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Abstract
A novel azo dye is synthesized by reacting 4-hydroxy-3-methoxybenzoic acid with 4-amino-2,3-dimethyl-1-phenyl-3-pyrazol-
5-one (azo dye  N1). The synthesized azo dye  N1 is characterized by Fourier transform infrared (FT-IR), mass, 1H and 13C 
nuclear magnetic resonance (NMR), and ultraviolet–visible (UV–Vis) spectroscopic techniques and melting point analysis. 
The B3LYP (Becke, three-parameter, Lee–Yang–Parr)/6-311+G(d,p) basis set is utilized to ascertain the sample geometry 
by density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. Calculations of the quantum chemical 
descriptors are carried out to examine the sample's nonlinear optical (NLO) properties. The NLO properties of the sample 
are investigated under excitation with continuous-wave (CW) laser beams at 473 nm and 532 nm wavelengths. The nonlinear 
refractive index (NLRI) of the sample is ascertained using the 473 nm CW laser beam to obtain diffraction patterns (DPs) 
and Z-scan, where NLRI values of 3.698 ×  10−7  cm2/W and 0.25 ×  10−7  cm2/W are obtained. We found that the value of the 
refractive index of the azo dye  N1 calculated by the latter method is greater than its value for other materials. The all-optical 
switching (AOS) property of the azo dye  N1 is demonstrated when the controlling beam is at 473 nm and the controlled 
beam is at 532 nm.
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Introduction

The investigation of the nonlinear optical (NLO) properties of 
photonic materials is important, since the passage of intense 
laser beams through them may lead to self-focusing, self-
defocusing, and spatiotemporal self-phase modulation. Several 
classes of materials have been explored with great interest, 
including organic materials, fullerenes, inorganic materials, 
semiconductors, polymers, and organometallic materials.1–13 
Over the last 40 years of laser technology, the significant 
NLO susceptibility resulting from the nonlinear response of 
organic materials has attracted considerable attention. Sharifi 
et al. published a series of articles concerning the enhance-
ment of the linear and nonlinear properties of orythrosin,14 the 

photo-physical properties of crocin,15 and the optical study of 
xanthene-type dyes.16 Thermal effects caused by absorption 
of a part of the laser beam energy passing through a mate-
rial might modify the medium's refractive index (RI). The 
absorbed energy is transformed into heat following a Gaussian 
beam distribution within a thin medium. The heat gradient, ini-
tially confined to the irradiated volume, propagates to the non-
irradiated area due to thermal conduction. This temperature 
profile produces a gradient in the RI. The spatial self-phase 
modulation that produces ring patterns from the interference 
of numerous laser beams originating from points on the beam 
wave front can be shown by the nonlinear response of mate-
rials interacting with the beam's divergence. The change in 
RI, ∆n, of the medium, along with the nonlinear refractive 
index (NLRI), can be determined using these diffraction ring 
patterns. The Z-scan approach functions by positioning the 
sample at the focal point of a tightly focused Gaussian laser 
beam. The medium's interaction with the laser light changes 
when the sample is displaced. This results from the sample's 
fluctuating intensities, which depend on the sample's position 
(z) relative to the focus (z = 0). The Z-scan is a simple and 
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effective tool that provides the real and imaginary components 
of the nonlinear susceptibility. Before the middle of the nine-
teenth century, substances with coloring qualities were often 
taken from plants or animals. However, by the beginning of 
the twentieth century, synthesized dyes had nearly entirely 
supplanted natural dyes. Except for a few inorganic pigments, 
almost all commercially available dyes and pigments today 
are made of synthesized materials. Every year, the market is 
overrun with hundreds of new colored chemicals.17 Because 
they contain auxochrome and chromophore groups, azo dyes 
are colored. These dyes are made using a straightforward pro-
cess of diazotization and coupling. Numerous approaches and 
adjustments can be utilized to achieve the desired color proper-
ties.18  Azo dyes are the most commonly used dyes, making up 
more than 60% of all dyes,19,20 and constituting around 70% 
of all the chemical dyes used in industry.21,22 Azo dyes are 
compounds with one or more azo groups (N=N) linked with 
two monocyclic or polycyclic aromatic systems.23

There are numerous different kinds of azo dyes, including 
reactive, dispersed, direct, vat, sulfur, basic, acid, and sol-
vent dyes. Disperse azo dyes are the most common variety 
of these dyes.24 The most significant synthesized colorants 
used today are azo dyes, which have several uses in a vari-
ety of industries, including cosmetics, food, paints, print-
ing, paper manufacture, colored plastics, photo reactions, 
sensitizers, and metal ion extraction.25–27 The  linear and 
nonlinear properties of azo and azoxybenzenes, azo mol-
ecules doped in poly(methyl methacrylate), azo-polymers, 
[1-[(4-(phenylazo)phenyl]azo]−2-naphthol(azo) on naphtha-
lenes, azo-aminosalicylic acid and derivatives, azo-esters, 
and azo-hydrazone tautomerism in methylene malonitrile 
matrix were studied by many authors during the period from 
1979 to  202128–39 (e.g., azo dye-doped polymer thin films on 
silicon, azo-naphthol dyes containing PMA, azo-naphthol 
azoic dye, azo dyes and azo-metal complexes, chelating azo 
dyes, azo derived from 2-amino-, azo dye-doped polymer, 
azo-phyloxine dye, H-bonded polymer–azo dye complexes, 
and azo dye derived from 4,4-benzene sulfonamide).

The current study involved the synthesis of a new azo 
dye, which was characterized utilizing several spectroscopic 
techniques. The nonlinear optical (NLO) characteristics of 
the dye were examined utilizing excitation with a continu-
ous-wave (CW) 473 nm laser beam, while all-optical switch-
ing (AOS) was assessed with two CW visible laser beams at 
473 nm and 532 nm.

Experimental

Materials and Methods

The liquid utilized was of high purity and was sourced 
from Aldrich and Merck. A Shimadzu FTIR-8400S Fourier 

transform infrared spectrophotometer was utilized to obtain 
the FT-IR spectrum of the chemical, operating within the 
range of 4000–400  cm−1 using a KBr disc. A Falc Instru-
ments apparatus operating at 50/60 Hz (Italy) was utilized 
to determine the melting point of the dye. Ultraviolet–vis-
ible (UV–Vis) spectra were obtained with a Jenway 6305 
spectrophotometer. The mass spectrum was recorded via 
an Agilent model 5973 spectrometer employing the elec-
tron impact (EI) technique. 1H nuclear magnetic resonance 
(NMR) and 13C NMR signals were successfully recorded 
using a Bruker AVANCE NEO 400 MHz instrument, where 
400 MHz and 500 MHz were used for 1H-NMR and 125 
MHz for 13C NMR to obtain the nuclear magnetic reso-
nance spectra in the deuterated solvent (dimethyl sulfoxide-
d6 [DMSO-d6]). Tetramethyl silane (TMS), the internal 
reference, was used to measure all chemical shifts. A pH 
meter (H. Jürgens GmbH & Co., Bremen, L. Puls, Munich, 
Germany) was utilized to assess the pH level. The density 
functional theory (DFT)/B3LYP (Becke, three-parameter, 
Lee–Yang–Parr)/6–311+G(d,p) approach was utilized to 
forecast the geometric configuration and relative stability 
of the molecular systems, as depicted in Fig 4. All DFT 
calculations were performed using Gaussian 09 software in 
the gas phase.40  Analytical frequencies were used to confirm 
that the improved geometry was stable.

Synthesis of Azo Dye  N1

The azo dye was synthesized using the prescribed methodol-
ogy.41 The chemical structures of azo dye  N1 were deduced 
from the IR, mass, and NMR spectra by amalgamating 0.006 
moles of 4-amino-2,3-dimethyl-1-phenyl-3-pyrazol-5-one 
and 4-hydroxy-3-methoxybenzoic acid in 1.8 g of NaOH. 
The resultant molecular architectures are depicted in Fig 1.

Characteristics of the Synthesized Compound  N1

The following are the characteristics of the compound: 
(E)−5-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-
pyrazol-4-yl) diazenyl)−2-hydroxy-3-methoxybenzoic 
acid  N1, molecular formula of  C19  H18  N4O5, molecular 
weight of  382.38 g  mol−1, red in color and yielded 76% 
at a melting point of 253–255°C. IR  cm−1 1192 (C–O), 
1462 (N=N), 1593 (C=C), 1670 (C=O), 1271 (C–N), 3433 
(O–H).42 1H NMR (DMSO-d6): 2.662 ppm (3H,  CH3), 3.411 
ppm (3H,  CH3), 3.847 ppm (3H,  OCH3), 7.345–7.745 ppm 
(7H, H—aromatic). 13C NMR spectrum (DMSO-d6), δC, 
ppm: 11.377, 34.885, 56.106, 105.719, 118.557, 122.862, 
126.483, 128.202, 129.592, 129.746, 129.880, 134.801, 
149.612, 151.130, 157.690, 172.069. MS (EI-MS): m/z 
382.3,43 as shown in Figs. S1–S5 (Supplementary Material).
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Experimental Setup

To conduct the series of experiments on the NLO proper-
ties in this work, the following settings were used: two 
CW laser beams (0–65 mW at 473 nm, and 0–50 mW at 
532 nm) were used. Each beam has a spot size of 1.5 mm 
when it traverses the laser output coupler. When utiliz-
ing a glass lens with a focal length of 5 cm, the result-
ant spot sizes are 19.235 µm and 21.635 µm. At those 
wavelengths, the Rayleigh length ZR for the two beams is 
equal to ZR473 = 2.456 mm and ZR532 = 2.763 mm, respec-
tively. When both beams are focused by two 20 cm focal 
length lenses, the spot sizes for the two beams become 
76.941 μm and 86.639 μm, respectively. A sample cell 
of 1 mm thickness was used to contain the sample. Two 
30 × 30 and 60 × 60 cm semitransparent screens where 
the diffraction patterns (DPs) fell were used. To register 
the resulting DPs, a digital camera with a shutter speed 
of 1

32
 s was used. A narrow circular iris was used in the 

closed-aperture Z-scan experiment. Two power meters 
were used to measure the beam of each wavelength. A 
frequency generator was used to change the output of 
each laser beam from CW to pulsed (square) by connect-
ing the laser head to the TTL function of the frequency 
generator. The all-optical switching setup is shown in 
Fig. 2.

Results

Chemistry

The mass spectral fragmentation by electron impact of the 
azo dye  N1 is shown in Fig. S1, which reveals a base peak at 
m/z 382.3, corresponding to the original molecular weight. 
In addition, in Fig. S2, the infrared spectrum of the azo dye 
 N1 shows a band at 1192  cm−1 due to the ʋ(C–O) stretch-
ing frequency, while the band at 1462  cm−1 indicates the 
frequency of the N=N azo group. Bands at 1593  cm−1 and 
1543  cm−1 are attributed to vibration of υ(C=C). The band 
at 1670  cm−1 is due to carbonyl υ(C=O) of the pyrazole 
ring, while the band at 1271  cm−1 is assigned to C–N vibra-
tion. The broad band at 3433–3400  cm−1 is attributed to the 
stretching vibration of υ(O–H).42  The 1H-NMR spectrum of 
the azo dye  N1 displays various signals that confirm the pro-
posed structures of the compound. The overlapping signals 

Fig. 1  Preparation of azo dye  N1.

Fig. 2  All-optical switching experimental setup.
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of aromatic ring protons are often seen as multiple signals 
in the range of 7.41–7.60 ppm.44  The signal obtained at 
7.34 ppm indicates the proton of phenol,45 while the sig-
nals at 3.42 ppm and 2.69 ppm describe the N–CH3 and 
 CH3of pyrazole, respectively.46 The proton of the methoxy 
group was indicated by the signal measured at 3.84 ppm, 
and the signals at 3.34 ppm and 2.52 ppm are due to water 
and DMSO, respectively.47 Four chemical shift regions were 
identified in the 13C NMR spectrum of dye  N1: carbonyl 
carbon, aromatic carbons, pyrazole carbons, and aliphatic 
carbons. Strong overlapping is caused by the higher number 
of symmetrical atoms in azo compounds. The resonances 
at 11.37 ppm and 34.16 ppm are due to carbon of the  CH3 
of the pyrazole group. The carbon of the  OCH3-methoxy 
group is responsible for the signal at 56.10 ppm, while the 
carbon atoms in the pyrazole ring are responsible for the 
signals at 105.71 and 151.13 ppm. The various signals at 
149.61, 134.80, 129.88, 129.74, 129.59, 128.20, 126.86, 
and 122.86 ppm are attributed to carbon atoms of aromatic 
rings. Signals at 157.69 ppm and 172.06 ppm are due to 
the carbon of C=O and COOH groups, and that at 39.44 
ppm is due to DMSO.48  The formation of azo dye is con-
firmed by a number of spectroscopic methods, including IR, 
mass, 13C NMR, and 1H NMR spectroscopy. The azo dye  N1 
exhibits stability in atmospheric conditions and is soluble in 
dimethylformamide (DMF), DMSO, methanol, ethanol, and 
acetone at room temperature.

Dipole Moment, Polarizability, 
and Hyperpolarizability

The size, molecular structure, and electrostatic potential 
distribution of a molecule are all displayed on the molecu-
lar electrostatic potential surface (MEP).49 As can be seen 
in Fig. 3, the electrostatic potential forms both positive 
and negative possibilities (nucleophilic and electrophilic 
regions).

To further understand the geometric features, stability, 
and electronic properties of the  N1 molecule, DFT simula-
tions were performed utilizing urea, 50 urea sulfamic acid 
(US),51 p-p-nitroaniline (pNA),52 and 2-methyl 4-nitroaniline 
(2M4NA)53 as benchmarks. The parameters listed in Table I, 
including the highest occupied molecular orbital (HOMO), 
lowest unoccupied molecular orbital (LUMO), energy gap, 
dipole moment (μ), polarizability (α′), and hyperpolarizabil-
ity (β), were utilized to assess the electronic data concerning 
the structural and nonlinear characteristics. The principal 
characteristics of molecular activity are the HOMO and 
LUMO, sometimes known as border orbitals. The terms 
ELUMO and EHOMO refer to a molecule's ability to accept or 
donate electrons, respectively. The energy of the donor mol-
ecules is denoted as EHOMO, whereas the energy of the accep-
tor molecule is denoted as ELUMO. EHOMO denotes the energy 

of donor molecules, whereas ELUMO signifies the energy of 
acceptor molecules.54 The ultimate charge transfer interac-
tion between molecules is denoted by the HOMO–LUMO 
energy gap (∆E), an essential parameter for evaluating the 
characteristics of molecular electrical transport.49 Molecular 
structures exhibiting minimal HOMO–LUMO energy gaps 
are marked by elevated chemical reactivity and diminished 
kinetic stability.55,56 Table I demonstrates that the energy 
gap of all reference compounds exceeds that of the azo dye 
 N1. A molecule with a low ΔE value is more predisposed to 
undergo electronic transitions, hence enhancing the likeli-
hood of exhibiting NLO properties.57,58

Fig. 3  The molecular electrostatic potential (MEP) surface (b) and 
the optimized model (a) with the positive and negative parts of the 
MEP represented by the red and blue colors, respectively. (c) Two-
dimensional contour map of the MEP surface (Color figure online).
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In chemistry, the dipole moment of a molecule is one of 
the most important quantities.59 When the centers of posi-
tive and negative charges in a molecule are apart, an electric 
dipole is created, referred to as polarity.60  The linear polar-
izability (α′) of the dipole moment explains its first-order 
response to external electric fields.61 Linear optical proper-
ties, including RIs and absorption, are altered by changes in 
polarizability.62 When a molecule is exposed to an electric 
field, hyperpolarizability (β) indicates its tendency to form 
a dipole. Accordingly, hyperpolarizability can be used to 
quantify changes in the charge distribution of an atom or 
molecule caused by an electromagnetic field.63 Hyperpo-
larizability is a sign of an extensive intramolecular charge 
transfer (ICT) in compounds, indicating an NLO response.64 
An NLO response, such as nonlinear changes in absorption 
or RI, is the result of quasi-delocalized electrons interacting 
with applied electric fields.65 Table I presents the computed 
values for hyperpolarizability (β), polarizability (α′), and 
dipole moment (μ). Urea, 2-methyl-4-nitroaniline (2M4NA), 
p-nitroaniline (pNA), and urea sulfamic acid (US) were 
utilized as reference compounds in a comparative assess-
ment of the physical properties of the  N1 molecule.66 The 
dipole moment of the  N1 molecule exceeds that of urea and 
urea sulfonic acid; however, it is less than that of pNA and 
2M4NA. The α′ and β values of the references are inferior to 
those of the  N1 molecule. The chemical  N1 under examina-
tion has polarizable qualities, as evidenced by the results of 
the comprehensive analysis shown in Table I.67

IR and NMR Calculations

IR calculations were performed using the DFT B3LYP 
method and the 6–311+G(d,p) basis set within a theo-
retical framework. Infrared calculations (Fig. 4) show a 
broad band in the range of 3500–3150  cm−1 range, which 
is ascribed to the vibration stretching of the OH groups. 
Moreover, the spectrum is characterized by a distinc-
tive band at wave number 1670  cm−1 that results from 
the vibration of carbonyl groups. According to theoreti-
cal calculations, the hydroxyl group included in the car-
boxyl group is vibrating at a wavelength of 3766  cm−1. 

However, the phenolic hydroxyl group vibration occurs 
at 3433  cm−1. In addition, two carbonyl group bands of 
absorption are identified at 1773   cm−1 and 1727  cm−1. 
Vibration of the carbonyl group connected to the hetero-
geneous ring is the cause of the first peak. The carbonyl 
group in the carboxyl package vibrates, producing the sec-
ond peak.68

In contrast, NMR calculations for the compound were 
carried out within a theoretical framework using the DFT 
B3LYP method and the 6–311+G(d,p) basis set by using the 
GIAO model set in a DMSO-d6 solvent environment. Fig-
ure S3 displays the experimental NMR spectral analysis of 
 N1. It is characterized by distinct signals at 7.4–7.7 ppm that 
are attributed to protons of the aromatic rings. The meas-
ured 1H NMR chemical shifts and the corresponding ones 
obtained from DFT calculations exhibit a remarkable linear 
relationship (Fig. 5a). Figure S4 (Supplementary Material) 
shows the 13C NMR spectrum of  N1. It exhibited two sig-
nals at 172 and 171 ppm for carbonyl carbons (C8 and C11, 
respectively). Signals at 11 and 34 ppm corresponded to the 
carbons of methyl groups (C12 and C13, respectively). The 
13C NMR chemical shifts that are measured and those that 
have been determined from DFT calculations have an excel-
lent linear relationship (Fig. 5b).69,70

Table I  GCRD values   for the 
 N1 compound calculated based 
on the basis set 6–311+G(d,p), 
using the DFT/B3LYP approach

2M4NA = 2-methyl-4-nitroaniline, pNA = p-nitroaniline, US = urea sulfamic acid.

The chemical global reagent 
descriptors (CGRDs)

N1 Urea13 US14 pNA15 2M4NA16

HOMO (eV) −0.2127 −7.379 −8.092 −8.4703 −6.5279
LUMO (eV) −0.0887 −0.362 −0.611 −0.5137 −2.4141
Egap (eV) 3.3742 7.016 7.480 7.9565 4.1138
Dipole moment µ (Debye) 6.9110 3.885 4.7512 7.482 7.6494
Polarizability (α′) (a.u.) 331.831 33.802 74.4066 101.802 114.595
Hyperpolarizability (β) (a.u.) 2290.72 71.518 64.7518 1660.83 1664.702

Fig. 4  Molecule 3's experimental and theoretical vibrational infrared 
frequency correlation graph
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Density of States (DOS) of Compounds

The GaussSum program was used to produce the density 
of states (DOS) spectrum for the  N1 molecule, as depicted 
in Fig. 6. The LUMO and HOMO are impacted by associa-
tions. The number of observable orbitals at a certain energy 
level is illustrated in the DOS diagram.71

Spectroscopic Studies of the Compound  N1 
Absorbance

Time-dependent (TD)-DFT calculations of the electronic 
absorption spectra in vacuum were performed to explain 
the electronic transitions of the azo dye  N1. The predicted 
UV spectra of the studied molecule are shown in Fig. 7. 
Table II summarizes the oscillator strength (f), absorbance 
wavelength, and spectral assignments. The TD-DFT method 
predicted the maximum absorption peak at 464 nm with 
a weak oscillator strength (0.0127) for azo dye  N1 in the 
gas phase. The TD-DFT approach predicted the maximum 
absorption peak at 464 nm with a low oscillator strength 
(0.0127). The UV–Vis spectrum of the azo dye  N1 was 
obtained in DMSO solution, as shown in Fig 8. In general, 

it can be distinguished through the band corresponding to 
the n → π* transition (398 nm). The difference between the 
experimental and theoretical calculations may be due to sol-
vent influences. The solvent in the simulation provides an 
extremely complicated chemical environment for the mol-
ecules.72 The values of the linear absorption coefficient, α, 
of the azo dye  N1 at wavelengths of 473 nm and 532 nm are 
2.11  cm−1 and 0.55  cm−1, respectively, as calculated from 
an equation mentioned in a previous study.73

The fluorescence spectra, which have been generated with 
an excitation wavelength of λex = 350 nm in the appropri-
ate wavelength areas, exhibit two fluorescence peaks at 441 
and 473 nm at concentrations of  10−4 M (Fig. 9). There is 
an approximate 75 nm Stokes shift between the absorption 
band at 398 nm and the apparent emission peak at 473 nm.74

Nonlinear Study

Three principal investigations were undertaken: (1) DPs 
were obtained when the azo dye  N1 was subjected to a 473 
nm beam with power input varying from zero to 65 mW. 
(2) Two laser beams were utilized in all-optical switching, 
with the pump beam at 473 nm and controlled beam at 532 
nm. (3) Z-scan measurements were carried out using a laser 
beam with a wavelength of 473 nm.

DP Experiments

Figure 10 shows the dependence of the resulting DPs when 
the 473 nm beam power input traverses the sample in the 
range of 0–65 mW, where it can be seen that for low input 
power, no rings appear. The laser beam draws a circular full 
spot with no rings because, at low power input, low energy 
is absorbed from the beam, resulting in no heat, and only a 
minor change occurs in the medium RI and the beam stays 

Fig. 5  Chemical shifts of compound  N1 and correlation curves 
between experimental and predicted (a) 1H and (b) 13C NMR.

Fig. 6  The shape of the frontier orbitals of the azo dye was deter-
mined at the DFT/B3LYP/6–311+G(d,p) level in the gas phase.
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almost constant. For the continuous and slow increase in 
power input, the area of the spot increases, and at a cer-
tain threshold of beam power, the spot breaks into a number 

Fig. 7  Theoretical spectra of azo dye  N1  in DMSO solvent.

Table II  The excited states of the azo dye  N1

No. Wavelength (nm) Excitation 
energy (eV)

Oscillation 
strength

Major molecular orbital contributions (%)

1 464.75 2.6677 0.0127 H-2- > LUMO (61%), H-1- > LUMO (31%) HOMO- > LUMO (5%)
2 402.67 3.0790 0.654 HOMO- > LUMO (89%) (9%) H-2- > LUMO
3 358.49 3.4585 0.0178 H-2- > LUMO (23%), H-1˃LUMO (53%), HOMO-˃L+1 (17%), HOMO-˃LUMO (2%)
4 347.15 3.5714 0.1224 H-1-˃LUMO (13%), HOMO-˃L+1(75%) H-2-˃LUMO (4%), HOMO-˃LUMO (3%)
5 325.01 3.8147 0.0455 H-3-˃-LUMO (82%) H-6-˃LUMO (3%), H-4-˃LUMO (8%), HOMO-˃L+1(2%)
6 316.17 3.9214 0.0017 H-2-˃L+1 (50%), H-1-˃L+1(44%) H-4-˃LUMO(3%)

Fig. 8  The experimentally determined UV–Vis absorption spectrum 
in DMSO solvent of the investigated azo dye  N1.

Fig. 9  Fluorescence spectrum of azo dye  N1 in DMSO solvent.
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of rings whose number increases almost linearly. Then at 
another threshold, the symmetry of the DPs in the x–y plane 
with respect to the z-propagation axis is lost, so that the DPs 
appeared compressed in the y-direction, i.e., the ring radii in 
the upper half become smaller than those in the lower half. 
The vertical thermal convection current, which exceeds the 
horizontal conduction current, accounts for this phenom-
enon. Figure 11 illustrates the temporal evolution of a DP 
with a power input of 53 mW, indicating that the DP evolu-
tion aligns with the pattern reported in Fig. 10. Figure 12 
illustrates the influence of the laser beam wave front on the 
resulting DPs. We have chosen two scenarios: a convective 
wave front when the sample cell is positioned before the lens 
focal point and a diverging wave front when the sample cell 
is situated after the lens focal point. The DPs have rendered 
the two circumstances distinct. The result agrees well with 
those of Santamato et al.75, Chavez–Cerda et al.76, and Deng 
et al.77

Z‑scan

When we conducted closed aperture (CA) Z-scan measure-
ments, we placed a cover on the photo detector with an aper-
ture diameter of 2 cm. During these measurements, trans-
mittance was measured as a function of distance. Figure 13 
represents the results obtained when conducting the CA 
Z-scan. We also noticed from Fig. 13 that the sample showed 
a peak and then a valley, which indicates that the compound 
has a negative NLRI, i.e., occurrence of self-defocusing. 

The origin of the nonlinearity is thermal due to the use of a 
CW laser beam.78,79 When the laser beam passes through the 
sample, part of its energy will be absorbed by the molecule 
of the sample, and since this absorbed energy will be trans-
formed into heat, as a result, the temperature of the sample 
will rise, which leads to the formation of a concave thermal 
lens. This lens will shift the phase of the laser beam by an 
amount less than π radians, which leads to the phenome-
non of self-defocusing. If the phase shift is ≥ 2π radians, it 
produces constructive and destructive interferences, which 
leads to the formation of diffraction rings. We obtained a 
horizontal straight line when conducting an open-aperture 
(OA) Z-scan, which indicates that the compound does not 
have a nonlinear absorption coefficient.

All‑Optical Switching

Figure  14 illustrates an all-optical switching technique 
wherein two laser beams concurrently traverse the sample, 
utilizing a converging glass lens with a focal length of 20 
cm to concentrate each beam. When illuminated at 473 nm, 
the sample exhibits significant absorption of light. Figure 2 
presents an illustrative diagram of the experimental installa-
tion of the all-optical switching via the cross-phase passing 
technique against the beam of 473 nm, so that it is easy to 
show DPs. The sample having a low absorption coefficient 
at 532 nm leads to the absence of rings even at the maximum 
power input of 50 mW, as the beam traverses the sample 
exclusively.

53 mW

15 mW 22 mW 30 mW

37 mW 44 mW

Fig. 10  Power input effect on the type of DPs in azo dye  N1.
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Each beam exhibits two forms of DPs when both beams 
traverse the sample. The 473 nm beam, which governs the 
532 nm beam, is required to direct its DP. The 532 nm DP's 
ring count, area, and asymmetry correspond to the DPs, 
except intensity. In contrast, the intensity of the 532 nm 
DP is the only determinant influencing it. In this section, 
both beams are CW type, so that we have static AOS. The 
dynamic AOS shown in Fig. 15 was accomplished by sus-
taining the CW of the second beam while transitioning from 
CW to pulsed operation.

Estimation of the Nonlinear Refractive Index

Diffraction Patterns

The thickness of the sample cell, d, a change in the medium 
RI, Δn, occurs. Due to Δn, phase change Δ� can be obtained 
based on the beam wave vector k (= 2�

�
 , where λ is the beam 

wavelength in a vacuum). Δ� can be written as  follows80:

(1)Δ� = Δnkd

350 msec

1000 msec

700 msec

850 msec 900 msec

800 msec750 msec650 msec

600 msec

950 msec

550 msec500 msec450 msec

400 msec300 msec250 msec

200 msec150 msec100 msec50 msec

Fig. 11  Temporal evolution of a chosen DP in the new azo dye  N1 at input power of 53 mW.
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The formation of one ring results from the change in Δ� 
by 2n, so that for N  rings, the phase change, Δ� , can be 
written as follows:

(2)Δ� = 2πN

Equating Eqs. 1 and 2 leads to

The NLRI, n
2
 , is related to Δn and the Gaussian laser 

beam intensity, I (= 2P
��2

 , where P is the maximum power 
input), ɷ is the beam radius at e−2 so that

For N= 8, d= 1 mm, �= 473 nm, P= 53 mW, I= 9124 W/
cm2, �= 19.235 μm so that azo dye  N1 Δn= 3.374 ×  10−3 and 
n
2
= 3.698 ×  10−7  cm2/W.

Z‑Scan

The phase change, Δ� , in the Z-scan experiment is governed 
by the subsequent relationship, as the nonlinearity arises 
from thermal  effects81,82:

The disparity between the maximum and minimum trans-
mittances, ΔTp−v , can be utilized to articulate the NLRI, n2, 
as follows:

Using a power of P= 4 mW and I= 688.28 W/cm2, the 
value of the NLRI, n2, of the compound azo dye N1 is 
0.25 ×  10−7  cm2/W, which was calculated from Eq. 6 and 
Fig. 13.

Comparative Study

The value of the NLRI of the azo dye  N1 can be compared 
with its value of the similar dye such as T-3OCH3 (azo 
compound),78 where a CW laser beam and Z-scan method 
were used to determine the value of the NLRI in both com-
pounds. We found that the value of the NLRI of the azo 
dye  N1 is greater than the value of T-3OCH3. The reason 
for this is that the linear absorption coefficient of the azo 
dye  N1 at wavelength 473 is greater than the linear absorp-
tion coefficient of T-3OCH3 at the same wavelength. This 
increase in the linear absorption coefficient is caused by the 
hyperchromic effect of the methoxy and hydroxyl groups 
(electron-donating groups) in the azo dye  N1. Compared to 
the methoxy and hydroxyl groups in the  N1 chemical, the 
methyl group in the 3-OCH3 compound has less impact on 
absorption.

(3)Δn =
Nλ

d

(4)n
2
=

Δn

I

(5)Δ� =

ΔTp−v

2

(6)n
2
=

ΔTp−v�

4�LI

Convergent

Diavergent

Fig. 12  Effect of beam wave front of the DPs in the new azo dye  N1 
at power input of 53 mW.
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Fig. 13  Closed-aperture Z-scan data in the new azo dye  N1 at power 
input of 4 mW.
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It is also possible to make a second comparison of the 
NLRI value of the azo dye  N1 with azo compounds and 
other compounds, such as the compounds referred to in 
previous studies,83–93 so that we can know whether its 
value for the azo dye  N1 is high. From this comparison, 
we find that its value for the azo dye  N1 is larger or of 
the same order of the compounds mentioned in previous 

studies,83–93 which indicates that the azo dye  N1 can be 
used in optical devices. It should be noted here that the 
comparison was made with compounds in which a CW 
laser was used to calculate the NLRI, and the comparison 
was not made with compounds in which a pulsed laser 
was used because the nonlinearity mechanism differs.

Fig. 14  Static all-optical switching in the new azo dye  N1.
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Fig. 15  Dynamic all-optical switching in the new azo dye  N1.
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Conclusion

A number of spectroscopic techniques were employed to 
characterize a novel azo dye  N1 synthesized by the reaction 
of 4-amino-2,3-dimethyl-1-phenyl-3-pyrazol-5-one with 
4-hydroxy-3-methoxybenzoic acid. The unique azo dye  N1 
facilitated the transmission of a CW laser beam at 473 nm, 
leading to the generation of diffraction patterns and Z-scan. 
Two values of the nonlinear refraction index (NLRI) were 
ascertained utilizing these two methodologies: one derived 
from the diffraction patterns (3.698 ×  10−7  cm2/W) and the 
other from the closed-aperture Z-scan (0.25 ×  10−7  cm2/W). 
The high value of the nonlinear refractive index of the azo 
dye  N1 indicates that it is a good candidate for use in pho-
tonic applications. The distortion of the diffraction patterns 
appears to occur due to the thermal convection current that 
exceeds the thermal horizontal conduction current. To assess 
the all-optical switching beam, two laser beams were uti-
lized: one at 473 nm and the other at 532 nm.
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