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A B S T R A C T 

 This study presents a Caputo fractional model for HIV Infection. 

It has been demonstrated that there is a unique non-negative and 

boundedness solution established in this paper. For the analysis of 

our Caputo fractional model for HIV infection, we proposed an in-

vivo seven dimensional Caputo fractional model for the dynamics 

of HIV. The Caputo fractional in-vivo model is not only 

biologically well presented, but mathematically as well. A novel 

infection-free equilibrium points exists and local stability of these 

points are examined. Additionally, the next-generation matrix 

method is used to measure the basic reproductive rate of each of 

the HIV virus strains. 
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1- Introduction 

     One of the major global public health issues today is the human immunodeficiency virus, 

commonly known as HIV. Currently, more than 35 million are infected with HIV, 71% of which 

live in Sub-Saharan Africa [1]. Since the onset of HIV in 1980, a lot has been accomplished in 

terms of its treatment [2]. The US Food and Drug Administration (FDA) approved about twenty-

six HIV drugs. One of the medications used to treat HIV is known as Highly Active 

Antiretroviral Therapy (HAART).  
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The introduction of those drugs enabled us to sustainably suppress the replication process of the 

virus, partially restore the defense system of the body, and sharply lower the occurrence of 

complications and fatality. While HAART helped us significantly in the management of HIV, 

the continuous use of these drugs results in different consequences and the development of a 

drug-resistant virus. The rise of an HIV virus that is drug resistant was also found to be caused 

by pre-exposure prophylaxis (PrEp), a new drug proposed to reduce the chance of infection by 

the non-infected person [3]. 

Reverse transcription is a different process that causes drug mutant HIV virus to develop. HIV is 

known as the RNA virus also, RNA polymers have a high rate of mutation and are not subject to 

verification by the host cell According to Drake and Holland [4], the mutation rate per each 

replication cycle for RNA viruses, such as HIV, is one mutation per genome. Therefore, all 

infected patients have drug-resistant mutants before they start receiving treatment, therefore, a 

combination therapy is needed for the HIV infection. The complexity of the resistance to HIV 

along with the existence of poor adherence to HIV therapy in Sub-Saharan Africa needs to be 

carefully analyzed. The emergence of drug resistance has been one of the most interesting 

problems for researchers focusing on HIV modeling aimed at the establishment of the most 

optimal methods of controlling the virus. The primary phenotype of the mutant strain of the HIV 

virus and the unmutated strain was determined through gene analysis [5], however, 

unfortunately, there have been no conclusive findings. Nonetheless, one finding that researchers 

have been able to deduce is that the infected person can pass the drug-resistant virus to another 

person. Researchers showed that there is a relationship between the evolution of mutated viral 

strains of the drug and drug adhesion [6]. The problem of the drug resistant virus has been 

addressed through formulated and analyzed models by mathematicians studying in-host 

modeling for the HIV infection. Some advantages of those models include gaining knowledge 

about the progression of HIV, the effectiveness of the drug, and the danger of drug-resistant 

viruses. For example, a five-dimensional model, which includes a wild-type and a drug-resistant 

strain, has been developed by Rong et al. aiming at analyzing how the lack of adherence to 

HAART affects drug mutant viruses [2]. Also, Reverse  transcription of RNA to DNA is 

mutated, therefore, advising this study. This study, nevertheless, with the exception of  CD8 + T- 

cells which are an important part the dynamics of HIV infection, There was also a six-

dimensional model used by Tarfulea and Read which included two viral strains, one with 

sensitivity to the drug and the other without sensitivity to the drug [7]. This model did not only 

aim at analyzing the effectiveness of various HIV therapies also in thin each case, determining 

the correlation between drug effectiveness, drug resistance, and adhesion to the therapy. While 

this study gave helpful suggestions, also a non-infectious virus caused by the use of protease 

inhibitors was neglected. In a dimensional model, Tarfulea et al. he also indicated that it is 

important to include two strains of viruses a drug that is sensitive, as it showed the role of cells in 

eliminating the virus, a drug mutant and a drug-sensitive, and the role of CD8 + T-cells in the 

suppression of the virus. The results made it apparent that boosting the immune system should be 

of great importance for health care personnel working in the HIV field to reduce HIV therapy, 
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and therefore, lessen the issue of drug resistance. An in-vivo seven-dimensional model was 

developed by Ngina et al. to search for a drug that is highly effective a mong protease inhibitors, 

reverse transcriptase inhibitor, and protease inhibitor [8]. While this study supplied helpful 

findings, it neglected resistant HIV virus, which result from either long term use of HAART or 

previous infection with a resistant virus. Such evidence is significant in any in-vivo model. 

     The strategy of this paper is as follows: In section 2, we present necessary definitions of 

fractional derivative and fractional integral. Also, we review some important properties and 

theorems for stability analysis. In Section 3, the Caputo fractional model for HIV Infection is 

presented. In Section 4, we establish the solutions have a unique non-negative and their stability 

are investigated.  

2- Preliminaries 

     In this section, we present necessary definitions of fractional derivative and fractional 

integral. Also, we review some important properties and theorems for stability analysis. 

Definition 1 [9]. Let :[a,b]f R . Then the left and right Riemann-Liouville fractional integral 

(RLFI) of order 0   of f is given by 
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Property 1 [10]. Let 1 2, :[a,b]f f R . Then there are 1 2,  R such that.  
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Property 2 [10]. Let k  is constant. Then   
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Remark 1 [11]. There is a relationship connect between RLFI and CFD as follow 
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Consider the general Caputo fractional differential equation as follow: 

 ( ) ( , ( )) , 0 1C

a tD x t g t x t        (11) 

Subject to  

 0 0( )x t x  (12) 

Definition 3 [12]. The Caputo fractional dynamic system (11) have equilibrium point x
  if and 

only if  ( , ) 0g t x  . 

Theorem 1 [13]. The Caputo fractional dynamic system (11) at equilibrium point x
 is locally 

asymptotically stable if all the eigenvalues   of the Jacobian matrix of system (11) at the 

equilibrium point x
, satisfies the following condition: 

 arg( )
2


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Definition 4 [14]. Suppose that ( )G s  is the Laplace transform of the function ( )G t . Then, the 

Laplace transform of the Caputo derivative is get as follow 

           
1

1 ( )

0

{ ( ), } ( ) (0) , 1 ,
m

C i i

a t

i

L D G t s s G s s G m m m   


 



                                      (14) 



Sanaa L. Khalaf,  Zainab A. Lazim                                                                           JQCM - Vol.12(4) 2020 , pp  Math.  1–16      5 

Definition 5 [14]. The generalized Mittag-Leffler function , ( )n mE t  for t  is defined by 
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Property 3 [14]. The Mittag-Leffler function , ( )n mE t  for t  satisfies  
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Definition 6 [14]. The Laplace transform of the Mittag-Leffler function , ( )n mE t  is defined as 

follows 
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3- Analysis of HIV Model  

     For the purpose of obtaining the fractional optimal control, we will subedit a mathematical 

sample that shows the relationship between that HIV viruses and the organ responsible for the 

body’s immunity. In this subsection we will generalize HIV model to Caputo fractional order 

system of order . The population is divided into seven sub-classes as according to the following 

table. 

Table 1: variables for HIV in-vivo system 

Variable Description 

T  The concentricity of the non-infected 4CD 
 T-cells. 

I  The concentricity of the infected 4CD 
  T-cells. 

lI  The concentricity of latently infected  4CD 
 T-cells. 

V  The concentration of HIV virions. 

nV  The concentration of the unripe non-infectious virions. 

Z The concentricity of the 8CD 
 T-cells.. 

aZ  The concentricity of the activated 8CD 
 T-cells. 

 

     Now, we suppose the following system of Caputo fractional equations to describe the in vivo 

dynamics of HIV: 
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                                                                       (18) 

Where 1 2 30 , , 1u u u   . Control 1u  represents fusion inhibitors (FIs) she knows that it is a class 

of antiretroviral drugs that work on the outside of the host CD4+ T-cell to prevent HIV from ,the 

causing human immunity to integrate with it and hence its infection also the  2u  control 

represents the reverse transcriptase inhibitors (RTIs) which are the reason  to prevent the process 

of reverse transcription ,while 3u  another control that represents the  Protease inhibitors (PIs) 

,whose role is to prevent the secretion of the protease in the liver. 

Table 2: Parameters for HIV in-vivo model 

Parameter Description 

T The rate at which the non-infected 4CD   T-cells are produced. 

T The rate at which the non-infected 4CD   T-cells dissolution. 

 The rate at which the 4CD   T-cells are infected by the virus. 

I The death rate of the infected 4CD   T-cells. 

lI The death rate of the latently infected 4CD   T-cells. 

V The rate in which HIV virions are produced from the infected 4CD    T-cells. 

V The death rate of the infectious virus. 

nV The death rate of the non-infectious virus. 

 The rate at which the infected cells are eliminated by the activated 8CD   T-cells. 

z The rate at which the 8CD  T-cells are produced. 

z The death rate of the 8CD  T-cells. 

 The rate at which the 8CD  T-cells are activated by the presence of the virus and 

the infected 4CD  T-cells. 

Za The rate at which the activated defense cells decay. 
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4- paradigm analysis 

     We note that the solution to the system (18) is not negative as long as the values for its 

priority are not negative and the proof is our result for the first we present the following result 

shows the Mean value theorem.  

Lemma 1 [15]. (Generalized Mean Value Theorem). 

 Suppose that ( ) [ , ]x t C a b  and ( ) ( , ]C

a tD x t C a b  , for 0 1  , then we have 
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with [ , ], ( , ]a t t a b    .  
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Since ( , , , , ,Z,Z )l n aT I I V V  , According to the Corollary1, the solution ( , , , , ,Z,Z )l n aT I I V V  

cannot escape from the hyperplanes of 0, 0, 0, 0,lT I I V     0, Z 0,Z 0n aV    ; i.e. the 

territory   is a positive invariant set. 

     Now, we display the boundedness of the solution of the Caputo fractional model for HIV 

Infection (18) by the next theorem. 

Theorem 3. 

The territory {( , , , , , Z, Z ) : 0, 0, 0, 0, 0, Z Z }Z
l n a l n aT I I V V T I I V V


        


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invariant set for system (18). 

Proof: From (18) the total population of the 8CD  T-cells satisfy 
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By applying the Laplace transform to Eq. (22), we will get 
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From Eq. (17) and Eq. (16), we conclude that if ( , , , , ,Z,Z )l n aT I I V V  , then 
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Then from Theorem 2 and Eq. (23), we obtain the boundedness of 8( )N t  as 80 ZN


 


. So, 

the feasible territory   is positively invariant. This shows the solution of the Caputo fractional 

model for HIV Infection (18) is bounded. 

 4.1- Contagion-free equilibrium 

The Caputo fractional model (18) has a contagion-free equilibrium which happen when 

, , ,l nI I V V  and aZ  are equal and given by 

 

0 ( (0), (0), (0), (0), (0), (0), (0))
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    4.2- The basic reproductive number 

    In this section, we will apply the next generation matrix in determining the identification of 

the marking that governs the spread of the disease, which is called the primary reproductive 

number [10]. Where 0R  indicates the average secondary infection cases that result from the 

primary condition in a group of individuals most susceptible to HIV infection in vivo. 0R

indicates the number of 4CD 
 T -cells that result from one 4CD 

 T -cells infected throughout 

their life span. The presence of 0R  <1 means that the disease can be completely eradicated and 

that it is done through HIV treatment that infects sensitive parameters of 0R .  

4.3- Calculation of 0R  

     Using the next generation method 0R , where 0R  is the eigenvalue of the matrix
1G FV   , 

where F indicates new infections, while V indicates the transmission of infection from one place 
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to another. Both of them are calculated in an equilibrium-free equilibrium state, and 

consequently is derived as follows.  

From system (18) the infective compartments are 
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 Now we give the Matrix to transmit infection from one person to another at the point of balance 

free from infection. 
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Now we give matrix that transfers infections from one stone to another in a balance that is free 

from disease. 
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0 0 0

0 0 0 0

l

a

I

I

V I V

Z
Z

Z

Z

u
V





  


 




 
 
 
  

  
 
 
 
  

                                                                  (27) 

The inverse of matrix  V  from is given by 
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31

2

1
0 0 0 0

1
0 0 0 0

(1 ) 1
0 0 0

1
0 0 0

1
0 0 0 0

l

a

I

I

V

V V

Z

Z I Z

Z

u
V







 



  





 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

                                                           (28) 

By multiplying matrices (26) and (28) we will get 

            

2 3 2

2 3 2

1

(1 )(1 ) (1 )
0 0 0

(1 )
0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

T V T

T V T V

T V T

T V T V

Z

Z I

u u u

u u u

FV

  

   

  

   



 



   
 
 
  
 
 
 
 
 
 
 
 

                                                (29) 

The eigenvalues from the matrix (29) are 

                   

3 2

0

0

0

0

( 1)( 1) V T

T V

u u



 

 

 
 
 
 

  
 
 

  
 

                                                                                      (30) 

It is from eigenvalues the reproductive number is essentially known as  

                0 3 2= ( 1)( 1) V T

T V

R u u
 

 
                                                                                            (31) 
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     We note that if the  0 1R    is viral, the human immunodeficiency virus (HIV) will note be 

able to control the disease will and with time. Time is a very important factor because the virus is 

undetectable which depends on the small size of 0R , and therefore it is necessary to continue in 

taking HARRT in order to avoid illness . 

4.4- Analysis of the 0R  

     In this section ,we aim to determine the relative importance of the various parameters that are 

responsible for viral reproduction ,which is related to
0R , and which is a measure of the 

possibility of infection spreading between people and is considered one of the most important 

ideas that present by mathematicians to the epidemiology to date [16], there are several methods 

for conducting an allergy analysis ,all aiming to classify a sensitivity that is slightly different in 

this study.      

The normalized forward sensibility index of 0R  with respect to the parameter Q  is given by: 

                                 0 0

0

R

Q

R Q

Q R


  
   

  
                                                                                      (32) 

Where Q indicates the basic reproductive number from which is given by Eq. (31) and that the 

sensitivity indicators R with respect to the parameters  , , , ,V T T V      are, respectively, given 

as: 

                           0
3 2

0
3 2

( 1)( 1) 1

( 1)( 1)

V T

V TT V

T V

R
u u

R
u u

  

   

 


   


 

                                  (33) 

                          0
3 2

0
3 2

( 1)( 1) 1

( 1)( 1)

V VT

V TV T V

T V

R
u u

R
u u

 

   

 


   


 

                                  (34) 

                          0
3 2

0
3 2

( 1)( 1) 1

( 1)( 1)

VT T

V TT T V

T V

R
u u

R
u u

 

   

 


   


 

                                   (35) 

                          0
3 2 2

0
3 2

( 1)( 1) 1

( 1)( 1)

VT T

V TT T V

T V

R
u u

R
u u

 

   

 


     


 

                             (36) 
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                         0
3 2 2

0
3 2

( 1)( 1) 1

( 1)( 1)

V V V

V TV T V

T V

R
u u

R
u u

  

   

 


     


 

                              (37) 

    We note that through sensitivity indicators ,it becomes clear to us that   , V  and T are among 

the most positively sensibility parameters ,and this will lead to an increase in the value of R .at 

the same time that T  and V is one of the sensitivity parameters negative and therefore  

increasing any of these parameters will reduce the value of R and in particular that an increase of 

1 in R and the results that in turn led to a decrease of 1 in R, and therefore physicians who  are 

healthy should use the controls that affect allergic parameters for the most positive and therefore 

will lead to a decrease in the number of HIV viruses 

Also, note of the 0R (30) is that if 2 3 1u u   then the basic reproductive number equal to zero 

with this result the disease will be completely eradicated 

4.5- Local stability of the contagion-free balance 

Theorem 4. The infection-free balance, 0E , is locally asymptotically stable when 0 1R   and 

unstable otherwise. 

Proof: To determine local stability and equilibrium without infection, we apply a linear method 

and thus give the Jacobian matrix of Caputo fractional system as follows: 

          

1

2

2

3

3

0 0 (1 ) 0 0 0

0 0 (1 ) 0 0 0

0 0 0 0 0

0 (1 ) 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

L

n

a

T
T

T

T
I

T

T
I

T

V I V

V I V

Z
Z

Z

Z
Z

Z

u

u

u

J
u

u


 




 




 



  

  


 



 


 
   
 
 

  
 
 

 
 
  
 

 
 
  
 
 
 
  

                             (38) 
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Now, we extract the eigenvalues of the Jacobian matrix in Eq. (38) as follow 

                                                 1 aZ                                                                                       (39) 

                                                2 Z                                                                                         (40) 

                                                
3 Vn                                   (41) 

                                                
4 T                                      (42) 

                                              5 lI                                                                                          (43) 

 

2

2 3

6

( ) 4(1 )(1 ) ( )

2

T I T V T T I V T I T V

T

u u            




      
   (44) 

 

2

2 3

7

( ) 4(1 )(1 ) ( )

2

T I T V T T I V T I T V

T

u u            




      
   (45) 

Note that 1 2 3 4, , ,     and 5  have a real negative part. Now, we will proof the 6 and 7   have a 

real negative part. 

Since 6 7  , then suppose 6 0  , we get 

                    

2

2 3( ) 4(1 )(1 ) ( )
0

2

T I T V T T I V T I T V

T

u u            



      
  

                    2

2 3( ) 4(1 )(1 ) ( ) 0T I T V T T I V T I T Vu u                     

                          2

2 34(1 )(1 ) ( ) ( )T T I V T I T V T I T Vu u                    

                             
2 2

2 34(1 )(1 ) ( ) ( )T T I V T I T V T I T Vu u                    

                 
2 2 2 2 2 2 2 2 2 2

2 34(1 )(1 ) 2 2T T I V T I T I V T V T I T I V T Vu u                            

                                          
2

2 34(1 )(1 ) 4 0T T I V T I Vu u             
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                                                   2 3(1 )(1 ) 1T V

T V

u u
  

 
                                           

                                                  2 3( 1)( 1) 1T V

T V

u u
  

 
                                                              (46) 

Since 
0 2 3( 1)( 1) T V

T V

R u u
  

 
   , then from (46) we have  0 1R  .

 

Then infection-free balance, 

0E , is locally asymptotically stable.  

5- Conclusion 

     This study formulated and analyzed a Caputo fractional model for HIV infection. The 

qualitative analysis of the model shows that the solutions of the model are bounded and positive. 

The infection-free equilibrium point of the model is obtained and its local condition investigated 

in reference to the basic reproduction number, in which the results indicate that the infection-free 

equilibrium of the model is both locally stable.      
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