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ABSTRACT

The review paper is about the amazing influence that artificial intelligence (AI) has brought to the food production industry, as
it gives much importance to food safety and quality assurance. It introduces the connection of AI technologies, including
machine learning, deep learning, and computer vision, to enhancing food safety, control, and analysis. The role of AI in
contaminant detection and spoilage prediction is underlined. One of the applications is using near-infrared spectroscopy on a
machine learning algorithm sample to determine if it contains any adulterants in olive oil. Also, trying to develop computer
vision techniques that can soon be widely deployed to detect defects in the automated visual inspection of produce. Real-time
monitoring sensors incorporated in smart packaging solutions are among the AI that protects and manages the freshness and
safety of perishable goods. The review, through analyzing up-to-date Al techniques in the food sector, also proposes potential
remedies to the ongoing food issues that can lead to unhealthy and unsafe products. Furthermore, it sheds light on AI's role in
food science and its function as a safeguarding agent of the youth sector in the food industry.

Abbreviations: AE, autoencoder; Al, artificial intelligence; ANFIS, Adaptive neuro-fuzzy inference system; ANN, artificial neural networks; CNN, convolutional neural networks; DL, deep learning;
DLT, distributed ledger technologies; ELM, extreme learning machine; e-nose, electronic nose; FL, Fuzzy Logic; FTIR, fourier transform infrared spectroscopy; F-LDA, fisher linear discriminant
analysis; GAN, generative adversarial network; HFCS, high fructose corn syrup; HSI, hyperspectral imaging; IoT, internet of things; KNN, K-nearest neighbors; LDA, linear discriminant analysis;
LIBS, laser-induced breakdown spectroscopy; ML, machine learning; MOS, olfactory machine system; MVR, multiple variable regression; NLP, natural language processing; OENS, e-nose system;
PCA, principal component analysis; PLS-DA, partial least squares discriminant analysis; RF, random forest; RNN, recurrent neural network; SVM, support vector machines; VAE, variational
autoencoders; Vis-NIR, visible near-infrared.
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1 | Introduction

Artificial Intelligence (AI) has rapidly transformed various
industries, including healthcare, logistics, and distribution.
Among these, the food industry has significantly benefited from
Al advancements, particularly in food analysis, safety, and
quality assurance (Bendre et al. 2022). Ensuring food safety and
quality is increasingly critical due to the growing global popu-
lation and more complex supply chains. AI technologies like
machine learning (ML), deep learning (DL), and computer vision
have emerged as powerful tools in managing extensive datasets,
forecasting outcomes, and automating processes (KumperSc¢ak
et al. 2019). AI has extensive applications in the food industry,
significantly influencing food chemistry, analysis, and safety. In
food chemistry, AI technologies facilitate detailed examination of
chemical constituents, monitoring of heating curves, and track-
ing of phase transitions during food processing. Furthermore,
advanced Al-driven spectroscopy has substantially enhanced the
precision in identifying and differentiating chemical components
and contaminants in food products. Such technological ad-
vancements enable precise detection of contaminants down to
individual pollutant particles, accurate characterization of
ingredients, and comprehensive quality assurance. Conse-
quently, Al is profoundly transforming food analysis methods,
allowing companies to ensure higher quality and safer food
products (Mavani et al. 2021). In addition, AI is becoming
increasingly vital in ensuring food safety, addressing common
threats such as microbial contamination, spoilage, and food
fraud. Advanced AI tools enable accurate forecasting and real-
time monitoring, significantly improving early detection and
response to potential hazards. For example, Al effectively iden-
tifies microbial contaminants, predicts spoilage timelines, opti-
mizes packaging materials to enhance shelf life, and reduces food
waste (Kudashkina et al. 2022). Another important Al applica-
tion is multimodal learning, which integrates various data types
such as spectrometry, imaging, and omics analyses. By synthe-
sizing these diverse datasets, multimodal learning offers com-
prehensive insights into food safety and quality parameters.
Although this method faces challenges related to data complexity
and computational demands, it holds significant potential for
innovation in food analytics (Temilade Abass et al. 2024;
Chhetri 2024). Al is becoming increasingly important in evalu-
ating food quality without damaging the product through non-
destructive testing methods, which in turn helps achieve real-
time quality control and safety assurance. AI can upgrade these
methods by providing accurate and fast analysis, which helps the
manufacturer identify and solve problems earlier (Liu
et al. 2023). In terms of food safety, Al-based microbial assess-
ment techniques have transformed how contaminant detection is
performed. Common microbial detection methods are usually
time-consuming and require a lot of manpower. In this context,
Al-based technologies can quickly analyze huge amounts of data,
hence facilitating quicker and accurate detection of pathogens.
Consequently, food safety is improved, and at the same time, the
probability of broader contamination and corresponding health
hazards is lowered (Qian et al. 2023). Predictive modeling is
another impactful area of AI application in food safety. By ana-
lyzing historical data alongside environmental factors, AI models
predict potential food spoilage and contamination risks before
they occur. This proactive approach helps prevent foodborne
illnesses and improves food quality, strengthening consumer

confidence and industry practices (Kumar et al. 2024). This
review paper explores how Al technologies have transformed
food analysis and safety, highlighting current integrations within
modern food production systems. It discusses both the promising
opportunities presented by Al and the challenges that must be
addressed to realize its full potential in ensuring safer food
supplies.

2 | Types of AI-Based Technologies in Food
Analysis and Food Safety

Nowadays, Al has become a critical tool in the food industry,
presenting creative ideas for optimizing food analysis and food
safety. Among the different types of AI, one of them is ML
technology; the latter emerged as a core technology that can
calculate the probabilities of different classes in making a pre-
diction. Figure 1 provides a visual overview of the key ML
models employed in detecting contaminants. This visual aids in
understanding the theoretical benefits outlined in the previous
sections, as it categorizes the models based on their application
areas and success rates. In addition, ML algorithms can analyze
data, process it, and then develop algorithms that assist in
recognizing patterns and make predictions, resulting in smart
and efficient decision-making systems. Regarding food
analysis, ML is a critical tool in translating traditional methods,
for example, spectroscopic techniques, by magnifying the
accuracy of chemical composition predictions and adulterant
identification in food products. For example, the ML models
have significantly improved the abilities of Near-Infrared (NIR)
and Raman spectroscopy, giving those devices more reliability
in food quality testing (Hefei et al. 2021). Similarly, in food
safety, ML is used in predicting modeling, for example, to es-
timate possible safety issues, such as change or pollution, ac-
cording to the data and environmental conditions found in the
past. These strategies make food producers better prepared;
therefore, the incident of food poisoning becomes scarce (Taiwo
et al. 2024). In addition, predictive models using ML have been
successfully implemented to identify contaminants such as
Salmonella in various food products. Researchers in a study
validated the core of an ML model that, through the data of
several sources, has proven to be a highly accurate predictor for
Salmonella contamination in poultry, demonstrating accuracy
of over 90%. Moreover, a research project successfully used ML
algorithms to anticipate the aflatoxin contamination in maize,
encouraging farmers to make prompt decisions, thereby giving
them the chance of almost zero contamination.

One of the top Al trends that blew up so fast was DL, which is
the newer version of the ML method, aided by neural networks,
to the point where the neural networks are of multiple layers,
making the data easier than ever. The DL process is designed
exclusively to handle unstructured data, for instance, images and
outputs of sensors, that are used to analyze a move in safety
mode. The photo is captured and analyzed with the help of a DL
tool layer to distinguish the goods based on their appearance and
identify existing faults. The artificial intelligence (AI) and com-
puter vision allows for automated visual inspection to define and
detect errors visually. The system setup, which uses DL, a
machine intelligence domain, is valuable in the discovery and
judgment of food quality with sensory equipment. Using the
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FIGURE1 | Types Al used for food analysis and food safety.

human eye, this technique is necessary to distinguish between
different characteristics of fruits and vegetables. Achieving the
desired quality attributes for a complete and flawless grading
process of fruits and vegetables is one of the major steps in food
safety (Shah et al. 2023). In food safety domain, DL techniques
were used to improve disease detection systems, for example,
electronic noses (e-noses; Wang et al. 2024). An example of ML
implementation is seen at Pfeiffer Vacuum, a leader in vacuum
technology, which employs AI for non-destructive quality control
of food products using advanced spectroscopy techniques.
Additionally, Zest Labs utilizes Al for real-time freshness mon-
itoring in its products, employing predictive analytics to extend
product shelf life.

Computer vision involving Al is also useful for the food industry
by automating inspection and quality control. This specific
technology teaches machines to perceive and analyze visual data,
thus, akin to human vision. The visual technology used in food
analysis, for example, computer vision systems, is a must for
activities such as inspection and sorting of products based on
their visual characteristics, like hues, shapes, and sizes. This form
of technology is mainly used in the fruit and vegetable sector,
where the appeal of these products becomes very important to
the consumers (Chopde et al. 2017). In the field of food safety,
computer vision makes use of packaging inspection for separator
protection and eliminates any sort of inclusion of contaminants
that are thus lost in quality when played.

Natural Language Processing (NLP) is a subfield of AI that fo-
cuses on the interface between machines and human language
and its application in the food industry, especially in processing
large volumes of text data. In terms of food safety, NLP tools are
particularly helpful for extracting important information from
scientific reports, regulatory documents, and inspection records.

This attribute is really important for product safety as well as
the product of a non-compliance state with food safety regula-
tions and production risks identification by the analysis of
written consumer feedback and other textual data sources
(Ricketts et al. 2023).

Fuzzy logic, at last, is termed the type of AI that stands for
reasoning in the absence of certainty and is often applied to
cases in which the data is imprecise or missing, as in the food
industry. To sum up, fuzzy logic, a kind of model on human
perceptions such as the taste and texture of food, is mainly used
in the sensory evaluation of food. In a more nuanced manner,
this model gives a way to understand food quality better. These
directions are the propellers towards adopting the more flexible
and adaptive quality control processes, which correspondingly
to the complexity of human sensory experience (Guillaume and
Charnomordic 2004). The use of fuzzy logic in food safety is a
method for risk assessment that helps to evaluate food safety
risks when the available data has uncertainty and covers the full
range of variability, thus supporting more efficient decision-
making processes. Among Al technologies, the food industry is
gaining many of its advantages with the precision, efficacy, and
reliability of food analysis and safety protocols that are signifi-
cantly enhanced. As AI moves forward, the technology will be
anticipated to bring life into the food industry and quality
control without a doubt. Table 1 summarizes the types of Al
used in food applications.

3 | AI-Based Technologies in Food Analysis and
Adulteration Detection

The use of Al in the food industry has redefined food quality
assessment by combining technologically advanced methods
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TABLE 1 | Al-based technologies in food analysis and safety: An overview of technologies.
Type of AI Applications in food analysis Applications in food safety References
Machine « Enhances spectroscopic techniques + Predictive modeling to forecast Goyal et al. (2024);

Learning (ML) (e.g., NIR, Raman) for accurate
chemical composition predictions

and adulterant detection.

Deep « Image analysis for quality

Learning (DL) assessment, including defect
detection and product
classification.

Computer Vision » Automated inspection and grading
based on visual attributes like

color, size, and shape.

Natural N/A

Language

Processing (NLP)

Fuzzy Logic « Sensory evaluation to model

human perceptions and provide
nuanced quality assessments.

spoilage and contamination Teklemariam (2024)

risks.

Hu et al. (2023); Lien
and Zhao (2018)

Enhances contaminant
detection systems, such as
electronic noses.

Savakar and Anami
(2015); Sivaranjani

Packaging inspection to ensure
seal integrity and detect

contaminants.

Extracts information from
reports and documents for

et al. (2021)

Zhang and El-
Gohary (2011)

regulatory compliance and risk
identification.

Guillaume and
Charnomordic (2004)

Risk assessment when data is
uncertain or incomplete.
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FIGURE 2 |

with traditional ones like spectroscopy and non-destructive
testing. ML models are known to increase the precision of the
chemical composition forecast, while DL allows for quality
grading of an image with more details. Transparency becomes
part of the process of food authentication with some applica-
tions based on DL technology. Several detection technologies
and DL models have been utilized in food authenticity, as
depicted in Figure 2. Also, Al tools such as computer vision and
fuzzy logic facilitate object quality assessments by offering a
more uniform and finer thread of the quality outline of food.
The developments as mentioned above illustrate the necessity of
Al in the current food analysis, thus guaranteeing better pre-
cision and reliability in food quality control.
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Overview of different detection technologies along with deep learning models for food authenticity.

3.1 | Spectroscopic Techniques Enhanced by
Al-Based Technologies

NIR, MIR, and Raman spectroscopies are techniques used to
analyze food, providing information about the molecular
structure through interaction with light molecules. This is key
in assessing the presence of contaminants, nutritional content,
and food quality. While spectroscopic techniques offer valuable
benefits such as rapid analysis and non-destructive testing, they
do have certain limitations. For example, environmental factors
can impact these methods, and the calibration of different
matrices may be very long, which is a limiting factor in the
accuracy of these methods in complex food samples. Trained
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personnel are vital to the calibration and interpretation of the
results, though they are the methods that consume more time
and are the most error-prone (Kharbach et al. 2023). Figure 3
demonstrates the systematic method for detecting alterations in
spectroscopy through ML. In this scenario, tech-driven AI can
timely and accurately scan through huge spectroscopic data,
which humans would be very unlikely to do, and therefore
make more accurate guesses of the constituents of the food
sample (Meza Ramirez et al. 2020). For example, one of the
impressive innovations in the Al-aided NIR spectroscopy pro-
cess is the ability to accurately determine the amount of mois-
ture, fat, and protein in the products at any production stage by
means of new quality control systems.

In the same way, Al-supported Raman spectroscopy has been
regularly used to determine the presence of impurities in food
components precisely, which results in obtaining a very effec-
tive device to ensure food safety (Yan et al. 2023). Similarly, in
the dairy industry, Al-assisted MIR spectroscopy has been one
of the applications in which the instrument is utilized through
the monitoring of the composition of milk and the detection of
such problems as the presence of adulteration, thus, it makes
the quality control in the dairy industry highly efficient (Hayes
et al. 2023). da Silva Medeiros et al.'s study showed that NIR
was appropriate and well-used for analyzing butter oil blends.
They applied ML, support vector machines (SVM), and partial
least squares discriminant analysis (PLS-DA) methods to the
NIR spectra to ensure the models could classify correctly.

SVM and PLS-DA did a good job in spotting contaminated
samples (da Silva Medeiros et al. 2023). Furthermore, Spec-
troscopy on the Visible Near-Infrared (Vis-NIR) spectrum using
AT was used to make recognition of olive oil fraud, actually the
NIR section acting as a marker or an identity of the olive oil
seeded with others, easier. With the help of ANN, the research
was completely processed and classified using Vis-NIR spectra

with an accuracy of 100%. The use of AI and NIR spectroscopy
appears to be one of the effective methods of high-quality
product assurance, showing genuine and excellent products
such as olive oil (Violino et al. 2021).

NIR spectroscopy is another effective method of analyzing food
that was used to predict and classify the adulteration in fruit
juices; for example, it tested the presence of grape juice in other
fruit liquids such as pineapple, orange, and apple. To analyze
the NIR spectral data, a number of Al models (RF, LDA, and
SVM) were used. The study found that both LDA and RF had a
correct separation rate of 97.7%. On the other hand, SVM
demonstrated very good regression results, namely R?>0.98
and RMSE values < 0.001, were obtained. In their research,
Calle et al. (2022) demonstrated an approach that integrates
NIR spectroscopy with AI; this coupling can be accurately uti-
lized for identifying and quantifying the components in com-
plex juice blends. Honey may actually be mixed with other
substances, which is to say, through NIR spectroscopy, the
presence of glucose syrup in honey can be determined. The Al
models, such as Random Forest (RF) and Logistic Regression,
were deployed to analyze spectral data. The RF had an accuracy
rate of 90.2%, showing that it could isolate pure honey from the
false ones. AI method enhanced the detection accuracy and
became the main tool in verifying the authenticity of honey
products (Woeng et al. 2022).

NIR spectroscopy can detect the existence of high fructose corn
syrup (HFCS) in honey with Logistic Regression, with a reli-
ability rating reaching 98%. As for food testing, Al-elevated NIR
spectroscopy can detect a lesser extent of adulteration, hence
being trustworthy for the high-quality foods (Tan et al. 2021).
Additionally, Raman instruments gave some information that
helped to reveal the fake honey. Al manipulations make it
possible to track down maltose syrup that the counterfeiters
added to the honey through the use of PNN and convolutional
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neural network (CNN) technologies (Hu et al. 2022). Raman
spectroscopes were also used to check if avocado and olive oils
were mixed with cheaper oils like canola or soybean. Al ex-
amined the Raman data using L2 linear regression, getting a
reliable R*>0.99. This indicated that Raman spectroscopes
combined with AI can confirm whether these oils are pure or
adulterated, showing they are essential for checking food
quality (Zhao et al. 2022). Raman spectroscopy was utilized to
identify adulteration in edible oils, such as sunflower oil, with
less expensive alternatives like soybean oil and rapeseed oil. The
Raman spectrum data was subjected to AI models such as SVM
and PLS to improve the sensitivity and accuracy of the analysis.
Although background noise and weak Raman signals present
some obstacles, the application of AI greatly enhanced the
identification of adulterants in edible oils (Duraipandian
et al. 2019). Raman spectroscopy can detect if cassava starch
contains any additives, such as talcum powder, aspirin, baking
soda, and flour.

The OC-SVM and SIMCA types were employed with sensitivity
and specificity values of 87%. As a consequence, Raman spec-
troscopy with Al is useful for ensuring cassava starch is pure
(Kelis Cardoso and Poppi 2021). Some research demonstrates
how AI can significantly enhance near-infrared spectroscopy to
detect adulterants in various food products. It is important to
note that integrating Al algorithms can enhance the accuracy
and efficiency of spectroscopic analyses. By analyzing large
datasets and identifying patterns that traditional methods might
miss, Al can improve the detection of subtle spectral variations
indicative of contamination. Table 2 shows selected applications
of Al-enhanced spectroscopic techniques in food analysis.

DL has significantly advanced the field of food analysis, offering
new ways to ensure food authenticity, detect adulteration, and
assess food quality. For instance, CNNs have been used to form
food items based on their visible properties. A previous research
employed them to create images of extra virgin olive oil, which
led to a 96.7% accuracy in the two aspects of the wine-based
color (intensity) (Pradana-Lopez et al. 2022). In recent times,
CNNs have been utilized to spot fake saffron. For instance, the
VGG11 and ResNet50 models achieved an impressive accuracy
of 99.67%. This shows how well CNNs can classify food accu-
rately (Alighaleh et al. 2022). Additionally, Innovate Nature's
Generative Adversarial Networks (GANs) have even proved to
be very effective in the aspect of food adulteration detection. For
example, a study that efficiently applied a GAN model in tan-
dem with near-infrared (NIR) spectroscopy to tell apart the
cumin and fennel with different origins resulted in a 100%
classification accuracy.

This fact alone informs us about the GANs' ability to fix the
issue of data scarcity and give us genuine food warranties (Yang
et al. 2021). Recurrent neural networks (RNNs) perform well
using series data. There was a certain case in which RNNs were
used for Vis/NIR hyperspectral images of Radix Glycyrrhizae
origins, resulting in an accuracy value of 90%. Despite its
complexity, this can be seen as a strong point of RNNs in food
data manipulation (Yan et al. 2020). Multi-layer perceptrons are
used to analyze NMR data and are effective for food analysis
(Rachineni et al. 2022). Autoencoders (AEs), especially varia-
tional AEs (VAEs), have been growing in importance given

their application as a tool to extract features and develop image
data augmentation for food authenticity. Through a study
where VAE and hyperspectral imaging (HSI) were combined,
honey counterfeiting was identified using the method of high-
dimensional data mapping into a lower space and precise
classification by adding these particular ingredients (Phillips
and Abdulla 2023). In meat analysis, CNNs are used to classify
pork freshness based on hyperspectral images. They can detect
pork freshness where human judgment is not always reliable,
with an accuracy value up to 97.4%, to ensure safe and high-
quality food (Al-Sarayreh et al. 2020).

Additionally, CNNs' use in conjunction with Raman spectros-
copy made it possible to identify the adulteration of honey with
maltose syrup with a value of 100% in sensitivity and specificity
(Hu et al. 2022). DL is also widely employed in food chemical
composition analysis. Using NIR spectroscopy and a DL model,
the moisture content in wheat flour was effectively forecasted,
resulting in a correlation coefficient of 0.98, confirming its high
predictive accuracy (Zhang et al. 2023).

3.2 | E-Nose Techniques Enhanced by Al

The cooperation of e-nose systems with ML models has revo-
lutionized food quality assessment, especially in detecting
adulteration and freshness evaluation. This method is especially
predictive of the future in fields such as meat, dairy, seafood,
edible oils, coffee, and tea, where quickly, non-infringing, and
precise methods are used as alternatives. For example, in the
meat industry, e-nose systems integrated with top-level ML
techniques, for example, IDCNN-RFR, have demonstrated high
accuracy in the detection of adulterations, such as beef mixed
with pork, with an R? of 0.9977, RMSE of 0.9491, and MSE of
0.4619 (Huang and Gu 2022).

Similarly, another research involved a digital nose system that
depends on colorimetric sensor array to identify pork adulter-
ation with beef. Fisher linear discriminant analysis (F-LDA)
and the extreme learning machine (ELM) were employed to
discern pure beef from a combination of beef and pork and pure
pork. The ELM model was able to outmatch the F-LDA model
with an identification accuracy of 91.3% at the time of training
and 87.5% at the prediction set, indicating the possibility of this
low-cost e-nose system in rapid detection of meat adulteration
(Han et al. 2020). Besides, the researchers have also designed a
tailor-made e-nose system (OENS) to assay exactly the pork
mixing in beef. Beef samples were analyzed using a number of
MQ series sensors. In the end, the e-nose was programmed to
detect and figure out the volatile organic components in each
sample. The prominent result of the classification process can
be summarized as follows: the mentioned method has exhibited
98.1% accuracy in detecting pork food fraud cases using the best
SVM model. An e-nose system is proposed to authenticate meat
as halal. To detect pork adulteration, the OENS device is also a
suitable tool for authenticating halal (Sarno et al. 2020).

In addition, using e-noses in dairy farming has enabled the
detection of contaminants in milk, such as formalin and
hydrogen peroxide gas, using a MOS gas sensor array. This
thorough system, combined with the utilization of SVM, yields
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the accuracy of formalin detection in sensitive milk samples
with a classification accuracy as high as 94.64% (Tohidi,
Ghasemi-Varnamkhasti, Ghafarinia, Bonyadian, et al. 2018).
Detection of adulteration in ghee with sunflower oil and cow
body fat leads to reasonable accuracy. In this case, 91.3% and
82.5% were achieved by using artificial neural networks (ANNs)
(Ayari et al. 2018a). In another research paper, the e-nose was
also used to identify detergents in milk, which are normally
used for protein-fortified milk. This sensor, composed of an
array using MOS, outperformed its competitive systems by
reaching 90% accuracy with the aid of an SVM model.

This study draws attention to the possibility of e-noses detecting
the presence of an added substance that could potentially harm
human health (Tohidi, Ghasemi-Varnamkhasti, Ghafarinia,
Saeid Mohtasebi, et al. 2018). However, the alternative to this is
an e-nose that is made up of various different types of sensors,
such as MQ136 and MQ137, that is applied to assess the quality
and spoilage of milk. The fresh, sour, and spoiled milk samples
were separated, and the neural network was fed by the sensor
data for which a human recognition rate of 83% was achieved
for milk quality classification. In this study, the main focus of
the study is that e-noses could be live-monitored for the milk
quality, a non-destructive way of providing security by
guaranteeing dairy products (Putra et al. 2018).

One major field where e-nose technology has been extremely
helpful is detecting fish freshness. For instance, the utilization
of an e-nose system combined with K-Nearest Neighbors (KNN)
and PLS-DA was a successful means of monitoring the fresh-
ness of various kinds of seafood, with the result that the
spoilage stage classification had an accuracy as high as 100%
(Grassi et al. 2022). In a study, an e-nose with GGS sensors
classified salmon and plaice fish freshness. The KNN classifier
was 83.3% accurate, and the PLS-DA result was 84%. This shows
the e-nose can tell fish freshness levels well (Grassi et al. 2019).
In addition, a smart e-nose equipped with seven sensors (e.g.,
TGS813, TGS822) was created to identify fish spoilage during
the cold storage period. The authors performed total viable
count and total volatile base nitrogen analysis to assess fish
health. The data from the e-nose were treated with principal
component analysis, and the samples were grouped into fresh,
semi-fresh, and overripe categories. The classification of fish
spoilage was successfully done using the backpropagation
neural network and the hyper disk model maximum margin
optimum classifier with accuracies of 96.87% and 100%,
respectively, which outlined the application of e-noses for the
seafood industry (Vajdi et al. 2019).

Researchers made a new device called an e-nose that sniffed out
stinky bits in fish, keeping the latter at different temperatures.
The e-nose was capable to catch signs of spoilage fast and sort
fish by freshness (Wang et al. 2019). Edible oil assessment by
e-nose seems to be implemented effectively in the perusal of
adulteration. A survey has shown that a Gradient Boosting
Classifier in tandem with an e-nose has been able to detect the
fraudulent practice of cuttings in extra virgin olive oil at a rate
of 97.75% (Zarezadeh et al. 2021). The technology specialized in
e-noses (E-noses) was very successful in detecting spoilage
agents in top-quality oils in a short period of time and with
maximal accuracy. The coffee industry is also a happy sector in

the e-nose technology, with the differentiation of coffee fineness
and the grill flavor being the main application, 98% of which is
achieved using ANN models (Gonzalez Viejo et al. 2021).
Moreover, evidence of its potential use in fighting fake products
is the high precision of the e-nose, which distinguishes civet
and non-civet coffee with 97% accuracy (Wakhid et al. 2020).
The tea sector is among the subjects that e-noses have been
used to recognize the fragrance quality of the black tea infu-
sions while applying F-LDA with a high success rate of 95.2%
(Chen et al. 2022).

In addition, SVM and LR for the tea quality grades classification
achieved a maximum accuracy of 88%, which underscores the
effectiveness of e-noses in the tea's quality evaluation (Xu
et al. 2021). Being significant noxious pollution sources, power
plants need to go green. While promising, the practical imple-
mentation of e-noses is faced with problems that need to be
addressed. One of them is calibration, which is a significant
issue; e-noses need to be calibrated regularly to keep their
accuracy, since the instruments may be influenced by climatic
conditions, namely temperature and humidity. Moreover,
e-nose systems might involve the problem of expensive pricing;
smaller producers or farms might be afraid of them and may
consider their cost to be very high. The need to invest in the
system, cover maintenance costs, find a specialized workforce to
run the machine, and interpret the data can act as barriers. That
is why e-noses are a great idea for improving food quality and
safety assessments, but these practical adversities must be given
more thought when inserting e-nose technology in the food
industry. Drawing attention to these problems would make
them more efficient and more cost-effective.

In this regard, Alpha MOS integrates e-nose technology with AI
for rapid quality assessment of products such as coffee and sea-
food, showcasing effective applications of Al in food analysis.
Figure 4 shows the detection methods involving quality and
classification by integrating e-nose with AI, whereas Table 3
summarizes the e-nose systems combined with AI for food
quality assessment across various sectors, including meat, dairy,
seafood, edible oils, coffee, and tea.

3.3 | Mass Spectrometry (MS) Enhanced by
Al-Based Technologies

MS has long been a foundational tool in food analysis and safety,
providing precise chemical characterization of food matrices,
detecting contaminants, verifying authenticity, and monitoring
quality. However, with the recent integration of AI into MS
workflows, the capabilities of this powerful technique have ex-
panded significantly. Today, the fusion of MS and AI technolo-
gies marks a transformative leap toward achieving unparalleled
quality, protection, and precision in modern food systems. Tra-
ditionally, food safety relied heavily on classical methods such as
visual inspection and basic chemical assays. While effective to
a degree, these methods were limited in sensitivity, speed, and
objectivity. With MS, particularly high-resolution MS, food sci-
entists were able to quantify trace-level contaminants such as
pesticides, mycotoxins, heavy metals, and unauthorized additives
with extraordinary accuracy (Lehotay and Chen 2018). However,
MS generates highly complex and voluminous data that can be
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FIGURE 4 | Detection methods for quality and classification by E-nose with Al

challenging to interpret manually, often requiring expert analysts
and time-consuming processes. This bottleneck posed challenges
for real-time decision-making, an essential need in a globally
interconnected food supply chain.

AT has entered the scene as a powerful ally, providing solutions
for these challenges. ML algorithms, DL models, and neural
networks are increasingly deployed to enhance MS data analysis.
They assist in automatic pattern recognition, anomaly detection,
classification, and even predictive analytics, making MS not just
faster but significantly smarter. One prominent study highlighted
that Al-assisted MS imaging (AI-SMSI) allowed researchers to
achieve subcellular metabolomics analysis, resolving complex
chemical environments inside cells, an achievement previously
unattainable with conventional MS alone (Zhao et al. 2024). In
food analysis, Al-enhanced MS drives innovations that directly
impact consumer safety. For instance, Al-based pattern
recognition can differentiate authentic food products from adul-
terated ones, such as distinguishing wheat cultivars and their
derived products like bread, an application demonstrated through
high-resolution non-targeted MS combined with ANNs (Nichani
et al. 2020). In another example, researchers applied Al to opti-
mize ambient ionization MS to rapidly detect trace volatiles in
food matrices, enhancing sensitivity without laborious sample
preparation (Gazeli et al. 2024). A study by Shang et al. (2022)
compared the lipid profiles of goat milk from Guangdong,
Shaanxi, and Inner Mongolia using untargeted lipidomics. They
identified 16 lipid subclasses and 638 lipid molecules, with sig-
nificant differences in lipids like DG, TG, PC, PE, PI, SM, GlcCer,
and LacCer among the groups. Thirteen lipid molecules were
proposed as potential markers for geographic origin identification.
Additionally, key metabolic pathways were mapped, supporting
the development of a traceability system for Saanen goat milk and
providing comprehensive lipid data across different regions. In
addition, a study by Nichani et al. (2020) investigated the use of
non-target high-resolution MS combined with AI algorithms for
detecting food fraud and geographical traceability. Using a data-
independent acquisition (DIA) approach, they analyzed the
complex proteomic profiles of several wheat and spelt cultivars.
An ANN was trained to classify different cultivars, as well as
processed flour and bread samples, demonstrating the model's
robustness in distinguishing closely related varieties. The study
also introduced a novel validation framework to calculate preci-
sion parameters, enabling reliable evaluation of the discrimina-
tory power of the DIA-AI method and supporting the
development of accurate decision rules for food authentication

and traceability. On the other hand, a study by Gao et al. (2025)
demonstrated that DIA-based QC metrics are more sensitive than
traditional DDA-based metrics for monitoring LC-MS/MS per-
formance. An AI model was developed using 2754 DIA files and
2638 DDA files collected across nine laboratories, achieving high
AUC values for LC and MS quality prediction. The study also
introduced iDIA-QC software to easily implement DIA-based
quality control in proteomics (Gao et al. 2025). Looking ahead, the
convergence of AI and MS is expected to reshape food systems
further, making them more resilient, transparent, and responsive.
As Al models continue to evolve, incorporating real-time data
streams from Internet of Things (IoT)-enabled food production
systems, MS will serve not just as a diagnostic tool but as an
intelligent sentinel across the food supply chain.

In conclusion, MS enhanced by Al-based technologies is re-
defining food analysis and safety, enabling the food industry to
achieve unprecedented levels of quality assurance, protection,
and operational precision. The fusion of these powerful tech-
nologies not only helps protect public health but also fosters
consumer trust, promotes sustainable practices, and safeguards
the integrity of modern food systems.

4 | AI in Food Safety

Nowadays, the food safety sector frequently operates using Al,
providing new kinds of applications for the identification, follow-
up, and treatment of diseases caused by foodborne pathogens,
contaminants, and other sources of security. One area that stands
out the most is the development of ML algorithms that can detect
pathogens in food. For example, DL models have gone through
many selections on vast sets to recognize different types of
microbes on agar plates, by which the time used for the correct
detection was reduced significantly, compared to the traditional
methods (Krizhevsky et al. 2012). Another approach is the cou-
pling of AI and HSI to screen for contaminants and dilutants in
food products. The innovation uses the AI model to read the light
spectrum pattern of the products, therefore identifying even the
tiniest unwanted materials or toxic elements that are not visible
to the naked eye. This device is the outright killer in sectors such
as meat product manufacturing, where no contaminants mean
safe and satisfied consumers (Sun 2010).

The use of Al in predictive modeling can be a lever for food
safety, as well. Typically, ML algorithms with the help of
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historical data and environmental factors predict the possibility
of food spoilage or contamination. This predicting ability lets
manufacturers harness the advantage of choosing the lowest
cost to avoid potential foodborne illness causes; thus, this
technology is one of the methods to overcome the food safety
problem (Zhang et al. 2020). The field of smart packaging has
Al to keep a check on the standard of food products in actual
time. The sensors that are coded into packaging materials are
soundly capable of detecting the flickering of the temperature-
humidity-lever as well as a change in gas composition on the
way. Al algorithms are processing the data via predictions that
provide details on the product's remaining shelf life or the onset
of spoilage. This technology is highly used for perishable goods
like dairy products and other fresh produce (Meyers et al. 2015).

Al application is an important aspect of supply chain manage-
ment, specifically, in the distribution process, whereby ML or
models are used to find out the entire food supply chain. With
the help of data from different digital sources, Al applications
can target numbers and the stage where unsafe or potential
disasters arise, such as bacterial pollution during transportation
or storage. This feature is a major support for transparency and
quick action to any food safety incidents (Ni et al. 2019). In the
present situation, AI is highly involved in the struggle against
food fraud, which is a very grave issue. Al, through ML and
NLP, is applied to the product labels, ingredient lists, and the
supply chain documentation to recognize any inconsistencies
that might point to fraudulent activities. The software is of great
value in consumer safety, protecting them from the food that
has been mislabeled or tampered with (Ponce et al. 2019). In
addition, the use of AI in diagnosing allergens in food is already
a reality. With the help of the molecular compositions of food,
Al can easily detect allergens with a precision level almost
above average. Such a detection procedure then leads to man-
ufacturing companies creating allergy-free products (Adedeji
et al. 2024).

Al application in food safety to automate quality control pro-
cesses is another major one. These robots, equipped with vision
technology and driven by AI, can now conduct very fast visual
examination of the food products to see if there is any harm or
contamination. This has greatly increased the efficiency and
accuracy of the quality control process in food processing plants
(Chen and Yu 2021). The detection of chemical contaminants
involves using AI models to analyze spectroscopic data, which
is used to report the presence of such substances as pesticides,
heavy metals, and the residues of antibiotics in food products.
This field is of key importance for making sure that such
products comply with the safety rules even before they are put
on the shelves for the consumers (Teklemariam 2024).

Al infrastructure is obviously used in food safety compliance
monitoring as well. ML algorithms go over inspection reports,
regulatory documents, and other data sources so that food
production processes comply with safety regulations. It ensures
the prevention of safety incidents because potential violations
are identified and corrective actions are taken (Esteki
et al. 2018). AT has made its way through the agricultural sector
and more specifically through the utilization of crop health
monitoring and environmental factors to predict the diseases
and pests that can affect both the food and the farming table.

Software programmed with the capability to detect early
symptoms of illness and pests on crops via Al on the data col-
lected from drones, sensors, and satellite imagery enables
farmers to take action in time to stop their crops from being
infected and to provide us with safe food (Susheel and
Rajkumar 2023). Systems for food processing run by predictive
maintenance systems help to identify potential equipment
failures that might lead to contamination. By analyzing data
from sensors installed on machinery, Al can predict when
maintenance is needed, reducing the risk of breakdowns that
could compromise food safety (Kharbach et al. 2023). In testing
for mycotoxins,

Al is being used to process information obtained from biosensors
and chemical assays. For example, in an evaluation process, ML-
based systems can correctly indicate or recognize the existence of
mycotoxins in food products or agricultural products, which is of
utmost importance in cutting down on food contamination
(Inglis et al. 2024). The AI of the future purposes to aid food
processing to diminish the chances of any unintentional yet
perilous occurrences. To make the point, ML models could be
used to scan data about the food products that are being heated
in a thermal process and to make sure that the temperature
measurement is sufficient to kill the pathogens without the loss
of quality (Chidinma-Mary Agbai 2020). Al is a technique that is
used to detect shellfish poisoning that algal blooms may cause,
which can potentially be a food safety hazard. By carefully
monitoring the environmental data and using satellite images, Al
predictive models can predict the appearance of algal blooms,
thus helping the prevention work of transporting spoiled seafood
from the marketplace (Mu et al. 2024).

Al technology has also been instrumental in ensuring water
quality in food production facilities. Water tracing sensors are
being implemented via ML algorithms that make it easier to spot
toxic substances in water as well as to collect and analyze all the
data. Water is used for the production of food (Czyczula Rudjord
et al. 2022). The dairy industry is yet another sector in which AI
now makes its presence felt. In the dairy sector, Al now helps
monitor milk quality and identify adulterants. Through spectro-
scopic techniques, AI models can spot water, starch, or any other
impurity in the milk, which at the end guarantees that the
consumers only get pure milk (Mhapsekar et al. 2022).

Also, Al technology is being utilized in the identification of
antibiotic residues in meat products. The ML models analyze
MS data to find the antibiotics present to the extent of making it
the goal, and meat products are thus guaranteed to be harmless.
The final stage before selling meat to consumers should be
checked to be sure it is free of any hazardous substances (Cheng
and Sun 2015). In food packaging, Al-driven systems are uti-
lized to detect leaks and ensure that the packaging seals are
secure. Through the evaluation of the sensor and camera data,
Als can find defects that are very small and could cause con-
tamination, thereby offering protection to food products (Wang
et al. 2018). A notable example is Nestlé, which has adopted AI
and ML technologies to monitor food safety and quality
throughout its global operations, reflecting the industry's com-
mitment to innovation in food safety. Table 4 summarizes the
key applications of Al in food safety, including the type of food,
the type of AI used, and the specific application.

11 of 23

85U801 SUOWWOD SAIIERID 3(dedl|dde au Aq peusenob aJe sooiLe VO ‘88N JO S9|NJ 10) ARIq1T 8UIUO A8]IA UO (SUOTPUOD-PUE-SWLB) 00" A8 1M ATeIq julJuO//SANY) SUORIPUOD pue SWs 1 841 88S *[S5202/20/92] Uo Ariqiauluo A8|IMm “TdN HeulH bei| Aq 9200/ ZPI8/200T 0T/10p/wod Ae i Akeiq1jeuljuo'supel/sdny woly pepeojumod ‘v ‘GZ0Z ‘990£9992



26663066, 2025, 4, Downloaded from https://iadns.onlinelibrary.wiley.com/doi/10.1002/efd2.70076 by Iraq Hinari NPL, Wiley Online Library on [26/07/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

(senunuo))

(2z07) B 10 ueppy
(2207) 'Te 10 salaeq
(L107) 'Te 32 noyz
(£207) ‘T8 10 1emBY

(T202) 'Te 39 BIRAIIO
(0z07) nX pue uey,
(0z07) nX pue ueg,
(0202) ‘Te 12 JYekeN

(£207) 'Te 30 fey eSeuey
(£202) e 19 oSunyoey
(Tz0oT) Te 19 Znoli] 1ueI[OS
(c102) 1B 39
nseyyuwelIe A -rasseqoH
(ST0?) B 32 InH
(cz07) Te 10 nx
(¥102) T8 19 NI
(8107) 'Te 30 wiysey

(0Z07) 'Te 10 YekeN

S93e19A9q O1[0Y0ITE Ul
juswIssasse Ajenb pue uonesyIsse[d paoueyuyg
Kjayes pooy 2Insud
0] s30970p Sureyoed Jo UOTIIAP JBINIIY
Swa)sAs [013U02 JUII[AIUI YInoiyy
ssa001d Surusirym 9011 Ur Jusurasoxdury

swdIsAs [onuod unewoine Aq syonpoid
182195 Zurssadoid ur ASouardlje pasueyug
[onuod K1renb J0J S[OAS] UONBIUSULISJ
,SUB2Q BOJ0J JO UOIIBIYISSED 9)BINIIY
93eisem Juronpar ‘Aienb
pue 9JI-J[oys 1w Jo suondrpaid pasoidwy
IV Susn [10 9A1]0 Jo UISLIO
reorydeaSoas o) Jo uoneoynuapl paoueyuy
sordures
jnufem Jo uoreziiogayed Airenb 9jeIndoy
B3] JOB[q UI UONBIYIIUIPI
SOTISII9)OBIBYD PIJB[AI-UISLIO SATIOPH
SUIXOJB[JE PIONPOIIUL A[[I0YNJIe pue [eInjeu
usamyaq Surysm3unsip ur £oeIndode ySiyg
SISATeUE [EOIWAYD U0 paseq
110 SWESIS JUSNPNEIJ JO UONIIP pasoiduy
UOIBINJISSE[O pue
Kirenb 199q Jo uonen[eAd AI0SUSS pIdUBYUF
symay aqninf reyumm
ur s1ojowered Apenb jo uonorpaid 1IN0y

uonIsodwod [edTWaYd U0 Paseq
9d4) pue urdrio 198u1d Jo UOTIBOLISSBID SANIH

oom[ A1roqmens passadord
SNSIOA US91J JO UONBZLIOF2)ED 9)eInddy

eyep Tenoads 3uisn oFeqiods
AJTed pue ssauadil 3MIJ Jo UONII)IP paduUBRy Uy
sjonpoid jesuw Ul UOBUTUIBIUOD
pue aFeriods Sunorpaid ur Aoeinooe pasoiduwy

JUQWISSIsSe AJend)
$309J9p JO uonIAN_J
[013u09 ssad01d JuruAIITYM
Zurssaooid ur [o1uOd pajEWIOINY
S[9AS] UOIIBIUSULIDJ JO UOIIBIYISSB[D
JUSWISSISSE JJI[-J[9YS pue Aend)
uond9)ep uIduo oryderdoan
Arenb 1nu jo uoneziiodare)
uod3ap BWOLY
SUIXOJB[JE JO UONII3Q
pneij Jo uonossRq
juawissasse Arenb pue A1030€]10
Kirenb Sunorpaig
9d4) pue urduio jo uorEdYNUIPL

dom( passaooxd
pue ysa1j usamiaq Sunenuarsfiq

UONRUIWEBIUOD
pue ‘o3eftods ‘ssouadir Jo U011

ssouysayy pue Aienb
[e2130[01qOIIW JO UON)RUIULIA

uudysny) uedN-I
(T14) 21307 Azzng
T4 ‘AN
(1) 218077
Kzzng ‘(AJN) UOISIA SUIYOBRIN
(4ay) 159104 UOISI_(J Wopuey
STd ‘NAS ‘VOd
INAS

(NND) j10MIdN
[BINSN [BUONN[OAUOD)

(VA-s1d) sisdreuy
JuRUTWILIOSIJ so1enbg jseaT [enied
INAS ‘(NNI) s10qUSI1oN 1sa1eaN-3

NNV VAT ‘v2d

NNV Va1 (vdd)
sisAfeuy juauodwo) redourig

(IAN) uoissaiday
s[qerteA ddnmA
(1Y) 159104 WOpURY
WAS

INAS

(INAS) aurgoey 10399 31oddng

QUIM pue JI39¢g

spooj pagdeyoed

ory

sjonpoid [ea13)

Sueaq B020D

(i) Lareq

[10 3ANO

murepm

©3) yoelq

zZIeIN

[0 auresag

1299

aqnnf 11U

138urn

SOLLIgMET]S

SR

(Usy 399q) 18|

reurSiio pue 3jeINIIY

Insay

uoneoddy

IV Jo adAL

pooj jo adAy,

*Ajayes pooj ul Ty Jo suopeorddy |

v H14V.L

eFood, 2025

12 of 23



(Continued)

TABLE 4

Accurate and original

Result

Application

Type of Al
CNN, BDT1, BDT2, KNN, SVM

Type of food

Saffron

Effective identification of saffron adulteration Momeny et al. (2023)

Detection of adulteration

using a combination of AI techniques

Goli et al. (2019)

Improved prediction of microbial growth and

Quality control measures

Adaptive Neuro-Fuzzy Inference

Dairy products

control measures in dairy products

System (ANFIS)
Machine Learning (ML)

Crandall et al. (2024)

Enhanced monitoring and optimization of

Monitoring cleaning and sanitation

Processed foods

sanitation in food processing plants

processes

Improved monitoring of cold chain conditions, Lu and Wang (2016)

Cold chain monitoring

Al-based IoT integration

Frozen foods

ensuring food safety during transport

Enhanced persistence detection of Listeria in Yang et al. (2013)

Environmental monitoring and

SVM, RF

Leafy greens

retail environments

Listeria detection

5 | AI in Food Quality Assurance

Technology has become the foundation of food quality assur-
ance by inventing new methods for defining, testing, and dis-
tributing food products. In this regard, the use of Al provides
advantages such as accuracy, efficiency, and stability, which are
important ingredients for both food security and customer sat-
isfaction. Food quality assurance systems are switching to Al
technologies, such as ML, computer vision, and DL, to auto-
mate operations, decrease human error, and increase produc-
tivity. AI has been the key player in these advancements in
sensory attribute prediction and quality rating of foods. The
conventional quality evaluation methods that depend on
human perception are time-consuming, subjective, and some-
times misleading. ML systems using massive sensory attribute
datasets can accurately predict food quality. Hany et al. (2023)
showed that ML through sensory-related variables and image
processing could predict yogurt quality more accurately than
before. Additionally, Al-powered systems are especially bene-
ficial in settings where the evaluation of human beings is dif-
ficult or sometimes impossible. For instance, CNNs have been
used to rank the quality of chili depending on various attributes
like taste, aroma, and color, and in this way achieving the
highest precision rates by distinguishing between the quality
grades (Adam and Niswar 2023). Moreover, it is also important
to let you in on the fact that AI has been used to replace the
destructive surfactometry approach and non-destructively
determine the composition of the gel by means of the mois-
ture and starch content, with a precision exceeding 90% (Yoon
et al. 2023). The use of Al extends beyond simple classification
and grading. In the processing and manufacturing stages, Al
monitors and controls quality by analyzing real-time data from
sensors and other monitoring devices. For example, ML has
been applied to the chemical composition of the sound to pre-
dict sensory characteristics in vineyards. It also lets the wine-
maker adjust the juice density quite accurately and thus
enhances the final product to the desired level (Armstrong
et al. 2023). AI is a technology that allows, inter alia, wine
production to benefit through the analysis of subtle differences
in sensory attributes to produce the product with the best
quality and satisfy customers. Al also ensures that food quality
assurance activities are performed better through the assistance
of computer vision technology, which reduces the time spent on
manual labor and thus minimizes the perils of human error.
Employing active and semi-supervised learning techniques,
such as the example with the cotton quality assessment, is one
representation of the existing practice; thus, it has been suc-
cessful in making the procedure of image labeling shorter by
60% while still keeping the accuracy of the classification high
(Fisher et al. 2023). The grading process, which is now both
more efficient and cheaper, is how labor is being trimmed from
the quality assurance department, thus making the quality
assurance process more efficient and scalable. Al is not only a
way to enhance the current quality control methods, but it also
has the potential to create new ones that would otherwise be
beyond our reach. For example, using a combination of near-
infrared spectroscopy and ML models for predicting the sensory
attributes of dry-cured loins has been successful and is an
alternative to traditional sensory panels (Vasconcelos
et al. 2023). This approach is advantageous in a number of ways.
It is precise and allows for establishing a general standard that
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can be applied to the production of different items to assure that
the food in the industry is of high quality. On the brighter side
of AI in food quality assurance, the ability to mitigate risk and
make better decisions is achieved. With the use of smart algo-
rithms to track and receive essential insights about potential
risks, companies can minimize the potential dangers and cater
for the feasible shortcomings. For instance, by using AI auto-
mation to forecast potential dangers in a definite part of the
food supply chain, the result will be enlightening since the risks
will be timely identified and resolved (Temilade Abass
et al. 2024). Being proactive about risks is vital for food safety
and quality assurance from production to consumption. Al
technologies such as those used by companies like Tetra Pak
help enable food processing equipment to conduct quality
assurance checks, enhancing efficiency and setting new safety
standards for the industry.

6 | AI in Food Industry

Al is now the main focus of the food industry when we look at
its advantages: food safety issues, quality control, and supply
chain optimization. The rapid increase in the world population
and the constant need for food have led to the rise in the usage
of AI technologies. AI uses sophisticated algorithms and com-
puting models to handle food production and supply, which in
turn helps make processes more efficient and sustainable. AI's
most vital part in the food industry is the quality control and
product classification. Systems such as computer vision and
near-infrared spectroscopy (NIRS) are applied in the process to
separate and grade food products very precisely. These systems
easily recognize the defects and variances in real time; there-
fore, only the quality goods are delivered to the consumers. The
ability of AI to go through large data volumes for the right
decision-making is a big plus point for the food-making sector.
It generates lots of data very fast, and the food manufacturers
can stop problems early, thus, they will have less waste and
better efficiency (Mavani et al. 2021).

Moreover, knowledge-based expert systems have been created
to handle hazards, spot dangers, and ensure compliance with
safety standards. Smart packaging systems, which are AI-
driven, check the freshness and the quality of food products
during their transport or storage. These technologies are not
only decreasing the possibilities of foodborne illnesses, but they
are also extending the shelf life of perishable goods, which is
beneficial to the consumers and the industry stakeholders as
well (Drago et al. 2020). Among the top priorities of quality and
safety, Al technologies have been significantly improved by
using unconventional techniques to automate production. By
way of illustration, using fuzzy logic systems, a canning food
production environment can successfully achieve sterilization
temperature control, producing the common quality of a
product more efficiently.

Al-enabled predictive maintenance tools inspect the equipment
and outperform it, and additionally predict failures, which, in
turn, allow immediate interventions to be provided and, in the
end, reduce the operational downtime. All these technological
breakthroughs are contributed by cost-saving and improving
production line reliability (Okuyelu and Adaji 2024). ANNs

have played a big role in the food industry. Modeled after the
human brain, ANNs learn and respond to new data. These are
systems that are mostly used for pattern recognition, predictive
modeling, and decision-making tasks. Heat and mass transfer
processes optimization, food product classification, and quality
affect parameter prediction are some of the uses of ANNSs.

Their adaptability and precision make them the best option to
tackle complicated challenges in the production of food
(Kujawa and Niedbata 2021). ML is a part of Al that, like other
advancements before, has brought brilliant possibilities in the
food industry. The ML models look at big data to spot trends,
predict results, and aid in decision-making. From a future
perspective, solutions are being rapidly developed to simplify
the food distribution chain, such as smart forecasting of waste
and demand, accurate inventory, and optimized supply chain
logistics. Long short-term memory networks are one type of
neural network, a type of RNN, and a special case, a network
that uses time series data, like the example presented here,
which regulates pH. These inventions bring out in practice how
adaptable MLs are to differing industrial necessities (Kler
et al. 2022).

Adaptive Neuro-Fuzzy Inference System (ANFIS), a hybrid of
Fuzzy Logic and ANNs, shows some additional efficiency while
facilitating uncertainty and results in accurate estimates/out-
puts. These methodologies are very popular in systems requir-
ing human-inspired inherent reasoning parallel with
deterministic progress. For example, ANFIS models have been
used in the production parameter optimization problem to
guarantee product quality and increase workflow efficiency.
Their feature of the ability to deal with useful data even if they
occur and change over time, for instance, is what makes
dynamic industrial locations always in crucial need of them
with respect to the development process (Ankit Reddy and
Padmavathi 2024).

While all these developments will help, adding AI to the food
industry also has some issues. The main obstacles are the price
of making it practical, worries connected to users' personal data,
and the necessity of trained personnel to implement an Al
system. Table 5 summarizes the general application of Al in the
food industry.

7 | Ethical Considerations in Al for Food Safety

The integration of AI into food safety processes offers many
benefits and, at the same time, poses several risks related to the
ethical dimension that require the development of a suitable
ethical framework. This model should be helpful in the course
of dialog regarding the digital cooperation of the food chain
while also keeping a devoted innovation approach. Ethics
should be seen as a complex and interdisciplinary subject, so it
is vital not to oversimplify it and consider that there are no
“silver bullet” solutions. Unconditionally, the collective atten-
tion of the parties involved is to be concentrated on the ade-
quate solution to the issue through the creation of the right
framework, thus the responsible identity of the digital eco-
system of the food supply chain will be maintained (Craigon
et al. 2023). While delving into the intersection of AI and food
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safety, it is evident that the ethically sound use of such tech-
nologies is the primary concern. AI and distributed ledger
technologies (DLT) have the potential to revolutionize the food
sector via innovative technologies such as AI and DLT.

Nevertheless, the efficient implementation of these new tech-
nologies requires the establishment of systems that secure data
and simultaneously stimulate collaboration and data sharing
among the stakeholders. This kind of situation raises the issues
of trust, openness, and the responsible deployment of AI
(Sharma et al. 2023). The ethical predicament of AI covers bias,
accountability, privacy distortions, and the urgency for trans-
parent decision-making processes. They are heightened when
unmanned AI makes a complex steered system, where the
consequences of the ethically wrong business may result in
heavyweight materials. With the increase in the use of tech-
nology in the food industry, it is mandatory to create systems
that bring the highest priority to human well-being and con-
form to the principles of RRI (Kulaklioglu 2024).

The increase in the use of Al in food supply chains emphasizes
the need for handling its ethical concerns in every respectful
way. In this field, the trust between the parties that use the
technology and the one who purchases the product from them
increases when responsible Al practices underpin this trust, and
transparency in the world of AI and its application in the food
supply chains becomes business as usual. The same can be the
role of a comprehensive ethical framework that involves the
following seven dimensions: transparency, traceability, ex-
plainability, interpretability, accessibility, accountability, and
responsibility (Manning et al. 2022). To be transparent means to
keep an eye on and acquire correct information about how food
is produced and distributed. With traceability, it is possible to
follow the path of the supply chain elements, hence creating
consumer trust. Explainability and interpretability improve
users’ understanding of AI decisions by explaining and clarify-
ing data and decision-making processes behind models.

Accessibility is mainly about ensuring that information is
available, as various social and commercial factors can hinder
data sharing. Accountability guarantees that the persons
responsible for Al-driven decisions can justify their actions and
bear the responsibilities when needed. Responsibility, finally, is
the ethical and social duty of all the participants in the food
supply chain. It means standard and consequently unbiased
decision-making via norms. Ethical issues in AI are a major
obstacle to effectively implementing food safety, and these are
closely related to data privacy, transparency, and algorithmic
bias. The collection and management of sensitive data must
comply with the regulatory frameworks, and consumer trust
and privacy must be preserved. It is indispensable to confront
data bias and secure the algorithmic fairness to avoid
unintended negative influences of decision-support systems. A
cross-industry effort is a must to combine the knowledge and
experience of industry partners, policymakers, and researchers
to develop the most comprehensive guidelines, standards, and
best practices of AI use in food safety. With transparency,
accountability, and the promise of continuous improvement of
Al technology, there is an unequivocal need to earn and
maintain consumers’ trust and simultaneously innovate food
systems for environmental benefits. However, the stakeholders,

through the conscious tackling of these challenges, can gain the
competitive edge of AI for the safe and resilient global food
systems (Shukla 2024).

Al sustainability primarily revolves around establishing ethical
AT considerations and governance approaches to produce food
in the supply chain. Moreover, Al deployment in food safety is a
technology-driven sustainable development that results from
the increased societal and ethical challenges sectors are con-
fronted with when trying to innovate in a responsible manner.
Ethical AI actually requires that we continually reflect on its
implications and put joint effort into the development of prac-
tical solutions that will benefit humanity while safeguarding
data integrity and fair practices in the supply chain. The ad-
vantages of a future in which AI models favor food safety that
are consistent with fairness and ethical standards can be
obtained using rigorous and well-structured research.

8 | Challenges and Limitations of AI-Based Food
Safety Systems

The effective usage of Al in food safety systems has many new
opportunities, but it still has to cope with certain challenges and
limitations that may not allow it to be fully efficient. Main dif-
ficulties are data quality, model interpretability, and computa-
tional costs. The efficiency of AI models is very much influenced
by the fact that the data on which they are trained is of good
quality, and there is enough of it. In a lot of cases, the data
could be incomplete or inconsistent, or it is in a certain part of
the food supply chain, and it has very little representativeness.
Bad data is one of the reasons why models become biased, and
they cannot be generalized well to real-life situations (Bortnyk
et al. 2023). Different food products, sources, and environmental
conditions may display quite different food safety data. This
difference can sometimes cause much noise to enter the picture
and make AI model training more difficult (Tajkarimi 2020). For
example, the contamination of different products worldwide can
create multiple image patterns, hence the challenge for AI to
accurately predict the potential risks. The main issue with sen-
sitive data collected and stored is the issue of its security and
accuracy. Making sure that the data is not touched, corrupted, or
changed in any other way is what gives the model its personality,
that, in turn, builds trust with customers if their personal data is
not jeopardized (Gbashi and Njobeh 2024). AI models are often
described as “black boxes,” which can be difficult to understand
for non-IT professionals. Even if they might be very efficient in
terms of accuracy, the decision processes can be hard to under-
stand, thus resulting in a situation where stakeholders cannot
comprehend how the conclusions have been reached. Due to this
matter, Al technology can have a very short lifespan in the IT
industry if a company cannot build devices with which they can
be held accountable or which they can validate (Franzoni 2023).
A lot of times, food security programs have the obligation to
adhere to very strict rules and regulations. It is the duty of reg-
ulators and stakeholders to give a crystal clear understanding of
their decisions concerning food safety, for example, when there
are alerts about contamination or audits for compliance. The
inability to satisfactorily interpret AI models can present obsta-
cles to fulfilling these responsibilities and attesting to the docu-
mentation required (Gilpin et al. 2018). Food safety workers and
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end-users may become incredulous about this function's “black
box” nature. Irrespective of a high-quality model, users are likely
to be reluctant to adopt its decisions, the reason for this is that if
they cannot comprehend the method a given AI model uses to
trigger a response, the AI model is supposed to help in real-world
applications. In other words, this will lead to an AI model being
powerless in cases when there is a real need to help (Ranasinghe
et al. 2022). Deploying Al-operated food safety technologies often
implies the necessity of enormous investments in hardware
infrastructure. It implies updating the hardware, purchasing data
storage solutions, and networking capabilities. These costs can
become a real obstacle to smaller businesses and producers.
Creating and training AI models also requires considerable
resources, as they need vast computational power and consume a
lot of time. This is particularly true for real-time analysis and
response, which can drive high operational costs. Scaling AI
engineering and Al solutions to meet the skyrocketing amount of
data and the types of analysis can be incomplete, and sometimes
it could lead to a lack of computational resources due to the
system's complexity. The development of a model personalized
for a particular task can be a technological challenge while
maintaining the required accuracy (Nachiappan 2024).

Even though the use of Al-based food safety systems is seen as a
way to make huge strides in food safety and quality assurance,
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this field faces multifaceted obstacles involving the quality of
data, the interpretability of models, and computational costs. It
is a must to overcome these when Al is discussed in food safety.
It is essential that these be done by continually improving the
data collection protocols, increasing model transparency, and
managing computational resources. Through the use of Al,
the current food industry is moving towards innovative, more
trustworthy, and more efficient modes of production. The
relationship between the food industry and Al technology is a
new type of collaboration requiring efforts from regulators, end-
users, and solution providers to create mutual dependence.

9 | Conclusions and Outlook

The AI's usage in food safety, by creating automated product
accuracy, efficiency, and reliability in food products, caused a
constant revolution. In the food sector, ML, DL, and computer
vision technology are extremely vital tools in the detection of
pollutants and food quality inspection. The aim of AI has been
to utilize these advanced technologies to deal with the food
industry's supply chain complexity and the rising demand for
safe food. AI can change the course of food safety policies and
product quality in a big way; however, more studies and tests
should be conducted to fully optimize its potential. These Al

Categorizing:
-Freshness
-variety & origin
-other parameters

Formulation:
-devioping new products
-R&D

Sensory evaluation:
-falvor

XS
-texture

-appearance

Process:
-dryning
-strelization
-other processes

FIGURE 5 | Areas of agriculture, food science and technology, and nutrition that have undergone evaluation on the implementation of artificial

intelligence.
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notions have the prospect of developing trend analysis by ana-
lyzing additional data and integrating more heterogeneous data
sources to achieve real-time decision-making in the food supply
chain. AI has smart packaging, maintenance predicting sys-
tems, and automation technology to address all trends, which is
definitely beneficial to secure the food industry, both according
to regulations and consumers. The development of such tech-
nologies cannot happen without the input of industry people,
researchers, and regulatory agencies who are to ensure Al ap-
plications are safe and efficient. Food safety and quality assur-
ance have a future that suggests AI will become a part of this
revolution. AI technologies are sure to change the global food
system's safety and sustainability. A blooming future for AI
technology in food science is forecasted, but more research is
required to tackle modern food problems. Figure 5 shows the
fields of agriculture, food science and technology, and nutrition
that have been tested for the use of AI. With the rise of Al
technology, next to its role in food safety, waste reduction, and
process efficiency, food production technology will also be an
essential factor. The given examples allow for appreciating the
fruitful usage of AI technologies in firms like IBM, Zest Labs,
Nestlé, and Tetra Pak, which stress the transformative power of
Al in modern food systems.

Future research should concentrate on developing a hybrid Al
model that utilizes various technologies such as ML and DL to
improve the performance of the food safety system. Further-
more, research on the interactions between AI and the latest
technological advancements like blockchain and the IoT should
be the top of the list; the synergies of AI and blockchain can be
found in many possible ways one of which is the AI with
blockchain which can help to have a clear and transparent
record of the food supply chain meaning the producers are able
to verify the originality and the quality of the product through
immutable records. Such an approach with various technolog-
ical aspects could be a very promising method to overcome such
major food safety issues. The standardized operating procedures
for AI activations in food safety should be activated without
further delay, and the guidelines should be set with the proper
explanation of data collection, algorithm transparency, ethical
considerations, etc. These guidelines will speed up the good
transformation of AI by considering the terms of the safety
regulations and consumers’ well-being. Long-term observations
are indispensable for the continuous use and functionality of AI
applications in food safety, and carry out investigations to find
out how society reacts to their use, among other things, which
positions and policies to advocate for. Besides this, the ethical
Al elements in the area of Al should be reflected, considering
the bias issue and the need for discernible and transparent
decision-making. The stakeholder involvement in formulating a
framework that includes their views is a significant progression
in cultivating trust in the ethical use of AI technologies.
Through involving both food producers and consumers in Al
solutions innovation, the necessary element of the fulfillment of
their needs, along with the implementation of these technolo-
gies, can be accomplished. The combination studies will
improve the comprehension of different points of view and will
help the Al-controlled sustainable food safety standards to be
more accepted. In doing this, we will be able to improve the
safety of the food, increase consumer and stakeholder trust, and
ensure that Al systems in the food industry are dependable and

just. This holistic way of implementing food security allows
society to have a safe and robust food system by finding the
right balance between safety and quality.
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