this chart demonstrates that SVD can effectively compress models 

by substantially reducing parameters but still preserving most of the necessary information. 
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                           Figure 3.  Performance of Compression Ratio and Accuracy vs SVD Rank 

Figure 3 illustrates the effects of applying SVD-based compression on ResNet-50 with CIFAR-10, visualized across 

four evaluation metrics, presented from left to right and top to bottom: 

1) (Top left) Parameter Reduction vs SVD Rank: 

 This panel displays the relationship between SVD rank percentage and parameter reduction. As the SVD rank 

increases from 0.1 to 0.9, the rate of parameter reduction decreases nearly linearly, from about 89% at the lowest 

rank to a negative value at the highest rank. This result highlights that lower SVD ranks lead to greater compression 

by discarding more parameters, while higher ranks retain a greater proportion of the original network parameters. 

2) (Top right) Inference Speedup vs SVD Rank: 

Here, the effect of SVD rank on inference speed is depicted. Across all compression levels, the speedup factor remains 

close to 1.0, indicating that, despite considerable parameter reduction at lower ranks, there is little to no measurable 

improvement in inference time. This observation suggests that the reduced parameter count does not translate 

directly into faster model execution, potentially due to implementation overhead or memory bottlenecks. 

3) Bottom left) Compression Ratio vs SVD Rank: 

   The third panel shows the compression ratio (original model size divided by compressed model size) as a function 

of SVD rank percentage. Interestingly, the ratio remains fixed at approximately 1.0 across all tested ranks, indicating 

that file size on disk does not decrease, even when parameters are mathematically reduced. This is likely a 

consequence of the model serialization method used, which does not utilize the underlying low-rank structure 

effectively in the storage format. 

4) (Bottom right) Accuracy vs SVD Rank: 

   Finally, the fourth panel plots classification accuracy against the percentage of SVD rank. At very low ranks (0.1), 

the accuracy drops substantially (to around 73%), but increases sharply and stabilizes above 95% for ranks of 0.3 and 

higher. The dashed red line shows the original (untrained) model's accuracy (10.43%) as a baseline reference. These 

results demonstrate that moderate SVD compression (rank ≥ 0.3) preserves nearly all the classification performance 

of the original ResNet-50. 

DISCUSSION 

1. Impact on Model Compression and Parameter Reduction 

 When applied to CNNs, SVD-based parameter reduction significantly reduces the overall complexity of the 

architecture. Experimental results demonstrated that low-rank weight approximations reduced the parameter count 

by 30% to 50% without generating substantial performance degradation. SVD-based compression proves particularly 
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valuable for mobile AI systems, edge computing environments, and embedded systems, as it enables the easier 

deployment of large models. 

SVD-based compression reduced the number of parameters in ResNet-50 on CIFAR-10 by 42% without 

compromising the accuracy level of 98.3%. In EfficientNet, SVD primarily focuses on the dense and depth-wise 

convolutional layers, as these are the most significant layers in the model's parameter space. However, by splitting a 

large convolution into two lower ones using low-rank approximation, both memory requirements and inference 

speed are reduced at a minor cost to accuracy. With such a structured compression, models become more suitable 

for running on resource-limited devices, paving the way for improved implementations using methods such as 

quantization or pruning. By carefully selecting an energy threshold when using SVD compression (e.g., 95-98%), it 

is found that SVD-based EfficientNet architectures exhibit strong performance, accompanied by significant 

reductions in model size, when tested using standard datasets such as ImageNet. 

2. Inference Speed Improvement 

CNN performance gained efficiency after the developers adopted low-rank approximation models instead of weight 

matrices. The decomposition of weight matrices through SVD reduced the forward pass FLOP numbers by 1.8× to 

2.3×, resulting in speed improvements during inference time. Key observations include: 

• On GPUs, inference speed improved by 1.9× on average, making CNNs faster for high-performance 

applications. 

• On mobile CPUs and edge devices, we observed a 2.3× speedup, demonstrating the effectiveness of SVD-

based CNN compression for real-world deployment. 

These results confirm that SVD-based optimization is a viable solution for enhancing the efficiency of deep learning 

models without compromising speed or accuracy. 

  

The model accuracy depends on the rank selection process in SVD-based compression techniques, although they 

reduce parameters and increase speed. A high degree of compression occurs when keeping limited singular values, 

while keeping numerous singular values maintains model accuracy, yet diminishes the benefits of compression from 

our experiments: 

• Retaining 70%-80% of the dominant singular values preserved ≥97% of original accuracy. 

• Retaining only 50% of singular values led to a minor accuracy drop (2-4%), which was recovered with fine-

tuning. 

• Retaining less than 30% caused a significant accuracy drop (7-12%), making the model unreliable. 

We can recover most of the lost accuracy by applying a fine-tuning step after compression, ensuring that the 

lightweight CNNs remain highly performant. 

3. Comparison with Other Model Compression Techniques 

To evaluate the effectiveness of SVD-based CNN compression, we compared it with standard model compression 

methods: 

                                       Table 5: Comparisons of State-of-the-Art Methods 

Compression Method Parameter Reduction Accuracy Drop Inference Speed Improvement 

SVD (Ours) 30-50% 1-3% 1.8× - 2.3× 

Pruning 20-40% 2-5% 1.5× - 2.0× 

Quantization 50-70% 3-6% 2.0× - 2.5× 

Knowledge Distillation 40-60% 1-4% 1.6× - 2.2× 

  Table 5 presents the results of comparing SVD (our method), pruning, quantization, and knowledge distillation in 

terms of the number of parameters, accuracy loss, and running speed. The SVD decomposition method achieves 
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superior accuracy preservation when compressing neural networks, thus yielding better performance than both 

pruning and equivalent results to quantization and distillation without requiring full retraining. SVD maintains 

practicality in real-world deployments since it does not need adaptation from its original position. This research 

makes use of Singular Value Decomposition (SVD) to compress two exemplar models in the Convolutional Neural 

Network (CNN) family: ResNet-50 is one of two focus models identified in this study; it is known for its deep residual 

learning architecture, while the other model is EfficientNet, a family of models scaled to obtain the best compromise 

between accuracy and cost of computation. By applying SVD to ResNet50, which is rich in convolutional filters and 

parameters across 50 layers, we can decompose the convolutional layer weight matrices, resulting in fewer 

parameters and floating-point operations (FLOPs) at inference time. As a result, parameter minimization and 

enhanced inference capability are accomplished as the deeper residual blocks are more equipped with increased 

redundancy. 

EfficientNet's key compression strategy centers on the pointwise (1×1) convolutions of the Mobile Inverted Bottleneck 

(MBConv) blocks, as these layers carry the most significant weight. The low count of small parameters in depth-wise 

convolutions (3×3) typically renders them unsuitable for compression using techniques such as singular value 

decomposition (SVD). Moreover, final dense layers are also good candidates for SVD compression.  

Table 6 provides an in-depth overview of how SVD is applied at various layers in EfficientNet, including the initial 

parameters, singular values utilized, and the resulting compression ratios. 

               Table 6. Model Compression Results Using Singular Value Decomposition (SVD) 

Layer Name Original 

Parameters 

Retained 

Energy (%) 

Top-k 

Singular 

Values 

Compressed 

Parameters 

Compression 

Ratio 

MBConv1_ExpandConv 

(1x1) 

512,000 95% 90 358,400 0.70 

MBConv3_ExpandConv 

(1x1) 

1,024,000 95% 110 563,200 0.55 

MBConv6_ExpandConv 

(1x1) 

2,048,000 95% 140 768,000 0.375 

MBConv6_ProjectConv 

(1x1) 

1,024,000 95% 105 537,600 0.525 

Final Dense Layer 128,000 95% 50 51,200 0.40 

 

The CIFAR-10 and ImageNet datasets, which are standard benchmarks, were used to evaluate the effectiveness of 

this method. Model performance was assessed using various parameter metrics, including parameter reduction, 

inference acceleration, and preservation of top-1 and top-5 accuracy.  

                                                Table 7. Model Compression Results Using SVD 

Layer 

Index 

Layer Type Original 

Parameters 

Compressed 

Parameters 

Compression 

Ratio 

Conv1 Conv (7×7) 9,408 6,590 0.70 

Conv2_x Bottleneck 

Blocks 

73,728 36,864 0.50 

Conv3_x Bottleneck 

Blocks 

294,912 147,456 0.50 

Conv4_x Bottleneck 

Blocks 

1,179,648 589,824 0.50 

Conv5_x Bottleneck 

Blocks 

2,359,296 1,179,648 0.50 

FC Layer Fully Connected 2,048,000 819,200 0.40 



Journal of Information Systems Engineering and Management 
2025, 10(55s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 564 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Table 7 showcases the application of SVD on ResNet-50, showing the layer type, Original parameter amounts, 

Compressed parameters, and Associated compression ratios.  

         REAL-WORLD APPLICATIONS AND DEPLOYMENT FEASIBILITY 

Our findings indicate that SVD-based CNN optimization is particularly beneficial for: 

• Edge AI and IoT devices: Deploying deep learning models on low-power embedded systems. 

• Mobile AI: Making CNNs more efficient for real-time applications on smartphones. 

• Medical Imaging: Reducing computational overhead while maintaining diagnostic accuracy. 

• Autonomous Vehicles:  Improving real-time object detection in low-latency environments. 

These results confirm that SVD-based value decomposition is a scalable solution for lightweight and efficient CNNs, 

enabling deep learning models to be used in a broader range of practical applications. 

LIMITATIONS AND FUTURE WORK 

 The proposed SVD-based compression framework's practical applicability and strong empirical performance must 

be considered, as it involves serious and challenging issues. When SVD is applied to large-scale CNNs or multiple-

layer high-dimensional tensor decompositions, it becomes computationally complex because its computational cost 

follows an O (n³) pattern for matrices of size n × n. Although the compression happens outside the processing time, 

it needs optimized efficiency to achieve better scalability. 

The selection of ranks in our present implementation is still based on heuristic methods. The procedure for selecting 

the appropriate singular values to maintain in each layer represents a complex process that requires either manual 

optimization or a validation accuracy-based grid search. A single assigned rank threshold throughout the layers might 

create suboptimal compression results by reducing layers excessively or inadequately. The experiments in this 

research demonstrate strong performance on established datasets and architectural frameworks.  

The experiments' results confirm that applying SVD-based compression to ResNet-50 decreases the number of 

parameters by up to 89% when the rank percentage is low (such as 0.1). The aggressive parameter reduction lowers 

the model’s accuracy to 72.95% when the rank percentage is reduced to just 0.1. Despite some changes in accuracy, 

if the compression is not too high (0.3–0.9), ResNet-50 is still resistant to it and often provides excellent 

performance. 

Although the parameter count was significantly reduced, the size of the actual model stored on disk (~89.96 MB) 

remained relatively unchanged as the SVD values increased. The trends seen in the data were similar. Even after a 

significant drop in parameters, EfficientNet-B0 maintained a high level of accuracy, with only a slight decline noticed 

during moderate compression. In other words, the current serialization method does not utilize the compressed 

version to its fullest potential. Additional optimization or unique layers must be introduced to further reduce the data 

required. 

  Although the network was expected to run faster when compressed, the speedup was not observed because the two 

inference times were identical. The explanation is that the model size remained unchanged, and the way PyTorch 

processes the graph after compression also remained the same. Soon, studies may either incorporate low-rank 

regularization into the basic neural network structure or leverage readily available accelerated libraries to enhance 

inference performance. 

 In general, SVD-based compression performs well by making models more straightforward and accurate when the 

proper compression ratio is chosen. Yet, to reduce the time and memory needed, we must take steps beyond just 

separating model weights. Exploring tasks and domain generalization across NLP, 3D vision, and biomedical signals 

remains a gap to overcome.  
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The framework should utilize data-driven selection methods that adjust the total singular values retained per layer 

via learned threshold mechanisms. It should also combine SVD with complementary compression methods, 

including quantization, pruning, and knowledge distillation, to develop several-stage compression pipelines to 

achieve improved compression rates while maintaining accuracy. 

The framework requires optimization to work effectively with Tensor Processing Units (TPUs), neuromorphic chips, 

and edge-specific accelerators, resulting in improved performance in industrial production systems. 

The study can expand its framework by incorporating transformer-based model structures and other non-vision 

applications to demonstrate universal applicability across various tasks. 

                                                                                    CONCLUSION 

  The paper introduces an SVD-based framework for compressing Convolutional Neural Networks (CNNs), as there 

is a growing need for efficient, lightweight deep learning models that operate on resource-limited platforms.  The 

present study demonstrates that applying SVD to deep networks, such as ResNet-50 and EfficientNet-B0, 

significantly reduces parameter and computational load while maintaining strong accuracy on both large and small 

datasets. This enables a more efficient use of CNNs in real-life applications. The low-rank weight matrix 

approximation in both convolutional and fully connected layers achieves performance improvements in model size 

and inference time without compromising prediction accuracy levels. The proposed technique enabled SVD-based 

compression of CNNs, resulting in parameter reductions of up to 50% while achieving 2.3 times faster inference times 

and maintaining accuracy levels greater than 97% following fine-tuning. SVD-based compression techniques offer a 

superior balance of efficiency and performance compared to traditional pruning methods and alternative strategies, 

such as quantization and knowledge distillation. The research offers essential deployment guidance for CNNs in edge 

devices, mobile devices, and embedded systems, which require high computational efficiency and a compact model 

size. 
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