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Computer Numerical Control (CNC) is an important production factor in these modern 

times, since this method has brought precision, efficiency, and flexibility to such industries 

as electronics, aerospace, and automobile manufacturing. However, while this system 

merits consideration, it sometimes happens that traditional systems have limitations, 

mostly because of their proprietary software, which puts some constraints on the ability to 

customize and optimize. This work presents a software development that uses a genetic 

algorithm to extract and subsequently optimize drilling G-Code, where the software is 

developed for open CNC controller architectures. The method involves developing the 

necessary G-Code, building a distance matrix, and a genetic algorithm to be used in which 

the routes that provide maximum productivity will be obtained. From them, a rise in 

efficiency for the toolpaths up to 18%, with considerable shortening in travel lengths as 

well as a reduction of the machining time of the material, can be established. The evidence 

from these findings is that the ability of genetic algorithms to enhance the CNC machining 

process for cost savings and industrial efficiency is very clear. It is indicated that industries 

in search of intelligent and flexible CNC machinery with conformance to the requirements 

of Industry 4.0 can be guaranteed scalability by this approach. 
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1. INTRODUCTION

Computer Numerical Control is a conceptual technology, 

important in present modes of production for control use or 

operation through information from program control. These 

have ranged from different industries in many fields in the 

recent decades, from aerospace, automotive manufacturing to 

electronics [1]. In such developmental processes using this 

means, each sector enjoys ultimate accuracy attributed to CNC 

systems, and each repeatedly improves their efficiency. The 

advantages of combining automation and NC machines 

through the introduction of this invention include the potential 

to attain low-manned error, effectiveness to give rise to higher 

output, and high-volume production at high quality as a whole. 

Beyond this, CNC systems allow for sophisticated designs and 

geometries that are hard to tackle or impossible by hand. Thus, 

CNC machining has led to the frontline of contemporary 

production systems and Industry 4.0, wherein its integration 

with IoT and smart technologies increases operating abilities 

further [2]. 

Conventional CNC systems are often constrained by 

proprietary software and hardware that forbid users from 

making any modifications or enhancements. Open CNC 

designs go beyond these limitations, allowing flexibility and 

adaptability in the platform [3]. In an open CNC system, the 

manufacturer can modify the control algorithms, integrate 

third-party software, and personalize machine characteristics 

to meet specific needs [4]. The above openness allows the 

customers' innovations, which seek to optimize the cutting 

pathways and shorten cycle times to improve the surface 

finishes. An additional advantage of open CNC is that there is 

lesser dependence on one or few suppliers, hence less 

proprietary upgrades of software and hence reduced license 

fees costs. Industries using open CNC may respond promptly 

to changed production requirements and technical 

improvements [5]. 

This is quite an advantage for companies wishing to 

improve some aspects of manufacturing. With open-source 

CNC-systems, it becomes possible to upgrade the 

functionality of machines provided by engineers and 

developers in order to have the ability to apply changes in real-

time, and to use some algorithms in improving cutting 

conditions [6]. The functions tailored are custom user 

interfaces, control parameters as well as industrial system 

compatibility, allowing easy communication and data transfer. 

Adaptive control algorithms can automatically readjust the 

cutting speed and tool path in real time based on sensor signals 

to minimize material waste and tool wear [7]. Such flexibility 
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enables manufacturers to address specific challenges while 

continuing to improve machining accuracy, productivity, and 

consistency [8]. 

In CNC machining, the goal of optimization is to increase 

operational efficiency with minimum resource consumption. 

Tool path optimization, adaptive feed rate regulation, and 

predictive maintenance algorithms are some of the essential 

methods for cost and time reduction [9, 10]. For instance, 

optimization of tool routes reduces idle times and material 

waste [11], hence directly affecting production costs. These 

are now supplemented in modern CNC systems through the 

employment of machine learning and artificial intelligence so 

as to predict the wear in the tool for optimum changes of the 

parameters of cut in real-time. The saving thus brought about 

is in cost and a quicker manufacturing cycle time with 

minimum or no consumption of productive time in an 

economical and optimized method related to the tool usage for 

any particular manufacturer. Cloud-connected systems further 

allow for remote monitoring and, thereby, optimization of 

operations with scalability [10].  

Genetic algorithms (GA) are stochastic search and 

optimization techniques inspired by natural evolution. In the 

context of CNC drilling optimization, the problem can be 

modeled as a variant of the Traveling Salesman Problem (TSP), 

where the tool must visit a sequence of drilling points with 

minimal non-cutting movement. Recent works [12, 13] have 

validated the use of GAs in similar path-planning contexts. 

This work describes the development of a software system for 

the extraction and optimization of drilling G-Code by means 

of a Genetic Algorithm, to be used on an open Computer 

Numerical Control controller. Compared to traditional linear 

execution, GA-based reordering adapts tool paths based on 

spatial efficiency, offering real-time benefits for open CNC 

systems. Our review also considers recent algorithmic 

enhancements like elitism, adaptive mutation, and hybrid 

strategies used in drilling path optimization and additive 

manufacturing. 

 

 

2. BASIC COMPONENTS OF A CNC MACHINE 

 

At its core, a CNC machine comprises three primary 

sections: 

 

2.1 The software 

 

For the analysis of such CAD models and the subsequent 

conversion into machine-readable codes, there is a 

requirement for appropriate CNC software [14]. G-Code will 

define the toolpaths, position, and movements of the cutting 

tools, making sure the machining operations are properly 

introduced. Meanwhile, M-Code controls auxiliary actions 

such as on/off coolant systems, spindles on/off, or tool changes. 

Taken together, these codes are the basis of the CNC 

programming language that enables accurate control and 

smooth coordination in complex manufacturing processes. 

 

2.2 The Machine Control Unit (MCU) 

 

The MCU serves as a control unit for a CNC machine with 

the help of instructions provided through G-code and M-code. 

It regulates tool path, speed of the cutting tool, feeding of the 

workpiece, and peripheral operations such as coolants and 

changing of tools. The MCU enables seamless communication 

between software directives and physical elements of the 

machine [15]. 

 

2.3 The processing equipment 

 

This component includes the machine tools responsible for 

various machining operations such as turning (Lathe CNC 

machine), milling (Milling CNC machine), drilling (Drilling 

CNC machine), grinding (Grinding CNC machine) and cutting 

(Plasma and Laser CNC machines). Each type of CNC 

machine is specialized for its respective operations, allowing 

for high precision and repeatability [16, 17]. 

 

 

3. THE CNC MACHINE SYSTEM 

 

A CNC machine integrates several hardware components, 

each playing a crucial role in ensuring efficient operation, 

precision, and feedback control. The key components are 

described below. Figure 1 provides a visual representation of 

the hardware components of a CNC machine system and their 

interconnections, offering a clearer understanding of their 

roles and interactions within the CNC system. 

 

3.1 Input devices 

 

Input devices are responsible for feeding part programs into 

the CNC control unit, especially when not integrated with 

CAD/CAM software. Common input methods include USB 

flash drives, Ethernet communication via LAN cables, 

conversational programming, and serial communication (e.g., 

RS-232-C serial port) [18, 19]. These devices act as the entry 

point for motion and auxiliary function data, as illustrated in 

Figure 1. 

 

 
 

Figure 1. Computer numerical control (CNC) hardware components 
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3.2 Machine Control Unit (MCU) 

 

This comprises the MCU, the heart of any CNC system, 

which drives control action efficiently and with precision. It 

includes two major sub-units: control loop unit and data 

processing unit. These sub-units support MCU to read and 

decode G-Code and M-code instructions, which describe the 

basic details of machining operations [19]. The MCU performs 

geometric interpolations like linear, helical, and circular 

motions in order to generate the real command of axis motion; 

then sends the same to the drive system for the control of 

machine motions. Moreover, it will also process the position 

and velocity feedback information in real time, ensuring 

accuracy and stability [20]. It also supports peripheral 

operations, including tool changes and coolant on/off, during 

processing. MCU works like the central processor in the CNC 

system; it carries out all the operations regarding control 

smoothly without any mistake, as shown in Figure 1. 

 

3.3 Machine tool 

 

The machine tool has two major components: the spindle, 

which provides and regulates the rotation motion along the Z-

axis, and the slide table, which provides and regulates 

horizontal and vertical movements along the X and Y axes. 

These components work together to ensure precise positioning 

and motion of the workpiece and the cutting tool [16]. 

 

3.4 Feedback or measuring system 

 

The feedback system includes sensors such as position and 

velocity transducers that continuously monitor the speed and 

position of the cutting tool. Signals obtained from these 

sensors are fed back to the MCU, where their values are 

compared in real time with a reference signal [21]. Such a 

comparison allows for error correction, minimization of 

position and speed difference, and thus the assurance of 

accurate machine performance. 

 

3.5 Driving system 

 

In summary, the propulsion system provides support 

through drive motors, a ball lead screw, and an amplifier 

circuit. Working as a whole, this helps the MCU translate the 

commands sent related to the axis into actually accurate 

physical movements [18]. The drive motors drive the ball lead 

screws forward for the purpose of precise movement, by which 

the slide table and spindle are placed to assure desired 

locations of machining with increased high precision. 
 

3.6 Display unit 
 

The display unit, with GUI-based application software, 

provides operators with a comprehensive interface for 

operating and managing the CNC system. It displays 

immediate information about the condition of the system, 

control commands, and information about the program. Such 

a user-friendly interface enables the operator to monitor 

processes, change settings, and diagnose problems in an easy 

way, as shown in Figure 1. 

 

 

4. SYSTEM INTEGRATION OVERVIEW 
 

The CNC machine system functions as a cohesive network 

of all these components. The MCU serves as the central 

processing unit, interfacing with input devices that supply 

CNC programs and display units that present real-time 

operating data. The data processing unit and control loop unit 

of the MCU manage program execution, geometric 

interpolations, and control signal processing. These signals are 

subsequently sent to the driving system, where drive motors 

and amplifier circuits transform them into the actual motions 

of the cutting tool. The feedback systems concurrently monitor 

velocity and position, transmitting real-time information to the 

MCU for precise control and fault rectification [22]. 

This closed-loop control system ensures seamless 

coordination among all components: the input device initiates 

the motion workflow and auxiliary function data, the feedback 

system completes the loop by transmitting essential 

information to the MCU, the display unit acts as a crucial 

interface for monitoring system performance, and the 

machining tool performs cutting, milling, or drilling tasks with 

precision [23]. 

The integration of these technologies creates a fully 

synchronized CNC machine capable of executing complicated 

machining operations with great accuracy, consistency, and 

efficiency, rendering it essential for contemporary 

manufacturing and industrial applications. 

 

 

5. CNC OPEN ARCHITECTURES SYSTEM 
 

The system describes the whole processing chain of a G-

Code file in the application. Starting from the selection and 

loading of the G-Code file, it goes on to extract important 

commands with the help of regular expressions. Further, the 

process describes how the extracted data are updated and fine-

tuned based on user input. It will then calculate distances 

among them, building a distance matrix that will give the 

basics for the optimization of CNC routes through a genetic 

algorithm. Everything is wrapped up in the sophisticated 

presentation of data in 3D plots and the generation of extensive 

reports in most of the known formats. All this is cut to size at 

each step to assure efficient control, analysis, and 

improvement in G-Code, while embedding users with firm 

resources and tools to boost their effectiveness in operating 

computer numerical control. Figure 2 depicts the flowchart for 

processing the input file in a step-by-step manner. 

The flowchart begins by the user's initiation through file 

selection to be analyzed in G-Code. A G-Code file, usually a 

set of instructions for CNC machining, is selected through a 

file dialog that allows the user to navigate their computer and 

select the appropriate file. If no file is selected, it throws an 

error back to the user for file selection. This first kind of 

validation ensures that at least a valid file is provided once the 

action is to be taken upon. If the file is well-selected, it reads 

the sequential data from it line by line. The raw G-Code 

information is displayed out in the GUI; all this shows the user 

the data that have just been imported and confirms the correct 

reading. This prompt response allows the user to confirm that 

the correct file has been chosen and that its contents are what 

is expected, prior to beginning the extraction process. 

After the presentation of the imported data, the system 

proceeds with the extraction of some of the G-Code commands 

from the file. The extraction process utilizes regex patterns for 

key instructions such as X, Y, Z for coordinate values; S, 

spindle speed; F, feed rate; M, miscellaneous functions; R, 

radius; and T, tool adjustments. Indeed, this is a systematic 
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compilation of the G-Code commands, with each command 

formatted as a dictionary for every line. The collected data are 

then depicted in the GUI, which allows the user to confirm that 

the commands were correctly processed and arranged. 

It then checks for the success of the extraction. If the 

information taken out is incomplete or incorrect, the process 

goes back to moving, which requires the user to go back to the 

very start-step of file selection. This ensures that only correctly 

structured and extracted data flow further in the workflow, 

thus reducing the risk of issues in subsequent processing steps. 

 

 
 

Figure 2. Flowchart of implemented genetic algorithm 

 

 
 

Figure 3. Graphical user interface of the GA optimization software 
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It calculates the distance matrix by using the X and Y 

coordinates of the data extracted for comparison of efficiency 

between different approaches. This matrix calculates pairwise 

distances between all points, which forms the backbone of 

understanding the spatial relationships within the CNC 

program. This distance matrix will form the basis of 

comparison for the efficiency of each approach and helps the 

algorithm to determine the more efficient ones. Thus, upon 

calculation of the distance matrix, the system makes 

preparations by initializing a population for GA-based 

optimization. Several candidate optimal paths include distinct 

rearrangement or sequences of G-Code statements each 

flowing with one another. In relation, and upon the 

initialization, improvement to this population will build a base 

for identifying and enabling this best route through orders via 

successive generations. 

The fitness of each subject in the population is calculated 

using the distance matrix computed. At this stage, this 

normally adopts minimizing on every single route from the 

overall trip distance traveled by each of the CNC machines. 

Fitness scores will, therefore, inform selections in which the 

most fit are those that get to progress and move into the next 

successive stages of the genetic algorithm in action. The 

selection phase of the system chooses the most effective 

solutions from the existing population. The selected 

individuals are then taken to the crossover process, where pairs 

of solutions are used in generating offspring for the next 

generation. Crossover involves combining series of 

commands from two parents, which results in new solutions 

that can include desirable features from either parent. 

The mutation phase ensues, implementing minor random 

alterations to the progeny. This stage preserves genetic variety 

among the population and prevents the algorithm from 

becoming ensnared in local optima. By marginally modifying 

the trajectories, the mutation process enables the algorithm to 

investigate a broader spectrum of potential solutions, hence 

enhancing the probability of identifying a more optimum path. 

The newly created population is subsequently assessed for 

fitness following mutation. The system persistently cycles 

through the phases of selection, crossover, mutation, and 

assessment until a predetermined stopping criterion is satisfied. 

The termination criterion may rely on attaining a maximum 

number of generations or earning an acceptable fitness score. 

Should the condition remain unfulfilled, the mechanism 

reverts and reiterates the optimization cycle. The optimization 

procedure concludes when the halting condition is met. The 

optimal solution, which signifies the most effective 

arrangement of G-Code commands, is determined. The 

optimized path is shown in the GUI, offering users a summary 

of the outcomes and the enhancements in efficiency attained. 

The software interface called "G-Code Data Extractor and 

Optimizer" is shown in Figure 3. Users can choose the 

optimization algorithm, set the parameters for the genetic 

algorithm, such as the size of the population, the number of 

generations, and the mutation rate, and then start the 

optimization process. It shows both the original and optimized 

2D toolpaths in real time using side-by-side plots. Other 

features include tracking of generations, showing the 

percentage of improvements, and automatic report generation. 

These features give users a clear and interactive optimization 

workflow. 

The system provides a visualization option for a more 

thorough investigation. The refined data can be shown in two 

dimensions, illustrating the sequence of commands and the 

resultant trajectory within a geographic framework. Users can 

engage with the plot, rotating and zooming to enhance their 

comprehension of the arrangement and progression of the 

optimal commands. This image facilitates the verification of 

optimization and assists users in interpreting the spatial 

relationships among various places. 

The user can produce a comprehensive report. The report 

encompasses all phases of the process: the first extracted data, 

the optimization advancements, and the ultimate optimized 

outcomes. The report may be saved in several formats, 

including text files, Word documents, or Excel spreadsheets, 

offering a thorough record of the whole process for future 

reference or study. The procedure culminates with the user 

either resetting the system for a new task or terminating the 

program. The user possesses a comprehensive grasp of G-

Code data management, encompassing extraction, 

optimization, and visualization, hence enabling informed 

decision-making for CNC machining jobs. The flowchart 

clearly demonstrates a systematic approach to processing and 

optimizing G-Code data, guaranteeing efficiency and clarity 

throughout the workflow. 

 

 

6. CASE STUDY 

 

The drilling points selected are based on the letters UNI.OF 

BASRA IRAQ which refer to UNIversity OF BASRA IRAQ 

border by points (Figure 4). Solid Work with Solid Cam 

software was used to draw the CAD design and machining 

features, respectively. 

G-Code is generated for CAD drawing to understand 

drilling extracted and optimization using the developed system. 

The ISO 6983 code that is generated concerning the designed 

object is illustrated in Appendix A. The system.exe is launched, 

followed by the selection of G-Code with drilling data for the 

interface model environment, and the resultant code is 

uploaded to the system using the “Open G-Code File” button. 

Concerning the drilling procedure, the system extracts 145 

points as the drilling locations. The route length of the ISO 

code produced by the Solid Cam software's "shortest distance 

technology" function is 1460.39 mm. Figure 5 illustrates the 

series of retrieved drilling points (minimum distance) from the 

solid cam program. To elucidate the progression of the 

produced system code, a segment has been chosen from our 

example. The initial 10 places are selected, with the origin 

point serving as both the commencement and conclusion of the 

trip. 

 

 
 

Figure 4. CAD design of drilling point 
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Figure 5. Extracted drilling points from G-Code 

 

The flowchart in Figure 2 provides outlines of the process 

for optimizing a system using a genetic algorithm. It begins 

with loading and extracting G-Code data, then initializing a 

population. Subsequently, the fitness of the population is 

calculated, followed by selection, crossover, and mutation 

processes to create a new population. This cycle repeats, 

evaluating the new population each time. The process 

continues until a stopping condition, such as reaching a 

maximum number of generations, is met. The genetic 

algorithm uses a population size of 50 to maintain diversity, a 

1% mutation rate to avoid local optima, and runs for 10000 

generations to balance optimization and runtime. These 

parameters follow established evolutionary computation 

principles [24] and achieved an 18% reduction in toolpath 

distances. The main steps of the genetic algorithm are: 

 

Step 1: Initialization 

 

The objective here is to create an initial population of 

possible solutions (tours). Each tour is represented as a 

permutation of the cities. Since the salesman must start and 

end at point 0, we fix the start and end points, while permuting 

the intermediate cities. For illustration, the system generates a 

population of four paths: 

- Path 1: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0] 

- Path 2: [0, 3, 5, 2, 1, 4, 7, 6, 9, 8, 10, 0] 

- Path 3: [0, 2, 4, 1, 3, 5, 9, 8, 7, 6, 10, 0] 

- Path 4: [0, 5, 3, 2, 4, 1, 6, 7, 10, 9, 8, 0] 

This initial population is generated randomly. 

 

Step 2: Evaluation 

 

In this step, the system calculates the total distance of each 

tour using the Euclidean distance formula between 

consecutive cities in the tour. For example: 

- For Path 1: The total distance is approximately 230.004, 

calculated as the sum of distances between the points: 

93.98 + 6.91 + 10.00 + 6.30 + 7.63 + 3.78 + 4.33 + 3.69 + 

3.41 + 7.66 + 82.31 ≈ 230.004 

The total distances for the paths are: 

- Path 1: 230.004 

- Path 2: 248.33 

- Path 3: 257.857 

- Path 4: 242.557 

 

Step 3: Fitness calculation 

 

The goal of this step is to assign a fitness score to each path 

based on their total distance: shorter distances correspond to 

higher fitness. The fitness is calculated as the inverse of the 

total distance. For instance, for Path 1 with a total distance of 

230.004, the fitness is approximately 0.0043. The fitness 

scores for all paths are as follows: 

- Path 1: 0.0043 

- Path 2: 0.004 

- Path 3: 0.0038 

- Path 4: 0.0041 

 

Step 4: Selection 

 

In this step, paths are selected for reproduction based on 

their fitness, with higher fitness paths having a greater chance 

of selection. The system uses the Roulette Wheel Selection 

method, where the probability of selection is proportional to 

fitness. 

- Total Fitness = 0.0043 + 0.004 + 0.0038 + 0.0041 = 

0.01637 

The selection probabilities for each path are: 

- Path 1: 0.2655 

- Path 2: 0.2459 

- Path 3: 0.2368 

- Path 4: 0.2518 

Based on these probabilities, paths 1 and 4 are selected for 

reproduction. 

 

Step 5: Crossover 

 

The objective of this step is to combine parts of two parent 

tours to produce offspring, inheriting characteristics from both 

parents. The system uses the Order Crossover (OX) method, 

which is common for the Traveling Salesman Problem (TSP) 

as it preserves the relative order of cities. 

For example, suppose the system select Parents 2 and 3: 

- Parent 2: [0, 3, 5, 2, 1, 4, 7, 6, 9, 8, 10, 0] 

- Parent 3: [0, 2, 4, 1, 3, 5, 9, 8, 7, 6, 10, 0] 

The system randomly chooses crossover points, say 

positions 3 to 7 (inclusive), and extracts the subtour from 

Parent 2: [2, 1, 4, 7, 6]. The system then fills the remaining 

cities from Parent 3, excluding the cities already in the subtour, 

to form Child 1: [0, 2, 1, 4, 7, 6, 3, 5, 9, 8, 10, 0]. The system 

generates a second child similarly. 

- Child 1: [0, 2, 1, 4, 7, 6, 3, 5, 9, 8, 10, 0] 

- Child 2: [0, 3, 5, 2, 1, 4, 7, 6, 9, 8, 10, 0] (which may 

resemble Parent 2). 

 

 

7. ITERATION AND EVOLUTION 
 

After crossover, the new generation replaces the old one 

(either fully or partially). The system repeats the evaluation, 

fitness calculation, selection, and crossover steps for a 

predefined number of generations or until convergence. 

For example, in a new iteration: 

- The new population consists of Child 1, Child 2, and Paths 

1 and 4. 

- The total distances and fitness scores are recalculated for 

the new population, and selection and crossover steps are 
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performed again to generate the next generation. 

This iterative process continues until it reaches the specified 

number of generations. The genetic algorithm effectively 

reduced the total path distance, improving the efficiency of the 

toolpath for the CNC machine. This optimization is achieved 

by iteratively refining possible solutions and favoring paths 

that reduce overall travel. 

 

 

8. RESULT AND DISCUSSION 

 

Figure 6 provides a comparison between the original and 

optimized toolpaths generated from a sequence of G-Code 

commands. In CNC machining, the sequence in which the tool 

visits different coordinates significantly affects the efficiency 

of the process. The flow of the paths in these plots, shown 

before and after optimization, demonstrates how rearranging 

the command order can reduce the total travel distance, 

thereby improving operational efficiency. 

In Figure 6 (a), a 2D plane is used to plot G-Code commands 

represented by blue markers and connected with lines. The 

path is taken in the order found in the original G-Code file 

without any optimizations applied. The same visualization is 

explained: Each point corresponds to a (X, Y) coordinate that 

was extracted from the data, and the label corresponds to a 

sequential number. In a non-optimized state, the total distance 

covered by the CNC tool is 1460.39 mm. The route appears 

confused and ineffective, it jumps from different line segments, 

even switching directions on certain lines. This means that the 

tool is path running unnecessarily long and can result in an 

increased move time as well as possible wear on the machine. 

 

 
(a) Tool path before optimization 

 
(b) Tool path after optimization 

 

Figure 6. Tool path from python code 

 

Conversely, Figure 6 (b) shows the results of using a genetic 

algorithm to achieve a more efficient ordering of G-Code 

commands. The red marks and lines represent the adjusted 

trajectory, and the order of the places now varies significantly. 

Thus, the optimization process tends to reduce the distance 

traveled by permuting the order of these coordinates, while 

respecting essential operations from the G-Code. This gives 

the resulting path a smooth flow with no sharp angles and no 

crossovers, meaning a straighter route passed through all 

locations. The distance of the optimized path is 1201.72 mm, 

showing a significant increase compared to the original one, 

which includes approximately 18% improvements in travel 

efficiency. 

Having the two trajectories was intentional because it shows 

the impact the optimization makes. The reduced linear path 

reduces the overall distance traveled and improves the 

effective operation of the CNC machine. Fewer unnecessary 

movements allow the updated sequence for lower processing 

time, lower tool wear, and improved overall performance. This 

optimization is crucial in industrial implementations, as even 

minor reductions in travel distance can translate to significant 

time and monetary savings. 

The implementation of a genetic algorithm adjunction on 

the drilling tool route optimization is demonstrated in Figure 

7. The tool path length starts at approximately 1320 mm and 

decreases with newer generations, reaching 1200 mm by the 

6000th generation. This gradual decline with a few jumps (i.e. 

plateau) demonstrates the capability of the genetic algorithm 

to iteratively make improvements. Exploration is dominant in 

initial generations, which leads to quick progress, while 

exploitation dominates in later generations, which refines the 

best solutions. Improving the tool path offers significant 

benefits such as a reduction in machine running time, power 

consumption, and tool wear, ultimately leading to cost savings. 

Fewer extraneous movements translate into enhanced 

productivity and efficiency; as such, the refined G-Code 

translates directly into a more productive and efficient 

workflow. As a result, the iterative nature of the GA is 

especially suited to the control of complex geometries or 

multiple apertures. 

 
Figure 7. Optimization of tool path length across generations 

in the implemented genetic algorithm 

 

Adjusting GA parameters, such as mutation rates and 

population size, can be utilized to balance exploration and 

exploitation, potentially leading to improved outcomes. 

Convex gaps there might lead to faster convergence with 

hybrid methods such as interaction of genetic algorithms with 

local search techniques. Incorporating finite world constraints 

and computing cost would yield realistic and feasible results. 

The proposed method is an effective approach for enhancing 

machining operations using genetic algorithms. 
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In order to evaluate the effectiveness of the proposed 

genetic algorithm (GA) in comparison to our previously 

developed Ant Colony Optimization (ACO)-based technique 

for optimizing toolpaths, as detailed in Hatem et al. [5], we 

conducted a comparison. The same drilling dataset and 

parameters were employed by both methodologies. The 

Genetic method always created shorter toolpaths than the Ant 

Colony Optimization method. The GA method gave us an 

average optimized path length of 1201.72 mm, while the ACO 

method gave us an average optimized path length of 1268.52 

mm. This meant that the non-cutting travel distance was 

around 5.3% shorter. The improvement over ACO seems little, 

but the results show that GA is a competitive and robust way 

to optimize, especially for CNC systems that might change and 

need to plan toolpaths quickly and efficiently. Although our 

study was software-based, we estimated time efficiency using 

standard CNC traverse speed. At 2000 mm/min, the original 

path (1460.39 mm) would require ~43.8 s, while the optimized 

path (1201.72 mm) requires ~36.1 s. This corresponds to a 

simulated time saving of ~7.7 s (17.7%). The GA execution 

time is under 3 s. Statistical significance of the improvement 

(p < 0.01) was confirmed by a paired t-test and reflected a large 

effect size (Cohen's d = 1.87). The GA is successful in 

reducing route variability as indicated by the 42% 

improvement in the standard deviation compared to baseline.  

Although this study did not extend to industrial hardware 

deployment, the developed GA-based optimization software 

produces understandable G-Code compatible with a wide 

range of CNC machines. Its implementation on an open CNC 

controller demonstrates that the system architecture is readily 

adaptable to industrial use. With minor integration efforts, 

manufacturers employing open-source or customizable CNC 

platforms could benefit from this approach by reducing tool 

travel distances and improving non-cutting efficiency, 

aligning well with modern smart manufacturing goals. 

 

 

9. CONCLUSIONS 

 

Integration of Genetic Algorithms (GA) in CNC machining 

systems, especially in optimizing drilling G-code, represents a 

significant improvement in increasing efficiency and accuracy 

in degree of production. Specifically, this research highlights 

the limitations of traditional CNC systems, often constrained 

by closed proprietary software and hardware, and the 

flexibility offered by open CNC architectures. Analysis of 

toolpath length, influencing G-Code commands, can be 

performed, leading to the optimization of machining 

productivity while decreasing operating costs when custom 

software is developed. Notable outcomes showed an 18% 

improvement in the efficiency of toolpaths, validating the 

effectiveness of repetitive genetic algorithm steps like 

initialization, fitness function, selection, crossover, and 

mutation in optimizing drilling orders. The optimized 

toolpaths reduced travel lengths, leading to lower energy 

consumption, reduced tool wear, and shorter machining cycles. 

The approach brings global computational efficiency together 

with local machining capabilities to provide scalable, cost-

effective solutions that respond readily to changing production 

needs. Future research may investigate the use of this GA-

based methodology to milling and 3D printing processes 

where route efficiency is paramount. Hybrid algorithms, such 

as GA-ACO, may improve convergence and solution quality. 

Further challenges encompass scalability and the adaptation to 

real-time control systems. 
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