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Abstract— A new approach and architecture have been 

presented in this paper to efficiently merge the decimal 

rounding stage according to the IEEE 754-2008 standard based 

on the compound adder. This integration serves as a crucial key 

to improve the computation performance of both decimal 

floating point multiplication and fused multiply add (FMA) 

operation. The decimal rounding control unit is based on the 

IEEE 754-2008 five rounding modes. The decimal combined 

add/round module has been coded in the VHDL and verified 

using the Xilinx ISE 13.2. The overall critical path delay is 

compared with another design based on the BCD adder with the 

decimal rounding. The results have shown at least 3.4 % 

improvement in terms of delay reduction. 

Keywords—DFP, BFP, FMA, Rounding module, VHDL 

I. INTRODUCTION 

The accurate representation of decimal numbers with 
limited digits is a perpetual challenge in computer systems. 
The rounding problem happens when only a portion of the 
digits in the calculation result can be preserved. Rounding a 
number means estimate or approximate it, on the other hand, 
rounding might reduce the digits in a number without effect 
the expected value. So, the result will be less accurate but 
easier to use. The five rounding modes defined by the IEEE 
754-2008 must provide exactly rounded results (Markstein, 
2008).Rounding operation is used to approximate a number to 
a specific value, selecting one of the two nearest possible 
decimal floating point (DFP) numbers based on to the 
specified rounding direction (rounding mode). Floating-point 
number (FP) is a fractional number that result from the 
division of two integers. A computer can process and 
recognize real number in a form of complex coded [1, 2]. The 
design of Decimal floating point has garnered considerable 
interest due to the development of real-time applications in 
recent years. This leads to a significant demand for high-
performance of adder and multiplier units [3]. 

The most important issue in the Binary floating point 
(BFP) numbers even in the DFP is that, the fractional numbers 
representation. Sometimes, the fractional numbers (i.e. 0.1, 
0.2 or 0.3) cannot be represented accurately using the BFP. 
This issue is considered as a main challenge in the most of 
engineering, financial and commercial application. 
Especially, when the errors have been occurred due to the 
error propagation into the rounding module after execution of 
an arithmetic operation (i.e. multiplication, addition, 
subtraction and division) with the involvement of fractional 
numbers [4, 5]. For example, if two fractional numbers are 
added (i.e. 0.6 + 0.3) then the result should be produced 0.9, 
but actually it is 0.8999999999999991. The DFP format can 
be used to fix the accuracy representation problem and it 

should be enhanced using accurate round module to decrease 
the error effect [6]. 

This issue is considered as one of the most important 
issues in the design of the arithmetic processor. In commercial 
and financial applications, calculations adhere to the human 
rules and standards of decimal arithmetic, which can differ 
from the traditional arithmetic used in scientific calculations. 
So, the decimal numbers that utilized in financial applications 
are typically represented as the integer coefficients scaled by 
a power of 10. For example, the value 834.50 is denoted as an 
integer coefficient 83450 with an exponent -2, which is 
expressed as 83450 × 10^(-2). Since more than one coefficient 
can denote the same value, this integer scaled encoding is 
redundant. Both coefficients 050 (with an exponent 1) and 005 
(with an exponent 2) denote the value 500. Although it is 
possible to utilize a normalized fixed-point (non-redundant) 
coefficient as well, this is more suitable for scientific 
computations [7, 8]. 

The rounding error is considered as a common issue 
between the both DFP and BFP. As a consequence, this 
problematic issue cannot be avoided any more especially 
when a finite number of bits could be used to represent a 
fractional number. The rounding errors and its impact can be 
reduced when the precision digits in the DFP is increased.  

Therefore, when required, implementations of decimal 
arithmetic should have the capability to retain the complete 
precision of the numbers, including the trailing fractional 
zeroes, in addition to calculating numerical values. To support 
the full accuracy and range that necessary for the financial 
computations, early computers utilized exact decimal 
arithmetic. For example, in order to perform precise decimal 
multiplication, the precision digits of the largest input value 
must be doubled. Thus, the series of multiplications would 
rapidly exceed any hardware precision capability. Therefore, 
rounding is required in commercial and financial applications 
in two various ways: 

- rounding placed by precision: to ensure an exact 
approximation in numerous complex computations. 

- rounding placed by legal requirements: in order to 
decrease the exact result to a lower precision required 
by the application.   

This paper is organized as follow: section 2 mentions the 
overview of the related work on the rounding operation; 
section 3 illustrates in details the proposed decimal add/round 
module; section 4 describes the comparison result, and the 
conclusion is presented in section 5.   
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II. BACKGROUNDIN 

According to the guidelines of IEEE 754 standard for 
binary floating-point arithmetic, FP64 denoted the format of 
data that utilized 8 bytes for both encoding and storage. FP64 
storage space includes three components as demonstrated in 
Figure 1: (a) the sign (S) which is represented by most 
significant bit; (b) the exponent (E) which is expressed by the 
middle 11bits; and (c) the fraction (M) which is represented 
by the lowest 52bits. The normalized number of FP64 can be 
mathematically expressed by the following equation: 

𝑁 = (−1)𝑆 × 2𝐸−1023 × (1 × 𝑀)                                      () 

The value of actual exponent represents the difference 
between E and exponential bias. To compare the sizes of 
exponent for 2 floating-point numbers, all values of exponent 
can be expressed by unsigned integers to make it easiest. 

In engineering application, the operation (𝑎 × 𝑏 + 𝑐) is 
often needed and executed in 2 steps involving 2 rounding 
operation. 

 

 

 

 

 

 

Fig. 1. FP64 storage format 

The FMA operator is used in the execution of single 
instruction with operands of single/double precision floating 
point. Since there is a single rounding operation is executed 
on the merged full precision sum and product by employing 
the FMA operator. So, the latency is reduced and enhanced 
arithmetic precision for floating point [1,4,9]. 

To obtain exact final result during the DFP/BFP 
multiplication or FMA operation, the two vectors (sum and 
carry) which outputs from the partial reduction tree (i.e. 128-
bit per each) should be added. The same concept in the 
addition/subtraction operation must be achieved to get the 
final result, too. Comprehensive works have been 
implemented in both decimal/binary multiplication and 
addition field. A. Vazquaz el. [10] accomplishes the decimal 
rounding operation after performed the BCD addition 
operation. The conventional BCD addition stage usually 
consists of three parts: pre-correction, compound addition and 
post-correction. The rounded model which is presented in [10] 
will be the reference to the proposed decimal rounding module 
in this work in term of delay comparison. When the multiple 
stages can be migrated in the same module then the 
computation performance will be enhanced. The proposed 
decimal add/round architecture presents the following 
advantage: 

- For the trailing 9's detection, decimal rounding will be 
performed without additional carry propagation. The 
signals (C5 and C6) which are required for the 
rounding decision could be computed using the 
enhanced compound adder. 

- The result of binary compound adder (sum and 
sum+1) can be corrected using a fast and simple 
decimal post-correction. 

- Enables the rounding control unit to compute the 
round, guard and sticky digits concurrently with the 
operation of addition for two operands using the 
compound adder. 

- Simplest and high-performance achievement. 

- Two stages are implemented concurrently.     

For instance, accurate decimal rounding is necessary to 
provide precisely rounded results for approximative 
computations 

III. PROPOSED DECIMAL ADD/ROUND ARCHITECTURE 

In this section, the proposed decimal add/round module 
will be presented in details. Figure 2 demonstrates the regular 
stages for the addition and rounding of 2 vectors (sum and 
carry) after the normalization staged is performed in the 
decimal multiplication or FMA operation. It consists mainly 
of a series of pre-correction (i.e. conventional (3:2) carry save 
adder (CSA)), a compound adder (i.e. 64-bit prefix adder), 
rounding control unit and finally, a series of post-correction 
circuits. 

A. Pre-correction 

The word length of the two operands is assumed (3p+1) 
digits, where p is equal to 16 digits. Before employing a prefix 
adder tree network-based rapid binary adder, the pre-
correction of the (3p+1) digits of the two operands, sum (S) 
and carry (H), is performed. A conventional (3:2) CSA adds 
0110_2 (+ 6) to the two operands (S and H) (i.e. S= s3 s2 s1 s0 

and H=h3 h2 h1 h0) at the same time to obtain intermediate 
result (4-bit sum and 4-bit carry), this correction operation will 
be performed to all digits in parallel. The next step is that the 
intermediate result of adding two vectors (sum and carry) 
which are added together using a 64-bit prefix adder.  Figure 
2 (a) shows the block diagram of the pre-correction circuit, 
while Figure 3 illustrates the top level of the proposed decimal 
add/round architecture. 

B. Compound Adder 

A more efficient alternative of the low latency of the 
proposed add/round architecture based on the implementation 
of the compound adder which computes sum = (S + H) and 
sum + 1 = (S + H + 1), simultaneously. The benefit of this 
implementation is being able to incorporate a late complement 
or late increment into a 9's complement carry-propagate adder 
within a small constant time increment. A prefix adder tree 
implements the binary carry recurrence 𝐶𝑖+1 = 𝑔 𝑖˅ (𝑎𝑖 ˄ 𝑐𝑖), 
where 𝑎𝑖 and 𝑔𝑖 are the carry alive functions and binary carry 
generate for bit number i, respectively.  The decimal carries 
(c1٬ c2٬ c5, and c6) are the binary carries at different decimal 
positions. In this approach, the addition of prefix is performed 
in three stages:- 

Stage 1) Pre-processing: This stage is implemented by a 
simple half adder. According to computation of prefix, 
generate (𝑔𝑖), carry alive (𝑎𝑖) and and propagate (𝑝𝑖) signals 
are expressed in equations 2, 3, and 4 respectively. 

𝑔𝑖 = 𝑠𝑢𝑚𝑖 ∧ 𝑐𝑎𝑟𝑟𝑦𝑖                                                              (2)   

𝑎𝑖 = 𝑠𝑢𝑚𝑖 ∨ 𝑐𝑎𝑟𝑟𝑦𝑖                                                              (3) 

𝑝𝑖 = 𝑠𝑢𝑚𝑖⨁𝑐𝑎𝑟𝑟𝑦𝑖                                                              (4) 

64bit (double) 

S 
Exp(k=11) 

[62:52] Frac(n=52) [51:0] 

 63    62                       52 51                                                                    0 

  S(sign)  E(exponent)                      M(fraction)                                                                     

256

Authorized licensed use limited to: UNIVERSITY PUTRA MALAYSIA. Downloaded on January 08,2025 at 20:05:33 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Decimal Combined Add/Round Block Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Top level of  decimal comined Add/Round module

Stage 2) Prefix Computation: The construction of prefix 
combinational is based on the concept of a collection carry 

propagate generate signals.  It is defined by the equations 5 
and 6 respectively. 

Conventional (3:2) CSA 

Sum𝑖 Carry𝑖   +6 

  

1-digit 

(Post-Correction unit) (Post-Correction unit) +1 

  +10   +11   LSD 

(a) 

R_Corect_sel 

𝐶1 𝐶2 𝐶5 

Rounding 

Control Unit 

𝐶6 

  Sticky 

GUD 
ROD 

R_Mode_sel 

(b) 

Binary Compound 
Adder 

Post-Correction unit 

Selection Unit 

16-digit 

Final Decimal Result 

(3p+1) digits 

Sum+1  Sum 

1 
0 

   SIR 

 
(3p+1) digits 

Pre-Correction unit 

 

(c) 

S  C  

LSD GUD ROD 

GUD 

ROD  

1-digit 
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𝐺[𝑖:𝑚] = {
𝑔𝑖  𝑖𝑓 𝑖 = 𝑚

𝑃[𝑖:𝑗] ∨ 𝐺[𝑖:𝑗] ∧ 𝐺[𝑖−1:𝑚]  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}   (5) 

𝑃[𝑖:𝑚] = {
𝑃𝑖  𝑖𝑓 𝑖 = 𝑚

𝑃[𝑖−1:𝑚] ∨ 𝑃[𝑖:𝑗]  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                    (6) 

The representation of P and G can be simplified, an 
operator is called dot operator and it can be represented by 
'*' which could be introduced to create group of propagate 
and group of generate, they are expressed by the equation 7 
as follow: 

(𝐺, 𝑃)[𝑖:𝑚] = (𝐺, 𝑃)[𝑖−1:𝑚] ∗ (𝐺, 𝑃)[𝑖:𝑗]                           (7) 

Stage 3) Post-processing: The information of sum and 
carry bits for each operand bit is determined in this stage. 
The equations (8) and (9) are expressed 𝑐𝑖  and 𝑠𝑖 
respectively. 

𝑐𝑖 = 𝐺[𝑖:0]                                                                  (8) 

𝑠𝑖 = 𝑝𝑖⨁𝑐𝑖−1                                                           (9) 

In general, a prefix combinational network of m-bit 
inputs 𝑏𝑚−1, 𝑏𝑚−2, ⋯ , 𝑏0 uses the associative (arbitrary) 
operator (∘) to produce the vector of the outputs described 
by:    

𝑧𝑖 = 𝑥𝑖 ∘ 𝑥𝑖−1 ∘ 𝑥𝑖−2 ∘ ⋯ ∘ 𝑥1 ∘ 𝑥0                       (10) 

The carry computation can be defined as below: 

𝑧𝑖 = (𝑔(𝑖,0), 𝑎(𝑖,0)), 𝑏𝑖 = (𝑔𝑖 , 𝑎𝑖)                          (11) 

It has to be noticed that it can be implemented by a cell 
contains inputs of two pairs of bits (𝑔𝐿 , 𝑔𝑅) and (𝑎𝐿 , 𝑎𝑅) , 
where R and L represents (𝑔𝑜𝑢𝑡 , 𝑎𝑜𝑢𝑡), such that:  

𝑔𝑜𝑢𝑡 = 𝑔𝐿 ∨ (𝑎𝐿 ∧ 𝑔𝑅)                                         (12) 

𝑎𝑜𝑢𝑡 = (𝑎𝐿 ∧ 𝑎𝑅)                                                  (13) 

According to the above two equations, a variety of cells 
in multiple levels of the prefix adder network can be used to 
compute the carry bits in different positions. The point is 
that the carry bit named 𝑐𝑖  engages to generate signal 
spanning the bit position (-1) to (𝑖−1). The relation between 
the generate signal (𝑖−1,-1) and 𝑐𝑖 defines as below: 

𝑐𝑖 = 𝑔(𝑖−1−1), 𝑤ℎ𝑒𝑟𝑒 (𝑔−1𝑎−1) = (𝑐0, 𝑐0)      (14) 

The next step, an interconnection of these cells together 
is used to produce 𝑔(𝑖−1,−1) for all 𝑖𝑖. After that, these carry 

bits are used to determine the final summation result, such 
that: 

𝑆𝑖 = 𝑃𝑖⨁𝐶𝑖                                                            (15) 

C. Rounding Set-up Unit 

The main target of the rounding set-up unit is to compute 
the guard (GUD), round digits (ROD), sticky bit (STK), and 
potential carry-in bit to p-digits (the most significant digits) 
concurrently with the execution of the addition operation. 

D. General Algorithm 

The rounding setup unit is put together as a conditional 
adder to ensure that at critical path only p-digit carry 
rippling delay. As shown in Figure 3, the (3p+1) digits width 
is divided into four groups (p-1), (p), (p-1) and 3-digit (i.e. 
LSD, GUD, and ROD), then all of these digits dispatched to 
the compound adders in parallel to avoid two successive 

addition steps. The least significant (p-1) digits are 
calculated once using 64-prefix adder network while the 
other groups are calculated twice to produce the sum and 
sum + 1. One of them assumes the carry-in bit to prefix 
adder is equal to zero (Cin= 0) while the other could be 
assumed that the carry-in bit is equal to one (i.e. Cin= 1). 

The resulting carry-out (Cin) signal from the least 
significant (p-1) digits is using to select the appropriate 
carry-out signal to control the path of the other groups. The 
next p-digit groups are added to determine the sticky bit and 
carry-out (C2) signal. The appropriate ROD, GUD and LSD 
should be selected using the carry-out (C2) signal. Then, the 
three digits (i.e. LSD, GUD, ROD) of the two vectors are 
added using the compound adder. As a consequence, these 
three digits can be used to produce the carry-out (C5) signal 
and intermediate vector of 3-digit. The latest two significant 
digits (i.e. GUD and ROD) of this vector should be 
dispatched to the rounding control unit. The remaining digit 
is considered as the LSD of the final result which should be 
corrected using the post-correction circuit. Finally, the most 
significant (p-1) digits should be input to the compound 
adder and the final (p-1) digit of the result could be selected 
using the carry (C5) signal. To find the correct (p-1) digits 
and the LSD, a small circuitry of post-correction is utilized. 
However, the less significant digit could be contributed only 
to the sticky and their exact values are not required. Instead, 
the rounding control unit is utilized to determine their 
correct sticky bit. In the meantime, the carry-out (C5 and C6) 
two signals are fed into the rounding control unit. 

As mentioned previously, the correct round and guard 
digits can be selected using the carry-out signals which are 
computed from multiple groups of least significant digits via 
the prefix adder network. This method is equivalent to 
determine the most significant (p) digits except the LSD. 
The EoP signal represents the carry-in. The intermediate 
result of the addition step should be included two vectors 
(sum and sum+1). Moreover, In the case of negative result, 
it should be complemented. At last, the rounding decision 
depends on the value of both guard and round digits which 
are computed in the rounding set-up module and the carry-
out signals (C5 and C6) with signal (R_mode_sel) together 
could be used to select the final correct rounded result (R). 

As a total, the final result (after complementation if 
need) could be selected according the value of the following 
signals: C5,C6, S_IR, R_mode_sel and R_corect_sel. The 
S_IR signal should be obtained previous to the stage of 
combined add/round. It can be produced with a simple 
comparator (the block of intermediate sign detection) that 
operates concurrently with the addition stage to indicate 
which the operand is greater one. Figure 4 shows the 
unrounded result can produce from the addition operation of 
the two vectors (sum and carry) and there are four different 
cases could be fed to the combined add/round module. The 
rounding position has two possibilities based on the value 
of the LSD and the temporary GUD which are produced 
from the rounding set-up unit.  

As shown in Figure 4, the temporary round (ROD) and 
sticky digit (STK) are generated from the rounding set-up 
unit. This approach requires determining whether the value 
of GUD, ROD, and STK digits of the un-rounded result is 
zero or non-zero. Furthermore, these signals indicate 
whether the minimum exponent has been generated or the 
preferred exponent is determined. 
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Fig. 4. FP64 storage format 

E. General Algorithm 

In parallel with binary prefix addition and post-
correction, the decimal rounding control unit determines the 
selection signals and a decision of the rounding mode in 
cooperate with ROD and GUD. An important section of the 
rounding control unit is that the rounding decision. It is 
mainly depending on the value of round, guard, sticky digits 
and intermediate sign which are determined in the rounding 
set-up unit. In the meantime, the (p-1) digits of un-rounding 
result, LSD, and two signals (𝐶5 and𝐶6) could be used to 
select the appropriate rounding result. The correct most (p-
1) significant digits of the un-rounded result can be 
predicted using the MSD of sum or sum+1 based on the 
value of the signal (𝐶5). It consists of two parts: 

• Rounding Logic: A combinational logic 
implementation can be used directly to obtain the 
rounding condition of every decimal rounding 
mode. Furthermore, various conditions must be 
implemented on 4 probable rounding positions.  
Alternatively stated, the rounding operation should 
be implemented speculatively on sum or sum+1 
which represent two possible rounding positions. 
The signals C1and C2)  can be used to perform the 
rounding decision either at LSD as shown in Fig.4 
case (1) or at guard digit as shown in Figure 4 case 
(2, 3), after that the carry is propagated via the 
rounding digit. Finally, the (2:1) multiplexer can 
be used to select the final summation result based 
on the rounding position. 

• Rounding Conditions: The proposed decimal 
rounding architecture is supported the five modes 
of IEEE 754-2008 decimal rounding. Table I 
provides a summary of the conditions governing 
each mode of decimal rounding. The logical 

operator ‘˅’ and ‘˄’ denote logical OR and logical 
AND, respectively. Figure 4 demonstrates the 
meaning of symbols that are used in Table I. 

 

TABLE I.  Top Level of Decimal Combined Add/Round 
Module 

Rounding 

Mode 

Rounding 

Position 
Action 

Round Ties 

to Even 

GUD 

If (ROD>4 ˅ ROD=5 ˄ STK=1)   

Round to the nearest up 

Elseif (ROD=4 ˄ STK=0 ˄ 

GUD↠odd) Round to the 

nearest up 

Elseif (ROD=4 ˄ STK=0 ˄ 

GUD↠odd)    truncate 

LSD 

If (ROD>4 ˅ ROD=5 ˄ 

(ROD>0 ˅ STK=1)) Round to 

the nearest up 

Elseif (ROD=5 ˄ ROD=0 ˄ 

STK=0 ˄ LSD↠odd)   Round 

up 

Elseif (ROD=5 ˄ ROD=0 ˄ 

STK=0 ˄ LSD↠odd)truncate 

Round 

Toward 

Zero 

GUD Truncate 

LSD Truncate 

Round Ties 

To Away 

GUD 
If (GUD≥5) round up    

Else truncate 

LSD 
If (LSD≥5) round up     

Else truncate 

Round 

Toward 

Positive 

GUD 

If (𝑆𝐼𝑅=0 ˄ (ROD>0 ˅ STK=1)) 

round up   

Else truncate 

LSD 

If (𝑆𝐼𝑅=0 ˄ (GUD>0 ROD>0 ˅ 

STK=1)) Round up 

Else truncate 

Round 

Toward 

Negative 

GUD 

If (𝑆𝐼𝑅=1 ˄ (ROD>0 ˅ STK=1))   

Round up 

Else truncate 

LSD 

If (𝑆𝐼𝑅=1 ˄ (GUD>0 ROD>0 ˅ 

STK=1)) round up 

Else truncate 

 

F. Post-correction and Final Selection Stage 

The layout of the post-correction circuit has been shown 
in Figure 5 and the implementation of this circuit is very 
simple. The importance of this circuit, when some digits 
exceeded the permitted range of decimal numbers, then it 
should be used to correct them. 

In case of the intermediate result is greater than 9 then 
the 1010 should be added digitally to correct the selected 
summation result in order to produce the post-corrected 
result. It is equivalent to subtract 0110 from each digit. The 
correct output of Sum or Sum + 1 is selected. The selected 
final results for all possible cases are shown in Table II. 

Un-rounded Result 

Rounded 

Position 

Result L GUD ROD STK 

p-digit 

Case0  

Rounded 

Position 

Result L <4 <4 0 

p-digit 

Case 1  

Rounded 

Position 

Result L >4 >4 1 

p-digit 

Case 2  

Rounded 

Position 

Result L >4 >4 1 

p-digit 

Case 3  

Rounded 

Position 

Result L >4 >4 1 

p-digit 
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Fig. 5. Post-correction Circuit 

TABLE II.  Selected Final Result 

Case 
# 

cmp 𝑪𝟏 𝑪𝟐 𝑪𝟓 
Final Result 

1 0 0 0 0 {sum,LSD} 

2 0 1 0 0 {sum,LSD} 

3 0 0 1 0 {sum,LSD+1} 

4 0 1 1 0 {sum,LSD+1} 

5 0 0 0 1 {sum+1,LSD} 

6 0 1 0 1 {sum+1,LSD} 

7 0 0 1 1 {sum+1,LSD+1} 

8 0 1 1 1 {sum+1,LSD+1} 

9 1 0 0 0 {𝑠𝑢𝑚̅̅ ̅̅ ̅̅ ,LSD} 

10 1 1 0 0 {𝑠𝑢𝑚̅̅ ̅̅ ̅̅ ,LSD} 

11 1 0 1 0 {𝑠𝑢𝑚̅̅ ̅̅ ̅̅ ,LSD+1} 

12 1 1 1 0 {𝑠𝑢𝑚̅̅ ̅̅ ̅̅ ,LSD+1} 

13 1 0 0 1 {𝑠𝑢𝑚 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,LSD} 

14 1 1 0 1 {𝑠𝑢𝑚 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,LSD} 

15 1 0 1 1 {𝑠𝑢𝑚 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,LSD+1} 

16 1 1 1 1 {𝑠𝑢𝑚 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,LSD+1} 

 

IV. IMPLEMENTATION RESULT 

The Xilinx Vertex-5 FPGA family has been used to 
synthesis and verify the performance of the proposed 
decimal add/round method. The results of this architecture 
have been compared with the decimal rounding model 
presented in [10]. Table III provides the performance 
comparison result in term of # FO4 delay, a metric that is 
used to measure the taken time in logic gate to drive four 
times of its load capacitance.  

TABLE III.  Performance Comparison 

Stage (#FO4) 
Proposed Add/Round 

architecture 

Decimal Rounding Model 

[10] 

Pre-correction 6.5 6.5 

Binary Adder 10.3 10.5 

Rounding 2.4 2.5 

Selection 6 6.6 

Total (#FO4) 25.2 26.1 

 

V. CONCLUSION 

In this research, a new decimal add/round approach has 
been presented according to the IEEE 754-2008. The 

floating-point multiplication and FMA are considered as an 
important key component in many engineering applications; 
the speed in the rounding architecture could be improved the 
overall performance. The latency of the proposed decimal 
add/round architecture is improved 3.4% than fast decimal 
rounding model. Future work may include implementing 
this architecture on different hardware platforms and 
expanding the design to work on extend-precision 128-bit 
and support broader application where decimal precision is 
critical. 
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