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Abstract 

The identification of human motion intention through electromyography (EMG) signals is an important area of development in 
human–robot interaction. This technology aids amputees in controlling their prosthetic limbs in a more intuitive manner, facilitating 
the execution of daily activities. However, hand amputees face challenges in using dexterous prostheses due to control difficulties 
and low robustness in real-life situations. This study aims to enhance the accuracy of EMG gesture recognition by extracting spatial 
characteristics via multiple high density (HD) maps. A total of five HD-maps are generated utilizing the root mean square value (RMS), 
mean absolute value (MAV), zero crossings (ZC), sign slope changes (SSC), and waveform length (WL) features. The influence of each 
distinct HD-map, along with the synergistic effect of numerous HD-maps in the extraction of intensity features, is assessed with regard 
to its impact on classification accuracy. Three machine learning classifiers are employed to categorize nine hand movements of the 
Ninapro (DB5) dataset. The results show that features extracted from the combination of multiple HD-maps (CMHD) achieved a high 
accuracy in comparison to those of individual HD-maps. Moreover, the proposed features are superior to those of conventional TD 
features. The error rate is reduced by approximately 7.76% relative to time domain (TD) features. The results obtained confirm the 
significance of spatial features extracted from multiple HD-maps that ensure consistent information in different EMG channels. 
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Introduction 

Medical research has demonstrated that a significant number of the muscles and electromyography (EMG) signals 
associated with the hand and fingers remain quantifiable even following the amputation of the hand (Bi et al., 2019). 
Consequently, the identification, analysis, and classification of EMG signals are well-established areas of study, especially 
with respect to prosthetic hand technology. The development of rehabilitation devices, robotics, sensors, and artificial 
intelligence algorithms has a significant impact in assisting disabled people in their interactions with the environment 
(Phinyomark et al., 2018, Jaber et al., 2021c, Javaid et al., 2021). 

Human motion intent can generally be used to analyze hand movements using various sensors, such as inertia 
measurement unit (IMU), camera, and data glove. However, these sensors only work when the human body is moving 
(i.e., it detects human intention at a physical level). As a result, such technologies are mostly used for healthy people 
instead of those who have lost a limb or suffer from nerve diseases. Moreover, these systems continue to face problems 
such as photosensitivity and change in distance and position (Sandhya et al., 2023). On other hand, recognizing human 
movement intent based on EMG signals, which are obtained from muscle contraction, provides more intuitive information 
than purely physical data (Hassan et al., 2020, Xiong et al., 2022). 

Two approaches are widely used to determine the intention of human movements based on EMG signals. The first 
technique uses a kinematic model to predict movement and is suitable for low degree of freedom (DOF) movements, such 
as ankle movement (Xie, 2016). The second approach uses pattern recognition based on machine learning algorithms. 
Pattern recognition control (PRC) has the ability to recover a greater range of DOF movements, including hand gesture 
recognition (Essa et al., 2023a). PRC has been considered applicable to the extraction of useful information from EMG 
signals required to recognize human movement intent. An accurate and effective myoelectric PR system relies on 
extracting and selecting high-quality features (Farina et al., 2014, Abbas et al., 2024)
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Several classifiers can be used to recognize human motion intent based on EMG signals, such as deep learning (Nan et 
al., 2019) and machine learning algorithms (Tepe et al., 2022, Darweesh et al., 2025). Wu et al. (2018) integrated long 
short-term memory (LSTM) and convolutional neural networks (CNNs) within a unified architecture to automatically 
extract features, thereby eliminating the need for conventional feature extraction techniques. Côté-Allard et al. (2019) 
and Chen et al. (2020) employed wavelet or short-term Fourier transform (STFT) analyses to EMG signals to facilitate 
their representation as images, which were subsequently input into a CNN architecture. Although effective, the CNN 
framework necessitates a substantial volume of data for training and requires substantial memory resources and 
computational time. 

Essa et al. (2023b) and Narayan et al. (2021) used conventional features that can be extracted from EMG signals in the 
time domain (TD), frequency domain (FD), and time frequency domain (TFD). Pizzolato et al. (2017) introduced a public 
Ninapro dataset (DB5) for double Myo armbands. They used root mean square (RMS), TD, histogram (Hist), marginal 
discrete wavelet transform (mDWT) features, and a concatenation of these features based on support vector machine 
(SVM) and random forest classifiers. Hassan et al. (2020) used six-time domain features to classify seven gestures based 
on three machine learning algorithms; however, they found that using TD, FD, and TFD features can result in the loss of 
spatial features within different channels. Recently, many researchers have shown the robustness of spatial features 
compared to conventional features. Jaber et al. (2021a, 2022) extracted spatial features of high density (HD)-maps based 
on the Histogram Oriented gradient algorithm. Jordanic et al. (2017) identified spatial features using the modified mean 
shift algorithm. These studies utilized HD-maps based on RMS features to represent the HD-map similarly to an image, 
whereby individual pixels correspond to distinct channels. This representation enables the application of image 
processing techniques to extract various features. 

This study proposes a spatial structural feature extracted from various HD-maps. An approach for conceptualizing EMG 
signals as HD-maps is introduced. EMG signals are characterized as HD-maps employing metrics such as RMS, mean 
absolute value (MAV), zero crossing (ZC), sign slope change (SSC), and waveform length (WL). The Combined Multi-HD-
map (CMHD-map) was used for the explicit aim of feature extraction by virtue of its capacity to enhance the diversity 
of spatial features. This study establishes the impact of extracting intensity features from both individual HD-maps, and 
a combination of multiple HD-maps, on the classification accuracy. Furthermore, the effectiveness of the proposed 
spatial features is confirmed through a comparison with conventional TD features. 

The structure of the paper is arranged as follows. Section 2 presents the computation of HD-maps and extraction of 
intensity features from these maps. The simulation results of the proposed structural features, comparison with classical 
TD features, and the performance of three classifiers is presented in section 3. Finally, the conclusions are presented in 
section 4. 

Materials and Methods 

EMG Pattern Recognition 

Myoelectric pattern recognition system consists of four main stages: data acquisition, EMG pre-processing, feature 
extraction, and classification (Jaber et al., 2021b, Essa et al., 2022). An overview of myoelectric pattern recognition is 
shown in Figure 1.  

 
 Overview of EMG pattern recognition. 

In this study, EMG signals are obtained from a standard dataset (DB5 of Ninapro datasets). The DB5 contains EMG signals 
recorded using two Myo armbands. The Myo armband is characterized as an EMG device incorporating an ARM Cortex-
M4 microcontroller unit comprising eight dry electrodes, a nine-axis inertia measurement unit (IMU), and Bluetooth low 
energy (BLE) models. EMG signals from the upper Myo armband are used (i.e., EMG signals of the first eight channels). 
DB5 contains ten subjects, each of which performs an ordered number of gestures. Each gesture is repeated six times. 
Each subject performed three exercises, hereafter A, B, and C. Exercise A contains 12 isometric and isotonic hand 

https://www.researchgate.net/scientific-contributions/Alya-Ghazi-Darweesh-2306745211?_sg%5B0%5D=i3IPo1ubBJaK0KAL0IsnFz9lHgjp4Hb61I57XOQK2U0TyYB2gDN-QmJzbHUFnRC4Vrb16U4.O-K7itQsOEiZpHKyitWAqLws7uB2Kalt4ex3mpdjzOLTTWHqSpkfuCdCQqiekixFFdAXxeJHvDm4dw11aM9fbg&_sg%5B1%5D=HxoQcbGbnf0oHJ2U4OZQ_-bWN-4IlcSETbs4UUNJLud86_t3-6ggYwbS7A4z3ufGER6_z6Y.Lq5WW4PBD9DPhuiwl7qszQo0oOJZNlnmOrj6RNlOIkUYr-UqZDR7Uu-EnE5TFXZZurDZ0vMX5MsLcc9-l3yEsg&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6ImhvbWUiLCJwYWdlIjoicHVibGljYXRpb24iLCJwb3NpdGlvbiI6InBhZ2VIZWFkZXIifX0
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movements, Exercise B contains 17 wrist movements, and exercise C involved 23 grasp movements (Rehman et al., 
2018, Atzori et al., 2014). In this work, the sEMG signal of nine gestures from exercise B are considered; these include 
eight finger gestures and one wrist gesture. 

Computing HD-maps 

The informative representation obtained from EMG signals is of great importance in myoelectric PRC. In this study, 
spatial structural characteristics are derived from multiple HD-maps rather than the amplitude of electromyography 
(EMG) signals. The resultant HD-map illustrates the spatial configuration of EMG channels. In contrast, the process of 
feature extraction from separate channels followed by their integration into a unified vector may result in the loss of 
spatial information across numerous EMG channels. The HD-map is generated through the utilization of features derived 
from the amplitude of EMG signals relevant to channels, which are organized in an array, including RMS, MAV, ZC, SSC, 
and WL features.  

The EMG signals corresponding to gesture i are partitioned into 1000 discrete sampling instants and are denoted as the 

matrix𝐸𝑀𝐺 = {𝐸1(𝑛), ⋅⋅⋅⋅, 𝐸8(𝑛)}  ∈ ℝ(𝑁×8), where n denotes the individual discrete sampling instant 𝑛 = [1,2,⋅⋅⋅, 𝑁] 
and N denotes the cumulative number of sampling points contained in the EMG signal. At the temporal instance t, the 
vector {𝐸1,⋅⋅, 𝐸8}comprises the measurements derived from the eight channels of the Myo sensor. The EMG matrix is 
formulated as HD-map as follows: 

𝑅𝑀𝑆(𝑥(𝑛)) = √
1

𝑁
∑ 𝑥(𝑛)2𝑁
𝑛=1   

𝑅𝑀𝑆 −𝑚𝑎𝑝 = 𝑅𝑀𝑆({𝐸1(𝑛), ⋅⋅⋅⋅, 𝐸8(𝑛)})                      
(1) 

𝑀𝐴𝑉(𝑥(𝑛)) =
1

𝑁
∑ |𝑥(𝑛)|𝑁
𝑛=1   

𝑀𝐴𝑉 −𝑚𝑎𝑝 = 𝑀𝐴𝑉({𝐸1(𝑛), ⋅⋅⋅⋅, 𝐸8(𝑛)})                                                                                                  
(2)                      

𝑍𝐶(𝑥(𝑛)) = ∑ [
𝑠𝑔𝑛( 𝑥(𝑛) × 𝑥(𝑛 + 1)) ∩

|𝑥(𝑛) − 𝑥(𝑛 + 1)| ≥ 𝑡ℎ𝑟𝑒
]𝑁−1

𝑛=1   

𝑠𝑔𝑛( 𝑥) = {
1,   𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑟𝑒
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     

𝑍𝐶 − 𝑚𝑎𝑝 = 𝑍𝐶({𝐸1(𝑛), ⋅⋅⋅⋅, 𝐸8(𝑛)})                                                                            

(3) 

𝑆𝑆𝐶(𝑥(𝑛)) = ∑ [
𝑓[(𝑥(𝑛) − 𝑥(𝑛 − 1)) ×

(𝑥(𝑛) − 𝑥(𝑛 + 1)]
]𝑁−1

𝑛=2   

𝑓(𝑥) = {
1,  𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,  𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑟𝑒 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒  

𝑆𝑆𝐶 − 𝑚𝑎𝑝 = 𝑆𝑆𝐶({𝐸1(𝑛), ⋅⋅⋅⋅, 𝐸8(𝑛)})                                                         

(4) 

𝑊𝐿(𝑥(𝑛)) = ∑ (|𝑥(𝑛) − 𝑥(𝑛 − 1)|)𝑁
𝑛=1   

𝑊𝐿 −𝑚𝑎𝑝 = 𝑊𝐿({𝐸1(𝑛), ⋅⋅⋅⋅, 𝐸8(𝑛)})                                                                                      
(5) 

where x denotes the EMG signal at a specific channel, n is the sampling instant of x, and N denotes the length of signal 
x. Moreover, this study proposes the integration of multiple HD-maps for feature extraction in order to increase the 
number of features; this results in an improved classification accuracy. The combination of multiple HD-maps is denoted 
as the CMHD-map as described above. The CMHD-map is represented as a matrix corresponding to five HD-maps, each 
of which is computed for eight channels.  

Feature Extraction 

Spatial features contain rich information from EMG signals within channels. Commonly, features are extracted from 
individual channels then concatenated into a single feature vectors, such as TD, FD, and TFD features. The spatial 
features confirm the intermuscular synergy between muscles when producing a movement; however, they lack spatial 
information through different channels.  

This research focuses on extracting intensity features from HD-maps. The relationship between EMG amplitude and 
generated force are nonlinear (Jordanic et al., 2016), leading to the calculation of the intensity feature as the common 
logarithm of the HD-map as follows: 
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 𝐼 = 𝑙𝑜𝑔10(𝐻𝐷 −𝑚𝑎𝑝)                                                                                              (6)  

Intensity features represent the spatial distribution of individual channels. In this study, the impact of intensity features 
on the classification accuracy was examined, using features extracted from both individual HD-maps and the CMHD-
map. 

Conventional TD features are used to compare with the proposed spatial structure features. TD features are selected as 
the same features used for calculating HD-maps and include RMS, MAV, WL, ZC, and SSC. TD characteristics are typically 
computed individually from every channel and then combined into a unified feature vector. A schematic block diagram 
of the proposed work is shown in Figure 2. 

 

 Schematic block diagram showing the process by which conventional TD features and intensity features 
obtained from HD- maps are extracted. 

Classification 

In this study, three types of machine learning algorithms are used, namely Linear Discriminate Analysis (LDA), SVM, and 
K-nearest neighbor (KNN). The test sample is predicted using the KNN classifier by expansion of its region to encompass 
all K training samples, followed by the utilization of a majority vote from the K training samples to identify the test 
sample. The SVM classifier is responsible for mapping the data into a high-dimensionality feature space, which allows 
for the classification of the data samples. This data transformation is achieved through the utilization of a mathematical 
function known as the kernel function. The SVM classifier provides a range of kernel functions, such as linear, 
polynomial, radial basis function (RBF), and sigmoid (Hassan et al., 2020). 

Similarly to the SVM classifier, the LDA classifier is tasked with the identification of a hyperplane that can effectively 
differentiate between various categories. The LDA classifier fundamentally depends on the assumption that the data 
follows a normal distribution. The hyperplane is obtained by constructing a model that increases the distance between 
classes and decreases the variance within the category.  

The accuracy (Acc) of the classifier is defined as the number of correctly predicted samples over all tested samples. 
Classification accuracy and error rate are calculated as follows: 

 𝐴𝑐𝑐 =
𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100                                                                               (7)  

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 (𝐸𝑅) = 1 − 𝐴𝑐𝑐                                                                                                                     (8)   

Classification performance is calculated based on the confusion matrix using precision, sensitivity, and F1_score as 
follows: 

𝑆 =
𝑇𝑃

𝑇𝑝+𝑇𝑁
                                                                                                                           (9) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                                                  (10) 

𝐹1_𝑆𝑐𝑜𝑟𝑒 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝑇𝑁
                                                                                                                                                  (11) 

Where TP is true positive, TN is true negative, and FP is false positive (Jaber et al., 2020, Sahm et al., 2024). In this study, 
our work is evaluated using the public dataset Ninapro DB5. Nine gestures are chosen to test the performance of our 
method. The classifier is trained using 50% of the dataset (i.e., three trials are used for training) and tested on the 
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remaining data. The kernel function of the SVM classifier used in this study is a basis radial function based on the LIBSVM 
library (Chang et al., 2011). 

Results  

Performance based on individual HD-maps and CMHD-map  

This experiment shows the effect of extracting intensity features from single HD-maps and combination of multiple HD-
maps. Figure 3 shows the accuracy based on intensity features extracted from RMS-map, MAV- map, WL-map, ZC-map, 
and SSC-map. The intensity attributes extracted from the RMS-map, MAV-map, and WL-map demonstrated superior 
accuracy relative to those from the ZC-map and SSC-map. 

 

 Classification accuracy of intensity features extracted from various individual HD-maps. 

Furthermore, the intensity features manifested by the CMHD-map surpassed the efficacy of the separate maps. The 
improvement rates achieved were approximately 0.8%, 3.8%, 31.9%, 38.8%, and 2% when compared to RMS map, MAV 
map, ZC map, SSC map, and WL map, respectively. Table 1 shows the average classification accuracy utilizing individual 
HD-maps and the CMHD-map, covering ten subjects.  

Table 1 Average classification accuracy among ten subjects using separate HD-maps and the CMHD-map. 

 

The performance of the classifier based on the intensity features extracted from CMHD-maps was evaluated for ten 
subjects. Performance was evaluated in term of precision, sensitivity, and F1_Score as shown in Figure 4. The mean of 
P, S, and F-Score of ten subjects is 92.6%, 88.5%, and 87.87 respectively. The proposed features are shown to achieve a 
high recognition rate. 

 

 Classification performance based on the proposed structural features. 

Average classification accuracy% 
RMS-map MAV-map ZC-map SSC-map WL-map CMHD-map 

87.7 84.7 56.6 49.58 86.5 88.5 
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3.2. Comparison with conventional TD features. 

To show the utility of spatial structural features, a comparison is made with conventional TD features. The proposed 
structural features are the intensity features extracted from the CMHD-map. Five TD features are selected (i.e., the 
same features used for HD-maps) in order to show the effect of spatial features relative to traditional approaches. The 
TD features are RMS, MAV, WL, ZC, SSC and the error rate for five subjects is shown in Figure 5. 

 

 Classification error rate of the SVM classifier based on the proposed features and conventional TD feature. 

The average error rates among five subjects are 10.44%, increasing to 18.2% for the proposed and TD features, 
respectively. It is observed that the proposed structural features lead to a reduction in the error rate relative to 
conventional TD characteristics. The error rate of the proposed work decreases by approximately 7.76% compared to 
traditional TD features. These findings validate that characteristics derived from the spatial arrangement of channels 
exert a considerable influence on accuracy, indicating the presence of consistent information across diverse EMG 
channels. EMG signals are characterized as non-stationary in nature; nonetheless, these signals encompass spatially 
unchanging information across channels. 

Effect of the proposed structural features on different machine learning classifiers. 

Three machine learning classifiers are used to evaluate the intensity features extracted from the CMHD-map, namely 

LDA, KNN, and SVM. The classification accuracy of the proposed structural features based on these three classifiers is 
shown in Table 2, demonstrating that the SVM classifier achieved higher accuracy than the LDA and KNN classifiers. 
However, it is noted that LDA and KNN also achieved acceptable accuracy. The SVM classifier achieved an improvement 
rate of approximately 1.9% and 6.3% compared to KNN and LDA, respectively. 

Table 2 Classification accuracy of three classifiers based on CMHD-map features. 

Accuracy % Experiment 

participants SVM  KNN  LDA  

81.4 81.4 81.4  Sub1 

92.5 96.3 88.8  Sub2 

92.5 85.19 77.7  Sub3 

92.5 85.19 77.7 Sub4 

81.4 81.4 66.6 Sub5 

92.59 88.8 81.4 Sub6 

85.19 81.4 81.4 Sub7 

81.4 81.4 81.4 Sub8 

92.5 88.8 96.3 Sub9 

92.5 96.3 88.8 Sub10 

88.5 86.6 82.2 mean 
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Discussion  

This study introduces an innovative approach for capturing spatial features through the utilization of multiple HD-maps. 
Traditional features, such as TD features, can achieve a remarkable performance in extracting temporal features; 
however, the loss of spatial information across various channels remains a challenge. This research presents a strategy 
for formulating EMG signals captured via a multi-channel sensor. EMG signals are represented as numerous HD-maps, 
a formulation that can be used as an input during the feature extraction stage. The influence of various HD-maps, 
specifically the RMS-map, MAV-map, SSC-map, ZC-map, and WL-map, are considered as shown in Figure 3. It is 
important to note that the intensity features derived from the RMS-map and WL-map attained a higher accuracy relative 
to those obtained from other HD-maps.  

Furthermore, this study proposes the integration of multiple HD-maps for the purpose of feature extraction. The CMHD-
map augments the quantity of spatial features and demonstrates superior performance relative to individual HD-maps, 
as shown in Table 1. Spatial features extracted from the CMHD-map demonstrate a notable level of accuracy in contrast 
to conventional TD features within the same experimental conditions, as shown in Figure 5. The CMHD-map features 
validate that despite the temporal instability of EMG signals, a consistent amount of spatial information is present across 
channels.  

A comparison with the state-of-the-art approaches is shown in Table 2. The studies used for comparison vary in several 
aspects, including the number of gestures, selection of features, and classification method. Nevertheless, all of these 
studies confirmed their findings using the identical data collection method, namely DB5. The proposed structural 
features have therefore outperformed previous approaches. Specifically, it was shown that the spatial features achieved 
higher classification accuracy in the proposed work and Xiong et al. (2022) than in other studies. 

A limitation of this work is that a limited number of hand gestures (nine) are evaluated. Future work should seek to 
augment the number of gestures that show substantial differences from the existing examined set. Additionally, future 
research should assess adaptations to intrapersonal variability, since the EMG signals corresponding to a specific user 
may change over time owing to several factors, including muscle fatigue, electrode displacement, and environmental 
disturbances. To account for these variabilities, future research may employ online learning methodologies to facilitate 
the ability of the classifier to incorporate new data and adapt to changing conditions.  

The identification of hand gestures has the capacity to revolutionize a diverse array of fields, such as prosthetic 
technology for those who have experienced limb loss, robotics, and sophisticated human–computer interfaces. The 
advancements realized within this sphere may ultimately result in significant improvements in the quality of life and 
functional independence for numerous individuals. 

Table 3 Comparison between the proposed work and previous works. 

Research Gestures Feature set Classifier Accuracy% 

Pizzolato et al., 2017 41  RMS, TD, mDWT, Histogram, All Machine learning 55.31 % 

Chen et al., 2020 12 CWT+EMGnet CNN  69.6 

Sri-iesaranusorn et al., 2021 41 RMS, MAV, MAVS, ZC, SSC, and WL  Deep NN 71.78 

(Xiong et al., 2022 

 
11 Spatial features extracted by SPD manifold  Machine learning 84.52 

This study  9 Intensity features CMHD maps  Machine learning 88.5 

Conclusion 

The identification of EMG signals has many applications, such as in biomedical applications, robotic arms, and 
automation control systems. This work proposes an informative approach for hand gesture recognition based on 8-
channel sEMG signals obtained using a Myo armband. The approach developed depends on the spatial locations of EMG 
channels. Spatial structural information is obtained from five TD maps (i.e., RMS-map, MAV-map, SSC-map, ZC-map, 
and WL-map) and intensity features are extracted from TD maps. 

Utilizing three distinct machine learning algorithms shows that the proposed approach attained a high level of 
classification accuracy. The SVM classifier demonstrated superiority over alternative classifiers. Specifically, the SVM 
classifier exhibited an average improvement in classification accuracy of approximately 6.3% and 1.9% relative to LDA 
and KNN, respectively. The classification performance of the proposed work was also evaluated against the traditional 
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TD characteristics. The mean classification accuracy across five participants was observed to be approximately 88%, 
reflecting an enhancement of around 6.8% relative to conventional TD features. 
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