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This study is aimed at enhancing the biomass yield of Lactobacillus acidophilus CM1 by identifying and optimizing critical growth
parameters. Using the Plackett–Burman design (PBD), 11 physical and chemical variables were screened, of which pH,
temperature, NaCl concentration, and inoculum size were found to significantly influence cell growth (p < 0 05). These
statistically significant factors were subsequently optimized using response surface methodology (RSM) with a central
composite design (CCD). Optimization led to a 1.45-fold increase in biomass yield, achieving a maximum of 1.948 g/100mL.
ANOVA confirmed model validity with an R2 of 0.9689 and adequate precision of 52.77, indicating a strong predictive
capability. The integration of PBD and RSM-CCD proved efficient for minimizing experimental runs while maximizing output,
supporting the development of cost-effective cultivation strategies for probiotic production. This approach offers a scalable
model for bioprocess optimization in industrial fermentation.
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1. Introduction

Lactobacillus species are among the most widely employed
probiotic bacteria in the food and pharmaceutical sectors,
celebrated for their health-promoting attributes and exten-
sive applications [1]. In medicinal contexts, these lactic acid
bacteria (LAB) are precious as they support gut microbiota
colonization, which is beneficial in managing gastrointesti-
nal disorders, liver conditions, postantibiotic recovery, and
microbial imbalances [2]. The broad health benefits associ-
ated with these probiotics have driven substantial scientific
interest in their physiological properties and development
requirements. The cultivation of Lactobacilli, however, pre-
sents specific nutritional demands that require a nutrient-

dense medium for optimal growth [3]. Among available
media, Man–Rogosa–Sharpe (MRS) medium is widely rec-
ognized as the standard for LAB cultivation due to its ability
to support robust bacterial growth [4, 5]. Nonetheless, com-
mercial probiotic production often incurs high costs due to
the expense of specialized media and the complexity of
manufacturing processes, a challenge that has spurred ongo-
ing research into optimizing cost-effective growth environ-
ments for these bacteria [6, 7].

Research efforts have frequently targeted medium opti-
mization to enhance growth conditions for specific Lactoba-
cillus strains. For instance, studies on the dairy-associated L.
rhamnosus strain have examined the effects of varying car-
bon and nitrogen sources, essential growth factors
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(including amino acids and vitamins), and culture condi-
tions (such as temperature, pH, and oxygen availability) on
bacterial proliferation. For example, researchers [8] demon-
strated that a medium containing yeast extract (6.0% w/v),
glucose (5.01% w/v), a vitamin solution (1.28w/v), and an
adjusted pH of 6.9 yielded higher viable cell counts than
the traditional MRS medium, illustrating the impact of
nutrient-specific modifications. Similar optimization studies
have investigated growth conditions for Lactobacillus aci-
dophilus CM1 [9], a strain derived from various fermented
and nonfermented food sources, to identify cost-effective,
high-yield media formulations.

To identify optimal medium compositions efficiently,
Plackett–Burman design (PBD) has proven instrumental,
offering a systematic approach to screen multiple factors
with minimal experimental runs. This design is particularly
advantageous in resource-limited or time-sensitive scenar-
ios, allowing researchers to rapidly identify critical growth
factors [10, 11].

The PBD is a two-level factorial design that evaluates
experimental factors at predefined high and low levels based
on prior data or practical considerations. It maintains
orthogonality, ensuring statistical independence among var-
iables and accurate estimation of main effects without con-
founding interactions. As a fractional design, PBD tests
only a subset of all possible combinations, making it efficient
for screening numerous variables. The design’s resolution
determines how many factors can be tested without overla-
p—Resolution III screens up to N−1N-1N−1 factors, while
Resolution IV screens up to N−2N-2N−2. Randomization
of runs helps reduce bias from external influences. PBD is
especially valuable in bioprocess optimization, where it iden-
tifies key growth factors like pH or temperature, streamlin-
ing the transition to more detailed optimization methods
such as response surface methodology (RSM). Unlike one-
factor-at-a-time approaches, which are time-consuming
and ignore interactions, PBD provides a rapid and scalable
method to enhance microbial yield by refining media and
process conditions.

In this context, growth medium optimization generally
follows two phases: initial screening to identify critical ingre-
dients and refinement based on Pareto’s principle [12, 13].
With the PBD, researchers can examine \ n \ variables
across \ n + 1 \ experimental runs, minimizing resource
consumption while retaining the design’s orthogonality to
prevent confounding between variables [7, 14, 15]. This
study is aimed at enhancing the growth of a probiotic strain
in a medium formulated with variable carbon and nitrogen
sources. A secondary is aimed at evaluating the effects of
added mineral salts and growth factors to improve bacterial
growth further. Ultimately, this research seeks to identify a
cost-effective medium composition that supports high bio-
mass production of L. acidophilus CM1, advancing its com-
mercial viability as a probiotic supplement.

2. Materials and Methodology

In this study, Lactobacillus acidophilus CM1, isolated from
cow milk as previously reported [9, 16], was cultured and

maintained on MRS medium using standard plating tech-
niques. Identification of the strain was confirmed via bio-
chemical assays and 16S rRNA sequencing (submitted to
Genbank with ID OP811266.1), ensuring precise classifica-
tion within the laboratory setting (Khushnoo and Karnwal,
2023). The bacterial isolates were preserved in glycerol
stocks for subsequent analyses to retain viability over
extended storage periods.

2.1. Inoculum Preparation. The inoculum of Lactobacillus
acidophilus CM1 was prepared by harvesting actively grow-
ing colonies from MRS agar plates into sterile physiological
saline (0.85% NaCl) or MRS broth. The bacterial suspension
was adjusted to match a 0.5 McFarland standard, corre-
sponding to an approximate concentration of 1 5 × 108
CFU/mL. The standardized inoculum was then used for all
experimental runs to ensure reproducibility and accuracy,
particularly in statistical optimization studies employing
PBD and RSM. Uniform inoculum concentration was essen-
tial for assessing the true impact of physicochemical param-
eters on bacterial growth and biomass yield.

2.2. LAB Growth Medium. A growth medium formulated
explicitly for LAB was developed, incorporating a variety of
components that include protease peptone, beef extract,
yeast extract, dextrose, Polysorbate 80, ammonium citrate,
sodium acetate, magnesium sulfate, manganese sulfate, and
dipotassium phosphate. The production process was carried
out under carefully regulated conditions, with the initial pH
set to 7.0 and the temperature maintained at 30°C. This envi-
ronment was sustained for 24–48 h, facilitating optimal
growth and proliferation of LAB.

2.3. Medium Preparation. The medium used for cultivating
Lactobacillus acidophilus CM1 was specifically formulated
to support the growth of LAB. The base composition
included protease peptone, beef extract, yeast extract, dex-
trose, Polysorbate 80, ammonium citrate, sodium acetate,
magnesium sulfate, manganese sulfate, and dipotassium
phosphate. The pH of the medium was initially adjusted to
7.0 and sterilized before inoculation. Cultivation conditions
such as temperature and incubation time were optimized
based on statistical design models to maximize cell biomass
(Khushboo and Karnwal, 2023). The prepared medium pro-
vided essential nutrients and optimal physical–chemical
conditions required for robust microbial proliferation and
was key in achieving a 1.45-fold increase in biomass yield
under optimized parameters.

2.4. Approach Used for Response Determination. To deter-
mine the response in this study, we used a systematic statis-
tical approach combining PBD and RSM. Initially, PBD was
employed to screen and identify key factors—such as pH,
temperature, NaCl concentration, and inoculum size—that
significantly influenced the biomass yield of Lactobacillus
acidophilus CM1. Once these critical variables were pin-
pointed, RSM, particularly a central composite design
(CCD), was used to optimize their levels to maximize cell
growth. The model’s effectiveness was validated using analy-
sis of variance (ANOVA), regression analysis, and statistical
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metrics such as R2 and adeq precision, ensuring the reliabil-
ity of the predicted responses. Thus, the response—mea-
sured as biomass yield in g/100mL—was determined by
analyzing how changes in these key variables affected the
output under controlled experimental conditions.

2.5. Screening of Physical and Chemical Parameters Using
PBD. Statistical experimental design (SED), commonly called
the design of experiments (DOE), represents a systematic meth-
odology to optimize data output while minimizing the number
of analyses required. In contexts characterized by numerous
potential causal factors that may influence one or more
responses, a critical technique known as “screening design” is
employed to identify the most significant components affecting
the outcome. This approach simplifies subsequent trials by eval-
uating a reduced set of variables. Prior screening studies are
essential in eliminating irrelevant factors and conserving the
time and resources required for further research.

Among the various methodologies available for screen-
ing, Plackett–Burman (P.B.) orthogonal arrays, developed
by Plackett and Burman, are particularly advantageous.
These designs enable accurate estimation of the direct
impacts of individual factors within the experimental frame-
work. When screening “n” components, the PBD technique
utilizes n + 1 runs, maintaining the sample size as a multiple
of four, denoted as 4^k observations, where k represents a
number ranging from 1 to n. This distinctive characteristic
defines the PBD, rendering it especially suitable for n × 4
configurations (such as 8, 12, 16, and 20) in experiments
involving more than seven variables (e.g., 7, 11, 15, and 19).

To effectively implement a two-level factorial design,
three critical requirements must be satisfied:

1. Factor selection: Factors should be judiciously chosen
to yield optimal responses while remaining computa-
tionally manageable.

2. Range selection: The selected ranges for each factor
must be adequate to compute their respective effects
accurately.

3. Avoidance of overlapping ranges: The ranges estab-
lished for each factor should not overlap with those
of other factors to avert complications in experimen-
tal setup and factor interaction failures.

In the current study, LAB biomass production, influ-
enced by 11 distinct factors, was evaluated utilizing the
PBD, with a relative significance threshold set at 95% for
the experimental trials. The basic values of independent var-
iables were coded using the P.B. design into high (+1) and
low (−1) levels, as illustrated in Table 1. This methodological
framework allows for a robust analysis of the factors
influencing LAB biomass production, ultimately leading to
more efficient and targeted experimental outcomes.

3. Result and Discussion

DOE is a systematic mathematical method employed to rig-
orously manage, operate, and evaluate trials to discover how

input variables (independent variables) affect output
responses (dependent variables). This method helps pin-
point key factors that impact outcomes and determines the
best conditions for each, providing a clear structure for
improving processes and systems.

The core principle of the DOE is carefully planning and
conducting experiments where variables are deliberately
adjusted, and the resulting outcomes are measured under
regulated conditions. This systematic approach enables
researchers to discern the most influential factors affecting
the response and quantify each variable’s impact [17]. Fur-
thermore, DOE can elucidate interactions between these fac-
tors and facilitate the identification of optimal settings for
input variables that yield desired output responses [18].
The applications of DOE are extensive, encompassing vari-
ous industries, including manufacturing, engineering, and
pharmaceuticals, where it is leveraged to improve product
quality, enhance process efficiency, and achieve cost savings.

The DOE process comprises several key steps: defining
the problem and objectives of the experiment, selecting rele-
vant variables and their respective ranges, choosing an
appropriate experimental design, executing the experiments,
collecting data, conducting statistical analyses, and formulat-
ing conclusions and recommendations based on the experi-
mental findings. By pinpointing the critical elements that
influence a process or system, DOE supports significant
enhancements in quality, efficiency, and cost-effectiveness,
thus guiding decision-making with empirical evidence [19].

In this study, we employed Design Expert 12.0 software
to conduct 12 experimental runs (detailed in Table 2) to
identify the essential factors influencing microbial growth.
The main objective of this screening analysis was to evaluate
the effects of 11 factors on cell growth, quantified in g/
100mL. The variables under investigation included pH, tem-
perature, NaCl concentration, bile salt level, inoculum per-
centage, incubation period, ascorbic acid content,
ammonium citrate level, magnesium sulfate concentration,
manganese sulfate concentration heptahydrate concentra-
tion, and calcium carbonate concentration. Twelve flask
tests, which included three center points, were conducted

TABLE 1: A Plackett–Burman design was employed to identify and
optimize the different experimental factors influencing the growth
of Lactobacillus acidophilus CM1.

Experimental factor’s Low (−1) level High (+1) level

pH 1 4

Temperature 25°C 45°C

NaCl 2% 8%

Bile Salt 0.5% 2%

Inoculum size 0.5% 3%

Incubation period 24 hrs 96 hrs

Ascorbic acid 0.1% 0.5%

Ammonium citrate 0.05% 0.1%

Magnesium sulfate 0.1% 0.5%

Manganese sulfate 0.1% 0.5%

Calcium carbonate 0.1% 0.5%

3International Journal of Food Science
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at a 95% significance level. The significance of the 11 vari-
ables was assessed using a Student’s t-test, with the experi-
mental and predicted cell growth values presented in
Table 3.

Statistical analysis of cell growth (g/100mL) for the PBD
is displayed as an ANOVA table in Table 4. Furthermore,
Figure 1 shows a Pareto chart illustrating the impact of var-
iables on cell growth.

The Model F-value of 257.42 indicates that the model is
statistically significant, with a mere 0.39% probability that an
F-value of this magnitude could arise from random noise.
Furthermore, the analysis of p values reveals that Terms A,
B, D, E, and F are statistically significant, as their p values
are less than the conventional threshold of 0.0500. In con-
trast, terms with p values exceeding 0.1000 suggest a lack
of significance. In instances where numerous model terms
are deemed insignificant—excluding those necessary to
uphold the hierarchical structure—considering model
reduction may enhance the overall performance and inter-
pretability of the model (B—temperature (p value = 0 0075
), A—pH (p value = 0 0087), D—NaCl (p value = 0 0006),
and F—incubation period (p value = 0 004)).

3.1. Pareto Chart. A Pareto chart is an effective visual tool
for demonstrating the proportional relevance of different
factors in a PBD. This chart methodically organizes vari-
ables according to their impact on the response variable,
systematically ranking them from most to least influential
[20]. As depicted in Figure 1, the Pareto chart analyzes
nine variables that affect maximum cell growth. Notably,
four variables—NaCl concentration, pH, temperature, and
inoculum size—surpassed the critical threshold t-value of
4.30, establishing their significant role in enhancing cell
growth. The height of each bar in the chart indicates the
degree of influence that these variables have.

By employing the Pareto chart, researchers can prioritize
areas for further investigation or optimization, directing focus
toward the most critical factors impacting the response vari-
able. Additionally, this visualization fosters clear and concise
communication of the findings derived from the P.B. design,
enabling stakeholders to readily comprehend the key determi-
nants influencing the experimental outcomes.

3.2. Predicted Vs. Actual Values. The comparison between
projected and actual data, as illustrated in the projected ver-
sus actual plot, provides a robust method for evaluating the
validity and accuracy of the PBD model [16, 21, 22]. The
PBDmodel generates anticipated values in this context, while
the experimental data represents the observed values. Ide-
ally, the data points within this plot should align along a
straight line with a slope of 1.0, signifying that the P.B.
design model is both accurate and valid.

As shown in Figure 2, the data derived from 11 experi-
mental runs, encompassing 11 variables, closely adheres to
this straight line, indicating a high degree of reliability and
a lack of outliers. Any deviations from this expected linear
relationship may suggest the potential invalidity of the
PBD model or the influence of additional factors on the
response variable that was not previously considered.

Furthermore, the anticipated versus actual plot serves as
a valuable tool for identifying outliers or other data patterns
that could undermine the reliability of the PBD model. Out-
liers, defined by substantial deviations from the overall data
trend, may indicate experimental errors or unique condi-
tions during the study. By meticulously analyzing the pro-
jected versus actual plot, researchers can critically assess
the accuracy and dependability of the PBD model, determin-
ing whether any adjustments or modifications are warranted
to enhance its predictive capability [23].

3.3. Box–Cox Transformation. The Box–Cox transformation
is a popular statistical method for modifying datasets to
meet the uniformity and uniform variance requirements,
which are needed for many statistical analyses. This trans-
formation adds a power function to the data, which helps
lessen the impact of anomalies and other causes of variabil-
ity. When integrated with perturbation in a PBD, the Box–
Cox transformation and perturbation can improve the con-
sistency and strength of the results [22, 25].

The process begins with implementing a PBD, where
the initial experimental setup is conducted [24]. If neces-
sary, researchers may perturb the system by adjusting the
factor levels, as previously outlined. However, it is crucial
to note that if the response variable fails to conform to a
normal distribution or exhibits heteroscedasticity, the
integrity of the PBD outcomes may be compromised. In
such cases, the Box–Cox transformation on the response
variable can help address these challenges. This transfor-
mation is aimed at standardizing the data and lessen
anomalies’ influence. However, as shown in Figure 3, the
Box–Cox plot indicates no transformation is needed here.
The data from the PBD, which includes 11 factors, is ade-
quately normalized, confirming that the assumptions of
normality and equal variance are satisfied without any
additional modifications.

Regression formula for the model’s cell growth g/100mL

0 935019 + 0 037556 × pH + 0 006100 × Temperature
+ 0 025556 × Bile Salt − 0 073889 ×NaCl
− 0 027600 × Inoculum size
– 0 002329 × Incubation period
+ 0 011754 ×MgSO4 7H2O
+ 0 012456 ×MnSO4 4H2O
– 0 011404 ×Ascorbic acid

3.4. Optimization of Microbial Cell Growth Factors. The
main goal of this experimental screening design was to iden-
tify the key variables affecting microbial cell proliferation.
PBD studies were employed as an initial approach to identify
potentially influential production parameters. This system-
atic investigation is aimed at discerning key factors before
advancing to a more focused screening process. The selec-
tion of experimental variables was guided by their previously
observed correlations with production outcomes in prior
shake flask cultures.

5International Journal of Food Science
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A Pareto chart provided a complete overview of the data,
visualizing the typical impact of all variables on microbial
productivity. The investigation found that the amount of
sodium chloride (NaCl), pH, temperature, and incubation
length significantly impacted cell development [5, 6], with
temperature and pH emerging as critical determinants for
enhancing growth performance. While using the PBD has
been a common strategy in numerous studies aimed at opti-
mizing parameters for microbial cell proliferation, this study
differentiates itself by preselecting factors before imple-

menting PBD, a method necessitated by the observed varia-
tions among different microbial strains.

Previous research has extensively examined the influ-
ence of physical parameters, such as temperature and
pH, on microbial growth [10, 26]. Furthermore,
researchers [20] emphasized the importance of medium
composition in optimizing cell growth. The factors identi-
fied through the PBD were subsequently optimized using
RSM with a Box-Behnken experimental framework.
Results were analyzed utilizing Design-Expert software,

TABLE 4: Analysis of P.B. design for 11 factors affecting maximum cell growth using ANOVA and regression.

Source Sum of squares Df Mean square F-value p value

Model 0.7800 9 0.0867 257.42 0.0039 Significant

A—pH 0.0381 1 0.0381 113.11 0.0087

B—temp 0.0447 1 0.0447 132.63 0.0075

C—bile salt 0.0044 1 0.0044 13.09 0.0686

D—NaCl 0.5896 1 0.5896 1751.39 0.0006

E—inoculum size 0.0143 1 0.0143 42.42 0.0228

F—incubation period 0.0843 1 0.0843 250.50 0.0040

G—MgSO4.7H2O 0.0015 1 0.0015 4.44 0.1695

H—MnSO4.4H2O 0.0017 1 0.0017 4.99 0.1551

J—ascorbic acid 0.0014 1 0.0014 4.18 0.1775

Residual 0.0007 2 0.0003

Cor total 0.7807 11

Note: R2 = 99 91%; R2adjusted = 99 53%; R2predicted = 96 89%; p < 0 05.
Abbreviations: df = degree of freedom, MSE = mean square error, SS = sum of squares.
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factors (NaCl, pH, temperature, and inoculum size) based on t-value threshold.
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with the data subjected to rigorous ANOVA based on the
established experimental design. The highest cell growth
recorded in this study was 1.948 g/100mL, and the close
correlation between experimental and predicted data vali-
dates the model’s efficacy, which was further assessed
using multiple evaluative criteria.

Notably, the regression equation derived from qua-
dratic regression analysis on the experimental data delin-
eates the relationship between cell growth and the
various optimizing parameters. Previous investigations
have underscored the crucial role of medium composition
in bacterial proliferation [27]. Although many studies have
harnessed PBD for optimizing cell mass production, this
research adopts a distinctive methodology by sequentially
selecting factors before applying PBD. This strategic
approach accounts for the variability of factors across dif-
ferent strains [26]. Moreover, recent initiatives have sought
to minimize medium costs [4]. This study incorporated
specific nitrogen sources, namely, peptone and yeast
extract, into the MRS medium, alleviating production’s
financial burdens.

Earlier investigations by researchers [18] identified inoc-
ulum size and temperature as pivotal factors positively
influencing microbial growth. The high R2 value of 0.9689,
accompanied by an adjusted R2 value of 0.9953, reflects a
robust agreement between the experimental and predicted
levels of bacteriocin production [18]. This strong correlation
suggests that the model proficiently predicts responses, par-
ticularly as the difference between the predicted R2 and
adjusted R2 remains below the threshold of 0.2, further
attesting to its reliability. Additionally, the adeq precision,
which quantifies the signal-to-noise ratio, exceeds the rec-
ommended threshold of 4, registering a ratio of 52.777, indi-
cating sufficient signal strength.

This model adeptly traverses the design space, facilitat-
ing evaluating of experimental factors relative to noise, as
highlighted by researchers [19]. The model’s F-value of
257.42, with a corresponding p value of 0.0039, underscores
the significance of the model terms. Specifically, factors A, B,
Interactions A.C. and B.C., and the squared terms B2 and C2

were determined to be significant contributors to cell
growth, corroborating findings by researchers [12]. Detailed
insights regarding the ANOVA analysis related to these find-
ings are presented in Table 4.

3.5. RSM. This study employed a CCD model to optimize
the medium components utilizing RSM as shown in
Table 5 [16]. The four independent variables were desig-
nated as X1, X2, X3, and X4, with their respective concen-
trations ranging from 9.29 g/L to 32.6 g/L, 7.34 g/L to
54.7 g/L, 5.76 g/L to 62.8 g/L, and 8.14 g/L to 59.6 g/L. The
optimal concentrations for these variables were systemati-
cally determined and are presented in Table 4, illustrating
both coded units and actual values.

The design matrix comprised 20 experimental runs, each
reflecting different combinations of the independent vari-
ables. The results of these experiments and the correspond-
ing biomass production data are summarized in Table 4.
The biomass production observed varied significantly, rang-
ing from 1.094 to 1.948 g/L.

R² = 0.9936
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Notably, Run 19, characterized by a pH of 2.5, a temper-
ature of 35°C, a NaCl concentration of 3 g/L, and an incuba-
tion period of 30 h, yielded the highest biomass production.
This finding underscores the significance of the identified
optimal conditions, as they facilitated the most advanta-
geous outcome for biomass production throughout the
experimentation process [7, 28].

3.6. Final Equation in Terms of Coded Factors.

Y = +1 36 − 0 0615A − 0 0983B + 0 0038C + 0 1167D
+ 0 0088AB – 0 022AC − 0 0181AD – 0 0152 BC
– 0 0034 BD = 0 0134CD

The coded equation in terms of the factors allows for
predictions regarding the response at specified levels of each
factor. By convention, high factor levels are represented as
+1, while low levels are denoted as −1. This coded represen-

tation facilitates the assessment of the factors’ relative
impacts by comparing their coefficients [11, 16].

The significance of the quadratic regression model,
which incorporates linear, squared, and interaction terms,
is substantiated by the ANOVA presented in Table 4 of this
study. The model demonstrates a strong significance, as evi-
denced by an F-value of 33.22 and a very low probability
value (p > F) of 0.0001. The F-value, the ratio of the mean
square regression to the mean square residual, is a critical
indicator of the model’s validity. Given that the estimated
F-value substantially exceeds this critical threshold, we reject

TABLE 5: Response surface methodology for media optimization for Lactobacillus yield.

Std Runs PH Temperature NaCl% Incubation period (hours) Expected values Observed values

22 1 2.5 35 5 60 1.364 1.342

12 2 4 45 2 96 1.321 1.296

15 3 1 45 4 96 1.467 1.426

27 4 2.5 35 3 60 1.357 1.302

1 5 1 25 2 24 1.359 1.321

25 6 2.5 35 3 60 1.357 1.294

4 7 4 45 2 24 1.058 1.215

7 8 1 45 4 24 1.177 1.232

3 9 1 45 2 24 1.182 1.201

29 10 2.5 35 3 60 1.357 1.321

8 11 4 45 4 24 1.063 1.094

18 12 5.5 35 3 60 1.234 1.198

14 13 4 25 4 96 1.497 1.392

520 14 2.5 55 3 60 1.160 1.204

28 15 2.5 35 3 60 1.357 1.324

23 16 2.5 35 3 24 1.240 1.256

16 17 4 45 4 96 1.281 1.342

10 18 4 25 2 96 1.477 1.445

21 19 2.5 35 1 60 1.349 1.314

11 20 1 45 2 96 1.418 1.486

9 21 1 25 2 96 1.609 1.492

17 22 0.5 35 3 60 1.480 1.467

6 23 4 25 4 24 1.266 1.221

5 24 1 25 4 24 1.415 1.354

30 25 2.5 35 3 60 1.357 1.348

2 26 4 25 2 24 1.299 1.254

13 27 1 25 4 96 1.718 1.684

26 28 2.5 35 3 60 1.357 1.741

19 29 2.5 35 3 60 1.553 1.948

24 30 2.5 35 3 32 1.266 0.994

TABLE 6: Fit statistics.

Std. dev. 0.1533 R2 0.5661

Mean 1.35 Adjusted R2 0.3377

C.V. % 11.35 Predicted R2 0.1897

Adeq precision 7.0546
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the null hypothesis, thereby confirming the model’s high sig-
nificance in elucidating the relationships among the
variables.

Furthermore, the model’s goodness of fit is evaluated
using the coefficient of determination (R2), which was calcu-
lated to be 0.9676. This indicates that the model accounts for
approximately 96.76% of the total variability in the response
variable, leaving only 3.24% unexplained. R2 values range
from 0 to 1, with values approaching 1 signifying greater
predictive accuracy. In this context, the model is deemed
robust, as it effectively predicts the response and exhibits
an R2 exceeding 0.75, affirming its appropriateness for the
analysis [7].

The difference between the predicted R2 of 0.1897 and
the adjusted R2 of 0.3377 is less than 0.2, indicating reason-
able agreement between the two values (Table 6).

Adeq precision measures the signal-to-noise ratio. It is
preferable to have a ratio that is bigger than 4. The ratio of
7.0546 demonstrates that the signal is sufficient. Using this
paradigm, one may move more easily through the design
space.

3.7. ANOVA for 2FIT Model. Factor coding entails employ-
ing coding techniques to represent categorical variables
numerically. This transformation is crucial for statistical
analysis, allowing categorical data to be integrated into
quantitative models. The sum of squares is a fundamental
mathematical calculation that involves summing the squares
of a given set of numbers, serving as a measure of variability
within the data.

Within statistical analysis, Type III partial rewriting
refers to converting text into an academic style while ensur-
ing no additional information is introduced. The primary
objective of this approach is to enhance clarity and coher-
ence in the presentation of findings.

This study’s calculated Model F-value of 2.48 indicates
the model’s statistical significance (Table 7). The likelihood

of obtaining an F-value of this magnitude purely due to ran-
dom variation is estimated at 4.25%. This low probability
suggests that the observed relationships are unlikely to have
occurred by chance.

p values below the threshold of 0.0500 signify that the
model terms exhibit statistical significance. Specifically,
Model Terms B and D demonstrate considerable signifi-
cance in the current analysis. Conversely, values exceeding
0.1000 indicate a lack of statistical significance among those
model terms. Implementing model reduction strategies may
enhance the overall quality of the model, particularly if a
substantial portion of the associated terms is deemed super-
fluous, aside from those necessary to maintain the hierarchi-
cal structure of the model.

The F-value of 0.70 for the lack of fit reveals that the lack
of fit is not statistically significant compared to the pure
error. The estimated probability of observing a lack-of-fit F
-value of this magnitude due solely to random variation is
approximately 72.69%. A nonsignificant lack of fit is favor-
able, suggesting that the model adequately captures the
underlying data structure.

4. Conclusion

This study successfully employed a two-step statistical
approach—PBD followed by RSM—to optimize the cultiva-
tion conditions of Lactobacillus acidophilus CM1, thereby
enhancing its biomass yield while aiming to reduce overall
production costs. The screening phase using PBD identified
pH, temperature, NaCl concentration, and inoculum size as
the most influential factors affecting cell growth. These var-
iables were subsequently optimized using a CCD under
RSM, leading to a 1.45-fold improvement in biomass yield
compared to unoptimized conditions.

The maximum biomass production achieved was
1.948 g/100mL under the optimized conditions: pH of 2.5,
temperature of 35°C, NaCl concentration of 3%, and an

TABLE 7: Response 1: R1 [24].

Source Sum of squares Df Mean square F-value p value

Model 0.5824 10 0.0582 2.48 0.0425 Significant

A—pH 0.0907 1 0.0907 3.86 0.0643

B—temperature 0.2319 1 0.2319 9.87 0.0054

C—NaCl 0.0003 1 0.0003 0.0147 0.9048

D—incubation period 0.2384 1 0.2384 10.14 0.0049

AB 0.0012 1 0.0012 0.0529 0.8206

AC 0.0080 1 0.0080 0.3390 0.5672

AD 0.0052 1 0.0052 0.2222 0.6428

BC 0.0037 1 0.0037 0.1571 0.6963

BD 0.0002 1 0.0002 0.0080 0.9295

CD 0.0029 1 0.0029 0.1230 0.7297

Residual 0.4464 19 0.0235

Lack of fit 0.2954 14 0.0211 0.6985 0.7269 Not significant

Pure error 0.1510 5 0.0302

Cor total 1.03 29
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incubation period of 30h. These findings underline the sig-
nificance of maintaining slightly acidic conditions and mod-
erate salinity alongside a carefully timed incubation period
to promote optimal growth of L. acidophilus CM1. Statistical
analysis validated the robustness of the optimization model,
with an R2 of 0.9689, adjusted R2 of 0.9953, and a high ade-
quate precision value of 52.77, reflecting the model’s reliabil-
ity and predictive accuracy.

The integration of PBD and RSM offered a comprehensive
and cost-effective framework for bioprocess optimization, sig-
nificantly reducing the number of experimental runs required
to identify and fine-tune critical growth parameters. More-
over, using standard but economical nitrogen sources such
as yeast extract and peptone in a modified MRS medium fur-
ther supports the feasibility of scaling up this process in indus-
trial settings. This work provides a solid foundation for
commercializing L. acidophilus CM1 as a probiotic in food
and pharmaceutical applications. Future work can extend
these optimization strategies to alternative substrates, scale-
up trials in bioreactors, and exploration of cocultivation
models with other probiotic strains. The study advances
microbial bioprocess optimization by demonstrating how fac-
torial experimental designs can systematically improve yield
and cost efficiency, aligning with the growing global demand
for affordable and high-quality probiotic formulations.
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