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Abstract
A Schiff base (LS2) compound is synthesized via a reaction of a hot ethanolic solution of (3-ethoxy salcyaldehyde) and a hot 
ethanolic solution of amine(methyl-4-amino benzoate). The LS2 compound is characterized via 1H and 13C NMR spectra, 
Mass spectrum, and FT-IR spectrum. We observed multiple diffraction patterns of a cw 473 nm laser beam from the LS2 
compound caused by spatial self-phase modulation (SSPM). The nonlinear refractive index (NLRI) of the LS2 compound 
is estimated at the high-power input of the laser beam and found equals to 5.387 ×  10–7  cm2/W. The Z-scan techniques are 
used to estimate the NLRI and found equals to 0.12 ×  10–7  cm2/W. The all-optical switching (AOS) effect can be seen when 
473 nm is used as the controlling beam and 532 nm is used as the controlled beam.
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Introduction

During the past few years, we have been engaged in the 
study of newly synthesized organic materials [1–6] for the 
sake of possible use in different photonic applications. These 
materials should exhibit rapid response in extremely brief 
periods and possess substantial nonlinear refractive indexes 
(NLRIs) [7–12]. Among the techniques used in the estima-
tion of these materials NLRIs, there are two important tech-
niques viz., the diffraction patterns (DPs) and the Z-scan 
[13–16] under the irradiation with CW, low power, visible 
laser beams. The methods are accurate, fast, and simple. 
Each requires small number of apparatus and limited period 
of time.

Schiff base is an analogue of a ketone or aldehyde in 
which the carbon group (C = 0) has been replaced by an 
amine or azomethine group. Alarge number of shiff base 

complexes are characterized by an excellent catalytic activ-
ity in a variety of reactions at high temperature and in the 
presence of moisture. Schiff base and their metal complexes 
are increasing being used as catalysis in various biological 
systems dye and polymers. Due to its various properties viz. 
in medicine and pharmacy, biological, antifungal, biocidal, 
antiviral, antimalarial, and anticancer, Schiff base are stud-
ied extensively viz. applications in modern technologies, in 
synthesis and chemical analysis [17].

The nonlinear optical properties of Schiff base have been 
studied minorally such as their optoelectronic properties 
[18], nonlinear optical properties [19], third-order optical 
properties using the Z-scan method [20]. We have studies 
the Schiff base nonlinear optical properties extensively dur-
ing the last four years via diffraction patterns and the Z-scan 
[21–25].

The purpose of the current work is to find a material 
that has higher nonlinear optical properties compared to 
currently known materials so that it can be used in opti-
cal devices. So in the present work a Schiff base compound 
was synthesized and characterized using 1H and 13C NMR 
spectroscopies, Mass spectrum and FTIR spectrum. In this 
study, the Schiff base compound’s nonlinear optical (NLO) 
features were looked at by using diffraction patterns and a 
visible, low-power laser beam to figure out the nonlinear 
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refractive index (NLRI). Two CW laser beams were used to 
test the all-optical switching (AOS).

Experimental

Materials and Methods

Merck and Aldrich obtained all chemicals and liquids, 
which were thereafter employed without further purifica-
tion. The SHIMADZU FT-IR-8400S was utilized to capture 
infrared spectra on KBr discs. The Thermo Scientific 9100 
was utilized to ascertain the melting points of diverse sub-
stances. The 1H and 13C-NMR spectra of the compounds 
were obtained in  CHCl3 at room temperature utilizing a 
Bruker 400 MHz spectrometer. The UV–visible spectrum 
was obtained utilizing ethanol as a solvent with the Shi-
madzu UV-1800 spectrophotometer. The mass spectrum was 
obtained via the E1 Technique with Agilent Technologies 
spectrometers calibrated to 70 eV. Thin layer chromatogra-
phy (TLC) has been employed to assess the completion of 
processes.

Synthesis of Methyl (E)−4‑((3‑ethoxy‑2‑ydroxybenzy
lidene) amino) Benzoate (compound LS2)

Figure 1 depicts the Schiff-base (LS2) complex in a sim-
plified format. A small quantity of glacial acetic acid was 
employed to react with a heated ethanolic solution of alde-
hyde (3-ethoxy salicylaldehyde) (0.9971  g, 0.006  mol) 
and a heated ethanolic solution of amine (methyl-4-amino 
benzoate) (0.9070 g, 0.006 mol) in ethanol to synthesize 
LS2. The liquid was cooled to room temperature follow-
ing heating. The precipitate was dried, filtered, and recrys-
tallized with pure ethanol. Orange color; yield: 89%; M.P 
133–135 °C; FT-IR (ν  cm−1): 2980 (ν C-H aliphatic), 1708 
(ν C = O), 1595 (ν C = N), 1570–1442 (ν C = C), 1278 (ν 
C-N); 1H NMR  (CDCl3, 400 MHz; δ ppm) δ: 13.36 (s, 
1H, OH), 8.62 (s, 1H, HC = N), 8.09–6.84(m, 7H, Ar–H), 
4.13(s,3H, O-CH2), 3.90(s,3H, O-CH3), 1.5(s,3H,  CH3); 
13C NMR  (CDCl3,; δ ppm): 166.52  (C2, C = O), 164.15(C9, 
C = N), 152.07  (C11, C–OH), 151.81  (C11, C-OC2H5), 147.74 
 (C6, C-N), 131.05–116.73(C4,5,7,8,13–15, C = C), 64.63(C16, 
Ar–O-CH2), 52.20(C1, O-CH3), 14.89(C1,  CH3); MS: 
m/z: 299.1[M+], UV–vis. in Ethanol, transitions: 220, 292 
(π → π*) and 345 (n → π*)]  cm−1.

Fig. 1  Synthesis of LS2 compound

Fig. 2  Experimental set-up of 
all-optical switching
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Experimental

To carry out the nonlinear index studies experiments, two 
solid state lasers emitting two CW beams of wavelengths 
473 nm and 532 nm. Both lasers having spot sizes of 1.5 mm 
as each beams leaves the devices output coupler. A 5 cm 
focal length lens used to focus the first beam to a spot size 
of 19.235 μm used in the diffraction patterns and the Z-scan 
experiments, Two, 20 cm focal length, lenses used in the 
all-optical switching so that the spot sizes at each lens focus 
equals to 76.941 and 86.539 μm respectively. The experi-
mental set-up of all-optical switching is displayed in Fig. 2. 
The DPs resulted was fall on two semitransparent screens 
viz. 30 × 30 cm and 60 × 60 cm for the DPs experiments and 

the all-optical switching respectively. To register the DPs a 
digital camera having an exposure time of (1/32) sec was 
used. In both CA Z-scan and OA Z-scan experiments the 
sample was moved the distance (-z) –(+ z) using a trans-
lational stage, passing through the lens focus (z = 0). The 
Rayleigh range of the two beams are  Rz.473 and  Rz.532 equals 
2.356 and 2.763 mm.

Results

Chemistry

Schiff base LS2 molecules were made by reacting 
methyl-4-amino benzoate with the right aldehydes 
(3-ethoxy salicylaldehyde), as shown in Fig.  1. 1H-
NMR, 13C-NMR, FT-IR, and mass spectra data helped 
us figure out the structures of the chemical we made. 
The LS2 compound’s FTIR spectrum shows bands at 
1708   cm−1, which are caused by the v(C = O) group. 
A band of absorption at 1595  cm−1 can be seen in the 
infrared readings of the LS2 compound. Assigned to 
the (C = N) stretching vibrations, which show that the 
azomethine band is forming. Furthermore, the lack of 
primary amine group stretching vibrations in the com-
pound’s spectra shows that Schiff base condensation took 
place, with the appearance of the κ(C = C) band between 

Table 1  The FT-IR spectra of the compound LS2

Band assignment Wavenumber 
 (cm−1)

νOH group 3450
νCH3 Aromatic 3010
νCH3 Aliphatic 2980
C = O Ester acid group 1708
ν(HC = N-) group of the azomethine 1595
νC = C conjugated 1570
νC-O group 1278

Fig. 3  FT-IR Spectrum of the LS2 compound
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Fig. 4  Mass spectrum of the LS2 compound

Fig. 5  1HNMR spectrum of the LS2 compound
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1570 and 1442  cm−1, as shown in Table 1 and Fig. 3. The 
molecular ion peaks were observed in the mass spectra 
of the compound at m/z = 299.1, with an 85% abundance, 
which corresponds to [C17H17NO4] + . Additionally, 
base peaks were observed at m/z = 284.1, as illustrated in 
Fig. 4. And the characteristic chemical shift  (CDCl3 as a 
solvent) was illustrated in Fig. 5. The 1H NMR spectrum 
of the LS2 compound exhibited a singlet at 13.36 ppm, 
corresponding to the proton of the OH group, and a sin-
glet at 8.62 ppm, corresponding to the azomethine proton 
(CH = N). The aromatic protons facilitated the observa-
tion of several signals within the range of 8.09–6.84 ppm. 
In the  CDCl3 solvent, the 13C NMR spectrum of LS2 
compounds, illustrated in Fig. 6, displayed a chemical 
shift at 164.15 ppm corresponding to the carbon atom of 
the (CH = N) group and a chemical shift at 152.07 ppm 
associated with the carbon atom of the (C–OH) group. 
The chemical shift in the 131.05–116.73 ppm range is 
ascribed to the aromatic carbons [26, 27].

Fig. 6  13CNMR spectrum of the LS2 compound

Fig. 7  a Optimized model (b) molecular electrostatic potential (MEP) 
surface
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Analysis of the Electronic Structure Dipole Moment, 
Polarizability, Hyperpolarizability, and Nonlinear 
Optical (NLO) Properties

In the program Gaussian 09 [28], the molecular electrostatic 
potential (MEP) surface of the optimized model is shown in 
Fig. 7. One of the most important quantities in chemistry 
is the dipole moment of the molecule. The estimation of 
infrared spectrum and the long-range interactions between 
electrostatics and induction is crucial [29]. When the centers 
of positive and negative charges in a molecule are apart, an 
electric dipole is created. This polarity was named by scien-
tists [30]. Its linear polarizability (α’) explains the first-order 
response of the dipole moment to external electric fields 
[31]. Linear optical properties such as absorption and refrac-
tive indices are altered by changes in polarizability [32]. The 
tendency of a molecule to form a dipole in the presence of 
an electric field is measured by its hyperpolarizability (β). 

Thus, hyperpolarizability can be used to measure changes 
in the charge distribution of an atom or molecule caused by 
an electromagnetic field [33]. Hyperpolarizability is a sign 
of extensive intramolecular charge transfer (ICT) in com-
pounds, indicating a NLO response [34]. Nonlinear changes 
in absorption or refractive index are examples of the NLO 
response caused by the interaction of quasi-delocalized elec-
trons with applied electric fields [35]. The calculated values   
for dipole moment (μ), polarizability (α’), and hyperpolar-
izability (β) are listed in Table 2 The physical properties of 
the LS2 compound were compared with urea, PNA, urea-
sulfamic acid, and 2M4NA as a standard material [36–40]. 
Compared to urea sulfonic acid, the LS2 molecule has a 
lower dipole moment value. Conversely, the α’ and β values 
of urea-sulphamic acid are greater than those of the LS2 
molecule. On the other hand, urea-sulphamic acid has lower 
values of α’ and β than the LS2 molecule. The results of the 

Table 2  With different reference 
GCRD values, the basis set 
6–311 + G(d,p) was used to 
calculate the LS2 connection at 
DFT/B3LYB

PNA  P-nitroanline, 2M4NA  2-methyl-4-nitroanline, USA Urea sulphamic acid

Chemical quantum descriptors LS2 compound Urea13 Urea- sul-
phamic 
 acid14

PNA15 2M4NA16

HOMO (eV) −5.133 −7.379 −8.092 −6.639 −6.527
LUMO (eV) −2.107 −0.362 −0.611 −2.474 −2.414
Egap (eV) = (ELUMO- EHOMO) (eV) 3.025 7.016 7.480 4.164 4.113
Dipole Moment (μ) 3.645 3.8852 4.7512 7.479 7.649
Polarizability α’ (a.u) 257.386 33.802 74.406 101.802 114.595
HyperPolarizability (β) 1513.902 71.518 64.751 1660.832 1664.702

Fig. 8  The calculated DOS 
graph for LS2 molecule at 
B3LYP/ 6–311G + (d,p) level
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general study suggest that the studied substance LS2 has 
polarizable properties.

Density of States (DOS) of Compounds

The GussSum software [41] found the density of the LS2 
molecule’s state spectrum. This is shown in Fig. 8. The 
LUMO and HOMO molecular orbits are changed by inter-
actions, which has been shown. The amount of orbitals that 
can be seen at a certain energy level is shown on the DOS 
diagram [42].

Studies on LS2 Compound Spectroscopy

We investigated the electronic absorption of LS2 compound 
in an ethanol solution at a concentration of 1 ×  10–4 mol  L−1. 

Fig. 9  The experimental UV–vis. absorption spectrum of the investi-
gated Schiff base LS2 compound

Table 3  The excited states of LS2 compound, DFT/B3LYP/6-311G + (d,p)

No Wavelength (nm) Excitation 
energy 
 (cm−1)

Osc. Strength Major MO contributions (%)

1 611.6291 16,349.7777 0.0071 HOMO(A)- > LUMO(A) (74%), HOMO(B)- > LUMO(B) (11%)
HOMO(A)- > L + 1(A) (5%), H-1(B)- > LUMO(B) (7%)

2 453.7857 22,036.8323 0.0076 H-1(A)- > LUMO(A) (23%), HOMO(B)- > LUMO(B) (41%), HOMO(B)- > L + 1(B) 
(17%), HOMO(A)- > LUMO(A) (7%), H-1(B)- > LUMO(B) (4%)

3 436.6225 22,903.0777 0.0157 H-1(A)- > LUMO(A) (31%), HOMO(A)- > LUMO(A) (12%), HOMO(B)- > LUMO(B) 
(30%), HOMO(B)- > L + 1(B) (19%) H-1(B)- > LUMO(B)

4 384.1466 26,031.724 0.0024 H-1(B)- > LUMO(B) (65%), HOMO(B)- > LUMO(B) (16%)
HOMO(A)- > LUMO(A) (3%), HOMO(A)- > L + 1(A) (6%)

5 361.0989 27,693.2376 0.0522 H-3(A)- > LUMO(A) (19%), H-2(A)- > LUMO(A) (16%), HOMO(A)- > L + 1(A) (14%), 
H-1(B)- > L + 1(B) (18%)

H-3(A)- > L + 1(A) (2%), H-1(A)- > LUMO(A) (4%), HOMO(A)- > LUMO(A) (4%), 
H-1(B)- > L + 2(B) (3%), HOMO(B)- > L + 1(B) (7%), HOMO(B)- > L + 2(B) (3%)

6 346.3511 28,872.4283 0.0284 H-1(A)- > LUMO(A) (11%), H-1(A)- > L + 1(A) (11%), HOMO(A)- > L + 1(A) (37%), 
HOMO(B)- > L + 1(B) (11%)

H-6(A)- > LUMO(A) (2%), H-5(A)- > LUMO(A) (6%), H-1(B)- > LUMO(B) (7%), 
HOMO(B)- > L + 2(B) (4%)

Fig. 10  Theoretical spectra cal-
culated by TD-DFT/B3LYP/6–
311 + G (d,p) of compound LS2
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The wavelengths of the absorption band are 220 and 292 nm. 
The molar extinction coefficient is increased to 14,000 L 
 mol−1.  cm−1. We attribute the absorption band (CH = N) and 
(C = O) π → π* transitions. The absorption spectrum of LS2 
compound is displayed in Fig. 9. The linear absorption coef-
ficient, α, of the LS2 compound at wavelengths 473 nm and 
532 nm were calculated using the equation mentioned in a 
previous study [12] and were found to be equal to 0.25  cm−1 
and 0.023  cm−1, respectively. The electronic transitions of 
the LS2 compound structure are calculated using the TD-
DFT/B3LYP/6-311G + (d,p) level, as shown in the UV–vis. 
spectrum Table 3, and Fig. 10. Calculations shows that there 
are six possible excited state configurations for single-elec-
tron excitations. The formation of the absorption band is 
primarily the result of excitation. Examination of the theo-
retical and experimental absorption spectra shows that the 
calculations were performed when the material was in the 
gas phase, which may have resulted in an overestimation of 
the vertical transition energy [43].

Nonlinear Study

DPs Experiment

Figures 11, 12, and 13 shows the far-field DPs as the laser 
beam’s power is slowly increased, along with the effect of 
the beam wave front and its temporal evolution. In Fig. 11 

Fig. 11  Variation of DPs in LS2 compound

Fig. 12  Variation of DPs in LS2 compound at power input 52 mW
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the DPs seen on the screen evolve with power input from 
single spot of small size that increases with input power an 
indication of the growing self-defocusing (SDF) that breaks 
at a certain power input to DP whose number increases with 
power input, then an asymmetry appeared in the upper half 
of the DPs, an effect seen the last 5 years extensively due 
to the thermal convection current [44]. The effect of beam 
wave front, an effect noticed as early as 1984 by Santanato 
and Shen [45], Deng et al. [46] and Chavez –Cerda [47], as 
shown in Fig. 12. The temporal behavior of the DPs is shown 
in Fig. 13 where the evolution follows the same trend of that 
seen in Fig. 11.

AOS Experiment

In these experiments, a technique known as the all-optical 
switching is demonstrated where a beam of light controls 
another beam of light on the basis of cross-self-phase 

modulation (XSPM) [48–50]. Here a laser beam with 
λ = 473 nm, the controlling beam where the nonlinear 
medium has large absorption coefficient so that high 
amount of energy is absorbed by the medium from the 
beam so that DPs resulted easily generated since the 
medium temperature increase in the Gaussian distribu-
tion. The medium has a low absorption coefficient, which 
results in a small quantity of energy being absorbed by 
the medium and no DPs being produced by the other 
beam, which is the controlled at λ = 532 nm. The signal 
for the beam 532 nm is manipulated by the beam 473 nm 
when both beams travel through the nonlinear medium 
simultaneously. Two experiments were implemented. 
In the first case, both the controlling beam and the con-
trolled beam are CW, which means that there is static 
all-optical switching. In the second one, the controlling 
beam is converted to a pulse by connecting the laser head 
to the TTL function of a frequency generator so that it 

Fig. 13  Temporal evolution of 
a DP in LS2 compound at input 
of 52 mW



 Journal of Fluorescence

become pulsed (square) while maintaining the controlled 
CW beam, resulting in a pulse AOS or dynamic DPs. 
Figures 14 and 15 illustrate the outcomes of both inves-
tigations. In Fig. 14 R1 i single spot resulted when the 
controlled 532 nm beam traverse the sample. When the 
controlling 473 nm beam traverse the sample DPs resulted 
as shown in Fig. 14 R1iii and when both beams pass the 
sample simultaneously two DPs types resulted as shown 
in Fig. 14 R1ii-iii. Figure 14 R2, R3 and R4 shows the 
effect of the controlling beam on its DPs, the effect of the 
controlling on the controlled DPs and controlled beam 
effect on its DPs. In Fig. 15 the experiment described in 
Fig. 14. The controlling beam 473 nm changed to pulsed 
(square pulse) by connecting the laser head to the TTL 
function of a frequency generator, keeping the controlled 
532  nm CW. The pulse signal length was 1  s so that 

temporal sequence of DPs belongs to the beam 473 nm 
followed by sequence of the 532 nm beam.

Z‑Scan

We obtained a straight line when conducting open aper-
ture (OA) Z-scan measurements as shown in Fig. 16a, 
which proves that the LS2 compound does not have a non-
linear absorption coefficient (NLAC). While we obtained 
a peak followed by a valley when curried out the closed 
aperture (CA) Z-scan, as can be seen in Fig. 16b, that is, 
the occurrence of SDF, which indicates that the LS2 com-
pound has a negative NLRI,  n2. It should be noted here 
that both Z-scan measurements were performed using an 
input power of P = 5 mW, which corresponds to the inten-
sity I = 860.76 W/cm2.The origin of the nonlinearity is 

Fig. 14  Static AOS in LS2 
compound
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thermal due to the use of a continuous wave laser beam. 
The Z-scan experiment was repeated several times and 
we found that the error rate in the measurements was less 
than ± 1%.

Determine the NRI,  n2 due to

DPs

Based on the results of subsection (3.5.1), the number 
of rings per each pattern increased with power input, P, 
directly, so that the medium temperature, the medium 
refraction index, and the beam phase all increase. Based 
on the medium thickness, d, beam wavelength λ, maxi-
mum number of rings, N, beam spot size, ω , and power 
input the NLRI,  n2, can be estimated using the following 
equation [51]

(1)n2 =
�

2

N��2

Pd

For N=10,ω =19.235 μm, λ = 473 nm, P=52 mW, beam 
intensity I = 2P

πω2
 , d =0.1  cm,I =8779.85 W/cm2 and n2

=5.387 ×  10–7  cm2/W.

Z‑Scan

Since the nonlinearity is of thermal origin, the NLRI can be 
determined from the following equation [52, 53]

ΔTp−v is the difference between the peak transmittance 
and valley transmittance λ = 473 nm, d = 0.1 cm I = 860.76 
W/  cm2. The NLRI, n2 value of the LS2 compound was 
determined from Eq. 2 and Fig. 16b was found equal to 
0.12 ×  10–7  cm2/W.

Due to the different of the beam power used in both 
techniques viz. 52 mW in the DPs and 5 mW in the Z-scan 
it is expected that two n2 values resulted, due to the DPs 

(2)n2 =

ΔTp−v �

4�dI

Fig. 15  Dynamic AOS in LS2 
compound
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technique is larger than the Z-scan. We find that the value 
of the NLRI of the LS2 compound is greater than that of 
materials known to possess high values   of the NLRI, such 
as those mentioned in studies [54–58], when compared to 
them. Which proves that the LS2 compound prepared in the 
current work can be a candidate for use in optical devices.

Conclusion

The passage of a low-power, cw laser beam through the 
Schiff base compound led to the formation of multiple dif-
fraction patterns (DPs). Self-defocusing phenomenon was 
observed, which resulted in a thermal effect in the Schiff 
base compound. A nonlinear refractive index (NLRI) of 
5.387 ×  10–7  cm2/W was determined by the number of 
rings at the high-power input. The NLRI was also calcu-
lated using a close aperture Z-scan. Using laser beams with 
wavelengths of 473 nm and 532 nm, the all-optical switching 

phenomenon was demonstrated. The purpose of the present 
work was accomplished by finding a material with high opti-
cal properties.
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