
Develop Software to Extract and Optimize Drilling G-Code Using a Genetic Algorithm for

Deployment in an Open CNC Controller

Noor Hatem1 , Mohammed Mustafa Abedlhafd2* , Azzam Dawood Hassan2 , Nuha Hadi Jasim Al Hassan2 ,

Yusri Yusof3 , Yazid Saif3 , Iliyas Maznah4

1 Department of Petroleum, Engineering College of Engineering, University of Basrah, Basrah 61004, Iraq
2 Department of Materials, Engineering College of Engineering, University of Basrah, Basrah 61004, Iraq
3 Faculty of Mechanical and Manufacturing Engineering, University Tun Hussein Onn, Johor 86400 Malaysia
4 Department of Mechanical Engineering, Politeknik Sultan Azlan Shah, Behrang Perak 35950, Malysia

Corresponding Author Email: mohammed.abedlhafd@uobasrah.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.580620 ABSTRACT

Received: 27 April 2025

Revised: 1 June 2025

Accepted: 9 June 2025

Available online: 30 June 2025

Computer Numerical Control (CNC) is an important production factor in these modern

times, since this method has brought precision, efficiency, and flexibility to such industries

as electronics, aerospace, and automobile manufacturing. However, while this system

merits consideration, it sometimes happens that traditional systems have limitations,

mostly because of their proprietary software, which puts some constraints on the ability to

customize and optimize. This work presents a software development that uses a genetic

algorithm to extract and subsequently optimize drilling G-Code, where the software is

developed for open CNC controller architectures. The method involves developing the

necessary G-Code, building a distance matrix, and a genetic algorithm to be used in which

the routes that provide maximum productivity will be obtained. From them, a rise in

efficiency for the toolpaths up to 18%, with considerable shortening in travel lengths as

well as a reduction of the machining time of the material, can be established. The evidence

from these findings is that the ability of genetic algorithms to enhance the CNC machining

process for cost savings and industrial efficiency is very clear. It is indicated that industries

in search of intelligent and flexible CNC machinery with conformance to the requirements

of Industry 4.0 can be guaranteed scalability by this approach.

Keywords:

drilling, open CNC controller, process

optimization, genetic algorithm, tool path

1. INTRODUCTION

Computer Numerical Control is a conceptual technology,

important in present modes of production for control use or

operation through information from program control. These

have ranged from different industries in many fields in the

recent decades, from aerospace, automotive manufacturing to

electronics [1]. In such developmental processes using this

means, each sector enjoys ultimate accuracy attributed to CNC

systems, and each repeatedly improves their efficiency. The

advantages of combining automation and NC machines

through the introduction of this invention include the potential

to attain low-manned error, effectiveness to give rise to higher

output, and high-volume production at high quality as a whole.

Beyond this, CNC systems allow for sophisticated designs and

geometries that are hard to tackle or impossible by hand. Thus,

CNC machining has led to the frontline of contemporary

production systems and Industry 4.0, wherein its integration

with IoT and smart technologies increases operating abilities

further [2].

Conventional CNC systems are often constrained by

proprietary software and hardware that forbid users from

making any modifications or enhancements. Open CNC

designs go beyond these limitations, allowing flexibility and

adaptability in the platform [3]. In an open CNC system, the

manufacturer can modify the control algorithms, integrate

third-party software, and personalize machine characteristics

to meet specific needs [4]. The above openness allows the

customers' innovations, which seek to optimize the cutting

pathways and shorten cycle times to improve the surface

finishes. An additional advantage of open CNC is that there is

lesser dependence on one or few suppliers, hence less

proprietary upgrades of software and hence reduced license

fees costs. Industries using open CNC may respond promptly

to changed production requirements and technical

improvements [5].

This is quite an advantage for companies wishing to

improve some aspects of manufacturing. With open-source

CNC-systems, it becomes possible to upgrade the

functionality of machines provided by engineers and

developers in order to have the ability to apply changes in real-

time, and to use some algorithms in improving cutting

conditions [6]. The functions tailored are custom user

interfaces, control parameters as well as industrial system

compatibility, allowing easy communication and data transfer.

Adaptive control algorithms can automatically readjust the

cutting speed and tool path in real time based on sensor signals

to minimize material waste and tool wear [7]. Such flexibility

Journal Européen des Systèmes Automatisés
Vol. 58, No. 6, June, 2025, pp. 1305-1313

Journal homepage: http://iieta.org/journals/jesa

1305

https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.580620&domain=pdf

enables manufacturers to address specific challenges while

continuing to improve machining accuracy, productivity, and

consistency [8].

In CNC machining, the goal of optimization is to increase

operational efficiency with minimum resource consumption.

Tool path optimization, adaptive feed rate regulation, and

predictive maintenance algorithms are some of the essential

methods for cost and time reduction [9, 10]. For instance,

optimization of tool routes reduces idle times and material

waste [11], hence directly affecting production costs. These

are now supplemented in modern CNC systems through the

employment of machine learning and artificial intelligence so

as to predict the wear in the tool for optimum changes of the

parameters of cut in real-time. The saving thus brought about

is in cost and a quicker manufacturing cycle time with

minimum or no consumption of productive time in an

economical and optimized method related to the tool usage for

any particular manufacturer. Cloud-connected systems further

allow for remote monitoring and, thereby, optimization of

operations with scalability [10].

Genetic algorithms (GA) are stochastic search and

optimization techniques inspired by natural evolution. In the

context of CNC drilling optimization, the problem can be

modeled as a variant of the Traveling Salesman Problem (TSP),

where the tool must visit a sequence of drilling points with

minimal non-cutting movement. Recent works [12, 13] have

validated the use of GAs in similar path-planning contexts.

This work describes the development of a software system for

the extraction and optimization of drilling G-Code by means

of a Genetic Algorithm, to be used on an open Computer

Numerical Control controller. Compared to traditional linear

execution, GA-based reordering adapts tool paths based on

spatial efficiency, offering real-time benefits for open CNC

systems. Our review also considers recent algorithmic

enhancements like elitism, adaptive mutation, and hybrid

strategies used in drilling path optimization and additive

manufacturing.

2. BASIC COMPONENTS OF A CNC MACHINE

At its core, a CNC machine comprises three primary

sections:

2.1 The software

For the analysis of such CAD models and the subsequent

conversion into machine-readable codes, there is a

requirement for appropriate CNC software [14]. G-Code will

define the toolpaths, position, and movements of the cutting

tools, making sure the machining operations are properly

introduced. Meanwhile, M-Code controls auxiliary actions

such as on/off coolant systems, spindles on/off, or tool changes.

Taken together, these codes are the basis of the CNC

programming language that enables accurate control and

smooth coordination in complex manufacturing processes.

2.2 The Machine Control Unit (MCU)

The MCU serves as a control unit for a CNC machine with

the help of instructions provided through G-code and M-code.

It regulates tool path, speed of the cutting tool, feeding of the

workpiece, and peripheral operations such as coolants and

changing of tools. The MCU enables seamless communication

between software directives and physical elements of the

machine [15].

2.3 The processing equipment

This component includes the machine tools responsible for

various machining operations such as turning (Lathe CNC

machine), milling (Milling CNC machine), drilling (Drilling

CNC machine), grinding (Grinding CNC machine) and cutting

(Plasma and Laser CNC machines). Each type of CNC

machine is specialized for its respective operations, allowing

for high precision and repeatability [16, 17].

3. THE CNC MACHINE SYSTEM

A CNC machine integrates several hardware components,

each playing a crucial role in ensuring efficient operation,

precision, and feedback control. The key components are

described below. Figure 1 provides a visual representation of

the hardware components of a CNC machine system and their

interconnections, offering a clearer understanding of their

roles and interactions within the CNC system.

3.1 Input devices

Input devices are responsible for feeding part programs into

the CNC control unit, especially when not integrated with

CAD/CAM software. Common input methods include USB

flash drives, Ethernet communication via LAN cables,

conversational programming, and serial communication (e.g.,

RS-232-C serial port) [18, 19]. These devices act as the entry

point for motion and auxiliary function data, as illustrated in

Figure 1.

Figure 1. Computer numerical control (CNC) hardware components

1306

3.2 Machine Control Unit (MCU)

This comprises the MCU, the heart of any CNC system,

which drives control action efficiently and with precision. It

includes two major sub-units: control loop unit and data

processing unit. These sub-units support MCU to read and

decode G-Code and M-code instructions, which describe the

basic details of machining operations [19]. The MCU performs

geometric interpolations like linear, helical, and circular

motions in order to generate the real command of axis motion;

then sends the same to the drive system for the control of

machine motions. Moreover, it will also process the position

and velocity feedback information in real time, ensuring

accuracy and stability [20]. It also supports peripheral

operations, including tool changes and coolant on/off, during

processing. MCU works like the central processor in the CNC

system; it carries out all the operations regarding control

smoothly without any mistake, as shown in Figure 1.

3.3 Machine tool

The machine tool has two major components: the spindle,

which provides and regulates the rotation motion along the Z-

axis, and the slide table, which provides and regulates

horizontal and vertical movements along the X and Y axes.

These components work together to ensure precise positioning

and motion of the workpiece and the cutting tool [16].

3.4 Feedback or measuring system

The feedback system includes sensors such as position and

velocity transducers that continuously monitor the speed and

position of the cutting tool. Signals obtained from these

sensors are fed back to the MCU, where their values are

compared in real time with a reference signal [21]. Such a

comparison allows for error correction, minimization of

position and speed difference, and thus the assurance of

accurate machine performance.

3.5 Driving system

In summary, the propulsion system provides support

through drive motors, a ball lead screw, and an amplifier

circuit. Working as a whole, this helps the MCU translate the

commands sent related to the axis into actually accurate

physical movements [18]. The drive motors drive the ball lead

screws forward for the purpose of precise movement, by which

the slide table and spindle are placed to assure desired

locations of machining with increased high precision.

3.6 Display unit

The display unit, with GUI-based application software,

provides operators with a comprehensive interface for

operating and managing the CNC system. It displays

immediate information about the condition of the system,

control commands, and information about the program. Such

a user-friendly interface enables the operator to monitor

processes, change settings, and diagnose problems in an easy

way, as shown in Figure 1.

4. SYSTEM INTEGRATION OVERVIEW

The CNC machine system functions as a cohesive network

of all these components. The MCU serves as the central

processing unit, interfacing with input devices that supply

CNC programs and display units that present real-time

operating data. The data processing unit and control loop unit

of the MCU manage program execution, geometric

interpolations, and control signal processing. These signals are

subsequently sent to the driving system, where drive motors

and amplifier circuits transform them into the actual motions

of the cutting tool. The feedback systems concurrently monitor

velocity and position, transmitting real-time information to the

MCU for precise control and fault rectification [22].

This closed-loop control system ensures seamless

coordination among all components: the input device initiates

the motion workflow and auxiliary function data, the feedback

system completes the loop by transmitting essential

information to the MCU, the display unit acts as a crucial

interface for monitoring system performance, and the

machining tool performs cutting, milling, or drilling tasks with

precision [23].

The integration of these technologies creates a fully

synchronized CNC machine capable of executing complicated

machining operations with great accuracy, consistency, and

efficiency, rendering it essential for contemporary

manufacturing and industrial applications.

5. CNC OPEN ARCHITECTURES SYSTEM

The system describes the whole processing chain of a G-

Code file in the application. Starting from the selection and

loading of the G-Code file, it goes on to extract important

commands with the help of regular expressions. Further, the

process describes how the extracted data are updated and fine-

tuned based on user input. It will then calculate distances

among them, building a distance matrix that will give the

basics for the optimization of CNC routes through a genetic

algorithm. Everything is wrapped up in the sophisticated

presentation of data in 3D plots and the generation of extensive

reports in most of the known formats. All this is cut to size at

each step to assure efficient control, analysis, and

improvement in G-Code, while embedding users with firm

resources and tools to boost their effectiveness in operating

computer numerical control. Figure 2 depicts the flowchart for

processing the input file in a step-by-step manner.

The flowchart begins by the user's initiation through file

selection to be analyzed in G-Code. A G-Code file, usually a

set of instructions for CNC machining, is selected through a

file dialog that allows the user to navigate their computer and

select the appropriate file. If no file is selected, it throws an

error back to the user for file selection. This first kind of

validation ensures that at least a valid file is provided once the

action is to be taken upon. If the file is well-selected, it reads

the sequential data from it line by line. The raw G-Code

information is displayed out in the GUI; all this shows the user

the data that have just been imported and confirms the correct

reading. This prompt response allows the user to confirm that

the correct file has been chosen and that its contents are what

is expected, prior to beginning the extraction process.

After the presentation of the imported data, the system

proceeds with the extraction of some of the G-Code commands

from the file. The extraction process utilizes regex patterns for

key instructions such as X, Y, Z for coordinate values; S,

spindle speed; F, feed rate; M, miscellaneous functions; R,

radius; and T, tool adjustments. Indeed, this is a systematic

1307

compilation of the G-Code commands, with each command

formatted as a dictionary for every line. The collected data are

then depicted in the GUI, which allows the user to confirm that

the commands were correctly processed and arranged.

It then checks for the success of the extraction. If the

information taken out is incomplete or incorrect, the process

goes back to moving, which requires the user to go back to the

very start-step of file selection. This ensures that only correctly

structured and extracted data flow further in the workflow,

thus reducing the risk of issues in subsequent processing steps.

Figure 2. Flowchart of implemented genetic algorithm

Figure 3. Graphical user interface of the GA optimization software

1308

It calculates the distance matrix by using the X and Y

coordinates of the data extracted for comparison of efficiency

between different approaches. This matrix calculates pairwise

distances between all points, which forms the backbone of

understanding the spatial relationships within the CNC

program. This distance matrix will form the basis of

comparison for the efficiency of each approach and helps the

algorithm to determine the more efficient ones. Thus, upon

calculation of the distance matrix, the system makes

preparations by initializing a population for GA-based

optimization. Several candidate optimal paths include distinct

rearrangement or sequences of G-Code statements each

flowing with one another. In relation, and upon the

initialization, improvement to this population will build a base

for identifying and enabling this best route through orders via

successive generations.

The fitness of each subject in the population is calculated

using the distance matrix computed. At this stage, this

normally adopts minimizing on every single route from the

overall trip distance traveled by each of the CNC machines.

Fitness scores will, therefore, inform selections in which the

most fit are those that get to progress and move into the next

successive stages of the genetic algorithm in action. The

selection phase of the system chooses the most effective

solutions from the existing population. The selected

individuals are then taken to the crossover process, where pairs

of solutions are used in generating offspring for the next

generation. Crossover involves combining series of

commands from two parents, which results in new solutions

that can include desirable features from either parent.

The mutation phase ensues, implementing minor random

alterations to the progeny. This stage preserves genetic variety

among the population and prevents the algorithm from

becoming ensnared in local optima. By marginally modifying

the trajectories, the mutation process enables the algorithm to

investigate a broader spectrum of potential solutions, hence

enhancing the probability of identifying a more optimum path.

The newly created population is subsequently assessed for

fitness following mutation. The system persistently cycles

through the phases of selection, crossover, mutation, and

assessment until a predetermined stopping criterion is satisfied.

The termination criterion may rely on attaining a maximum

number of generations or earning an acceptable fitness score.

Should the condition remain unfulfilled, the mechanism

reverts and reiterates the optimization cycle. The optimization

procedure concludes when the halting condition is met. The

optimal solution, which signifies the most effective

arrangement of G-Code commands, is determined. The

optimized path is shown in the GUI, offering users a summary

of the outcomes and the enhancements in efficiency attained.

The software interface called "G-Code Data Extractor and

Optimizer" is shown in Figure 3. Users can choose the

optimization algorithm, set the parameters for the genetic

algorithm, such as the size of the population, the number of

generations, and the mutation rate, and then start the

optimization process. It shows both the original and optimized

2D toolpaths in real time using side-by-side plots. Other

features include tracking of generations, showing the

percentage of improvements, and automatic report generation.

These features give users a clear and interactive optimization

workflow.

The system provides a visualization option for a more

thorough investigation. The refined data can be shown in two

dimensions, illustrating the sequence of commands and the

resultant trajectory within a geographic framework. Users can

engage with the plot, rotating and zooming to enhance their

comprehension of the arrangement and progression of the

optimal commands. This image facilitates the verification of

optimization and assists users in interpreting the spatial

relationships among various places.

The user can produce a comprehensive report. The report

encompasses all phases of the process: the first extracted data,

the optimization advancements, and the ultimate optimized

outcomes. The report may be saved in several formats,

including text files, Word documents, or Excel spreadsheets,

offering a thorough record of the whole process for future

reference or study. The procedure culminates with the user

either resetting the system for a new task or terminating the

program. The user possesses a comprehensive grasp of G-

Code data management, encompassing extraction,

optimization, and visualization, hence enabling informed

decision-making for CNC machining jobs. The flowchart

clearly demonstrates a systematic approach to processing and

optimizing G-Code data, guaranteeing efficiency and clarity

throughout the workflow.

6. CASE STUDY

The drilling points selected are based on the letters UNI.OF

BASRA IRAQ which refer to UNIversity OF BASRA IRAQ

border by points (Figure 4). Solid Work with Solid Cam

software was used to draw the CAD design and machining

features, respectively.

G-Code is generated for CAD drawing to understand

drilling extracted and optimization using the developed system.

The ISO 6983 code that is generated concerning the designed

object is illustrated in Appendix A. The system.exe is launched,

followed by the selection of G-Code with drilling data for the

interface model environment, and the resultant code is

uploaded to the system using the “Open G-Code File” button.

Concerning the drilling procedure, the system extracts 145

points as the drilling locations. The route length of the ISO

code produced by the Solid Cam software's "shortest distance

technology" function is 1460.39 mm. Figure 5 illustrates the

series of retrieved drilling points (minimum distance) from the

solid cam program. To elucidate the progression of the

produced system code, a segment has been chosen from our

example. The initial 10 places are selected, with the origin

point serving as both the commencement and conclusion of the

trip.

Figure 4. CAD design of drilling point

1309

Figure 5. Extracted drilling points from G-Code

The flowchart in Figure 2 provides outlines of the process

for optimizing a system using a genetic algorithm. It begins

with loading and extracting G-Code data, then initializing a

population. Subsequently, the fitness of the population is

calculated, followed by selection, crossover, and mutation

processes to create a new population. This cycle repeats,

evaluating the new population each time. The process

continues until a stopping condition, such as reaching a

maximum number of generations, is met. The genetic

algorithm uses a population size of 50 to maintain diversity, a

1% mutation rate to avoid local optima, and runs for 10000

generations to balance optimization and runtime. These

parameters follow established evolutionary computation

principles [24] and achieved an 18% reduction in toolpath

distances. The main steps of the genetic algorithm are:

Step 1: Initialization

The objective here is to create an initial population of

possible solutions (tours). Each tour is represented as a

permutation of the cities. Since the salesman must start and

end at point 0, we fix the start and end points, while permuting

the intermediate cities. For illustration, the system generates a

population of four paths:

- Path 1: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0]

- Path 2: [0, 3, 5, 2, 1, 4, 7, 6, 9, 8, 10, 0]

- Path 3: [0, 2, 4, 1, 3, 5, 9, 8, 7, 6, 10, 0]

- Path 4: [0, 5, 3, 2, 4, 1, 6, 7, 10, 9, 8, 0]

This initial population is generated randomly.

Step 2: Evaluation

In this step, the system calculates the total distance of each

tour using the Euclidean distance formula between

consecutive cities in the tour. For example:

- For Path 1: The total distance is approximately 230.004,

calculated as the sum of distances between the points:

93.98 + 6.91 + 10.00 + 6.30 + 7.63 + 3.78 + 4.33 + 3.69 +

3.41 + 7.66 + 82.31 ≈ 230.004

The total distances for the paths are:

- Path 1: 230.004

- Path 2: 248.33

- Path 3: 257.857

- Path 4: 242.557

Step 3: Fitness calculation

The goal of this step is to assign a fitness score to each path

based on their total distance: shorter distances correspond to

higher fitness. The fitness is calculated as the inverse of the

total distance. For instance, for Path 1 with a total distance of

230.004, the fitness is approximately 0.0043. The fitness

scores for all paths are as follows:

- Path 1: 0.0043

- Path 2: 0.004

- Path 3: 0.0038

- Path 4: 0.0041

Step 4: Selection

In this step, paths are selected for reproduction based on

their fitness, with higher fitness paths having a greater chance

of selection. The system uses the Roulette Wheel Selection

method, where the probability of selection is proportional to

fitness.

- Total Fitness = 0.0043 + 0.004 + 0.0038 + 0.0041 =

0.01637

The selection probabilities for each path are:

- Path 1: 0.2655

- Path 2: 0.2459

- Path 3: 0.2368

- Path 4: 0.2518

Based on these probabilities, paths 1 and 4 are selected for

reproduction.

Step 5: Crossover

The objective of this step is to combine parts of two parent

tours to produce offspring, inheriting characteristics from both

parents. The system uses the Order Crossover (OX) method,

which is common for the Traveling Salesman Problem (TSP)

as it preserves the relative order of cities.

For example, suppose the system select Parents 2 and 3:

- Parent 2: [0, 3, 5, 2, 1, 4, 7, 6, 9, 8, 10, 0]

- Parent 3: [0, 2, 4, 1, 3, 5, 9, 8, 7, 6, 10, 0]

The system randomly chooses crossover points, say

positions 3 to 7 (inclusive), and extracts the subtour from

Parent 2: [2, 1, 4, 7, 6]. The system then fills the remaining

cities from Parent 3, excluding the cities already in the subtour,

to form Child 1: [0, 2, 1, 4, 7, 6, 3, 5, 9, 8, 10, 0]. The system

generates a second child similarly.

- Child 1: [0, 2, 1, 4, 7, 6, 3, 5, 9, 8, 10, 0]

- Child 2: [0, 3, 5, 2, 1, 4, 7, 6, 9, 8, 10, 0] (which may

resemble Parent 2).

7. ITERATION AND EVOLUTION

After crossover, the new generation replaces the old one

(either fully or partially). The system repeats the evaluation,

fitness calculation, selection, and crossover steps for a

predefined number of generations or until convergence.

For example, in a new iteration:

- The new population consists of Child 1, Child 2, and Paths

1 and 4.

- The total distances and fitness scores are recalculated for

the new population, and selection and crossover steps are

1310

performed again to generate the next generation.

This iterative process continues until it reaches the specified

number of generations. The genetic algorithm effectively

reduced the total path distance, improving the efficiency of the

toolpath for the CNC machine. This optimization is achieved

by iteratively refining possible solutions and favoring paths

that reduce overall travel.

8. RESULT AND DISCUSSION

Figure 6 provides a comparison between the original and

optimized toolpaths generated from a sequence of G-Code

commands. In CNC machining, the sequence in which the tool

visits different coordinates significantly affects the efficiency

of the process. The flow of the paths in these plots, shown

before and after optimization, demonstrates how rearranging

the command order can reduce the total travel distance,

thereby improving operational efficiency.

In Figure 6 (a), a 2D plane is used to plot G-Code commands

represented by blue markers and connected with lines. The

path is taken in the order found in the original G-Code file

without any optimizations applied. The same visualization is

explained: Each point corresponds to a (X, Y) coordinate that

was extracted from the data, and the label corresponds to a

sequential number. In a non-optimized state, the total distance

covered by the CNC tool is 1460.39 mm. The route appears

confused and ineffective, it jumps from different line segments,

even switching directions on certain lines. This means that the

tool is path running unnecessarily long and can result in an

increased move time as well as possible wear on the machine.

(a) Tool path before optimization

(b) Tool path after optimization

Figure 6. Tool path from python code

Conversely, Figure 6 (b) shows the results of using a genetic

algorithm to achieve a more efficient ordering of G-Code

commands. The red marks and lines represent the adjusted

trajectory, and the order of the places now varies significantly.

Thus, the optimization process tends to reduce the distance

traveled by permuting the order of these coordinates, while

respecting essential operations from the G-Code. This gives

the resulting path a smooth flow with no sharp angles and no

crossovers, meaning a straighter route passed through all

locations. The distance of the optimized path is 1201.72 mm,

showing a significant increase compared to the original one,

which includes approximately 18% improvements in travel

efficiency.

Having the two trajectories was intentional because it shows

the impact the optimization makes. The reduced linear path

reduces the overall distance traveled and improves the

effective operation of the CNC machine. Fewer unnecessary

movements allow the updated sequence for lower processing

time, lower tool wear, and improved overall performance. This

optimization is crucial in industrial implementations, as even

minor reductions in travel distance can translate to significant

time and monetary savings.

The implementation of a genetic algorithm adjunction on

the drilling tool route optimization is demonstrated in Figure

7. The tool path length starts at approximately 1320 mm and

decreases with newer generations, reaching 1200 mm by the

6000th generation. This gradual decline with a few jumps (i.e.

plateau) demonstrates the capability of the genetic algorithm

to iteratively make improvements. Exploration is dominant in

initial generations, which leads to quick progress, while

exploitation dominates in later generations, which refines the

best solutions. Improving the tool path offers significant

benefits such as a reduction in machine running time, power

consumption, and tool wear, ultimately leading to cost savings.

Fewer extraneous movements translate into enhanced

productivity and efficiency; as such, the refined G-Code

translates directly into a more productive and efficient

workflow. As a result, the iterative nature of the GA is

especially suited to the control of complex geometries or

multiple apertures.

Figure 7. Optimization of tool path length across generations

in the implemented genetic algorithm

Adjusting GA parameters, such as mutation rates and

population size, can be utilized to balance exploration and

exploitation, potentially leading to improved outcomes.

Convex gaps there might lead to faster convergence with

hybrid methods such as interaction of genetic algorithms with

local search techniques. Incorporating finite world constraints

and computing cost would yield realistic and feasible results.

The proposed method is an effective approach for enhancing

machining operations using genetic algorithms.

1311

In order to evaluate the effectiveness of the proposed

genetic algorithm (GA) in comparison to our previously

developed Ant Colony Optimization (ACO)-based technique

for optimizing toolpaths, as detailed in Hatem et al. [5], we

conducted a comparison. The same drilling dataset and

parameters were employed by both methodologies. The

Genetic method always created shorter toolpaths than the Ant

Colony Optimization method. The GA method gave us an

average optimized path length of 1201.72 mm, while the ACO

method gave us an average optimized path length of 1268.52

mm. This meant that the non-cutting travel distance was

around 5.3% shorter. The improvement over ACO seems little,

but the results show that GA is a competitive and robust way

to optimize, especially for CNC systems that might change and

need to plan toolpaths quickly and efficiently. Although our

study was software-based, we estimated time efficiency using

standard CNC traverse speed. At 2000 mm/min, the original

path (1460.39 mm) would require ~43.8 s, while the optimized

path (1201.72 mm) requires ~36.1 s. This corresponds to a

simulated time saving of ~7.7 s (17.7%). The GA execution

time is under 3 s. Statistical significance of the improvement

(p < 0.01) was confirmed by a paired t-test and reflected a large

effect size (Cohen's d = 1.87). The GA is successful in

reducing route variability as indicated by the 42%

improvement in the standard deviation compared to baseline.

Although this study did not extend to industrial hardware

deployment, the developed GA-based optimization software

produces understandable G-Code compatible with a wide

range of CNC machines. Its implementation on an open CNC

controller demonstrates that the system architecture is readily

adaptable to industrial use. With minor integration efforts,

manufacturers employing open-source or customizable CNC

platforms could benefit from this approach by reducing tool

travel distances and improving non-cutting efficiency,

aligning well with modern smart manufacturing goals.

9. CONCLUSIONS

Integration of Genetic Algorithms (GA) in CNC machining

systems, especially in optimizing drilling G-code, represents a

significant improvement in increasing efficiency and accuracy

in degree of production. Specifically, this research highlights

the limitations of traditional CNC systems, often constrained

by closed proprietary software and hardware, and the

flexibility offered by open CNC architectures. Analysis of

toolpath length, influencing G-Code commands, can be

performed, leading to the optimization of machining

productivity while decreasing operating costs when custom

software is developed. Notable outcomes showed an 18%

improvement in the efficiency of toolpaths, validating the

effectiveness of repetitive genetic algorithm steps like

initialization, fitness function, selection, crossover, and

mutation in optimizing drilling orders. The optimized

toolpaths reduced travel lengths, leading to lower energy

consumption, reduced tool wear, and shorter machining cycles.

The approach brings global computational efficiency together

with local machining capabilities to provide scalable, cost-

effective solutions that respond readily to changing production

needs. Future research may investigate the use of this GA-

based methodology to milling and 3D printing processes

where route efficiency is paramount. Hybrid algorithms, such

as GA-ACO, may improve convergence and solution quality.

Further challenges encompass scalability and the adaptation to

real-time control systems.

REFERENCES

[1] Soori, M., Jough, F.K.G., Dastres, R., Arezoo, B. (2024).

Robotical automation in CNC machine tools: A review.

Acta Mechanica et Automatica, 18(3): 434-450.

https://doi.org/10.2478/ama-2024-0048

[2] Grabowy, K., Niedbała, M. (2024). CNC technology in

production of musical instruments. Annals of Warsaw

University of Life Sciences-SGGW. Forestry and Wood

Technology, (125): 65-78.

[3] Zhao, W., Chen, M., Xia, W., Xi, X., Zhao, F., Zhang, Y.

(2020). Reconstructing CNC platform for EDM

machines towards smart manufacturing. Procedia CIRP,

95: 161-177.

https://doi.org/10.1016/j.procir.2020.03.134

[4] Hatem, N., Yusof, Y., Kadir, A.Z.A., Latif, K.,

Abedlhafd, M.M. (2021). Optimization and execution of

multiple holes-drilling operations based on STEP-NC.

The International Journal of Advanced Manufacturing

Technology, 114(7): 2031-2043.
https://doi.org/10.1007/s00170-021-06958-y

[5] Hatem, N., Yusof, Y., Kadir, A.Z.A., Latif, K.,

Mohammed, M.A. (2021). A novel integrating between

tool path optimization using an ACO algorithm and

interpreter for open architecture CNC system. Expert

Systems with Applications, 178: 114988.

https://doi.org/10.1016/j.eswa.2021.114988

[6] Osman Zahid, M.N., Case, K., Watts, D. (2014).

Optimization of roughing operations in CNC machining

for rapid manufacturing processes. Production &

Manufacturing Research, 2(1): 519-529.

https://doi.org/10.1080/21693277.2014.938277

[7] Gao, Z., Li, L. (2024). Adaptive optimization of cutting

parameters in milling industry considering dynamic tool

wear in intelligent manufacturing driven by

reinforcement learning. The International Journal of

Advanced Manufacturing Technology, 133(9): 4751-

4760. https://doi.org/10.1007/s00170-024-13779-2

[8] Montiel-Ross, O., Medina-Rodriguez, N., Sepulveda, R.,

Melin, P. (2012). Methodology to optimize

manufacturing time for a CNC using a high performance

implementation of ACO. International Journal of

Advanced Robotic Systems, 9(4): 121.

[9] Deng, C.Y., Guo, R.F., Xu, X., Zhong, R.Y., Yin, Z.

(2017). A new high-performance open CNC system and

its energy-aware scheduling algorithm. The International

Journal of Advanced Manufacturing Technology, 93(5):

1513-1525. https://doi.org/10.1007/s00170-017-0593-6

[10] Ye, Y., Hu, T., Zhang, C., Luo, W. (2018). Design and

development of a CNC machining process knowledge

base using cloud technology. The International Journal

of Advanced Manufacturing Technology, 94(9): 3413-

3425. https://doi.org/10.1007/s00170-016-9338-1

[11] Oliveira, A.R.F., Da Silva, L.R.R., Baldin, V., Fonseca,

M.P.C., Silva, R.B., Machado, A.R. (2021). Effect of tool

wear on the surface integrity of Inconel 718 in face

milling with cemented carbide tools. Wear, 476: 203752.

https://doi.org/10.1016/j.wear.2021.203752

[12] Golberg, D.E. (1989). Genetic algorithms in search,

optimization, and machine learning. Addion Wesley,

1989(102): 36.

1312

[13] Zhang, D., Chen, Y., Zhu, G. (2024). Multi-objective

hole-making sequence optimization by genetic algorithm

based on Q-learning. IEEE Transactions on Emerging

Topics in Computational Intelligence, 8(6): 3793-3806.

https://doi.org/10.1109/TETCI.2024.3372441

[14] Wei, Q. (2013). Design and analysis of a small-scale

cost-effective CNC milling machine. Doctoral

dissertation, University of Illinois at Urbana-Champaign.

[15] Cao, M. (2014). A Study of visual wireless control

system based on mcu in power plants. Applied

Mechanics and Materials, 448: 2590-2593.

https://doi.org/10.4028/www.scientific.net/AMM.448-

453.2590

[16] Grigoriev, S.N., Martinov, G.M. (2014). Research and

development of a cross-platform CNC kernel for multi-

axis machine tool. Procedia CIRP, 14: 517-522.

https://doi.org/10.1016/j.procir.2014.03.051

[17] Kumar, S., Nassehi, A., Newman, S.T., Allen, R.D.,

Tiwari, M.K. (2007). Process control in CNC

manufacturing for discrete components: A STEP-NC

compliant framework. Robotics and Computer-

Integrated Manufacturing, 23(6): 667-676.

https://doi.org/10.1016/j.rcim.2007.02.015

[18] Attar, H., Abu-Jassar, A.T., Amer, A., Lyashenko, V.,

Yevsieiev, V., Khosravi, M.R. (2022). Control system

development and implementation of a CNC laser

engraver for environmental use with remote imaging.

Computational Intelligence and Neuroscience, 2022(1):

9140156. https://doi.org/10.1155/2022/9140156

[19] Yu, D., Hu, Y., Xu, X.W., Huang, Y., Du, S. (2009). An

open CNC system based on component technology.

IEEE Transactions on Automation Science and

Engineering, 6(2): 302-310.

https://doi.org/10.1109/TASE.2008.2009096

[20] Zhong, W. (2018). Novel control approaches for the next

generation computer numerical control (CNC) system for

hybrid micro-machines. Doctoral dissertation,

University of Strathclyde.

[21] Xu, X.W. (2006). Realization of STEP-NC enabled

machining. Robotics and Computer-Integrated

Manufacturing, 22(2): 144-153.

[22] Knuts, S. (2024). Development and implementation of a

prototype pick-and-place machine. Universitat

Politècnica de València.

[23] Alelwani, N.T., Hwas, A.M. (2022). Implementation of

the computer numerical control milling machine. The

Libyan Conference on Automation and Robotics

(LCAR-2021), pp. 49-54.

[24] Eiben, Á.E., Hinterding, R., Michalewicz, Z. (2002).

Parameter control in evolutionary algorithms. IEEE

Transactions on Evolutionary Computation, 3(2): 124-

141. https://doi.org/10.1109/4235.771166

1313

