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In this study, a statistical estimation is done for an epidemic model of cryptosporidiosis by changing 
it into a fractional order system. The disease-free equilibrium point, and the endemic equilibrium 
point are the two equilibrium points and Jacobian matrix theory is used to determine stability. The 
basic reproductive number R0 is calculated and examined for its role in disease dynamics and stability 
analysis. The numerical technique named Grunwald Letnikov non-standard finite difference (GL-NSFD) 
scheme is designed for solving the fractional epidemic model. To investigate the characteristics and 
properties of numerical design, a test problem is considered for the simulation. For the underlying 
system, a non-classical numerical approach is suggested. The state variables cannot be negative 
because they describe the number of people. The suggested numerical scheme must have the 
properties of positivity and boundedness. The positivity and boundedness of the fractional order 
cryptosporidiosis epidemic model are investigated with the help of Laplace and inverse Laplace 
transformation. Finally, the conclusions of the study are elaborated.

Keywords  Statistical estimation, Fractional epidemic model, GL non-standard finite difference schemes, 
Positivity, Boundedness, Simulations

A micro parasite called cryptosporidium that can survive in the intestines of both humans and animals and passes 
through the faces of an infected person or animal causes the diarrheal condition known as cryptosporidiosis. 
Common names for both the illness and the parasite are “crypto”. The parasite has a strong outer skin that makes 
it particularly resistant to chlorine-based chemicals and allows it to live outside the body for long periods of 
time. Crypto has gained attention as one of the most common causes of waterborne illness in humans in the 
United States during the past 20 years, both in recreational and drinking water. An infected person or animal’s 
stool results could contain millions of crypto viruses. When the symptoms commence, crypto begins to shed in 
the stool, and it can persist for weeks after the symptoms stop 1.

Ernest Edward Tyzzer discovered Cryptosporidium in the intestine tissue of healthy mice in 1907 2, but the 
first human instances of cryptosporidiosis weren’t discovered until 1976 3,4. But until 1983, only a few additional 
occurrences of cryptosporidium-related severe, persistent diarrhea in humans were observed in the United 
States among urban males with AIDS and immunodeficient people, particularly calf handlers 5. Global medical 
and scientific communities have taken notice of the link between AIDS and cryptosporidium and subsequent 
outbreaks of cryptosporidiosis in immunologically healthy people 6.

The study of every facet of the disease increased as knowledge of the parasite’s pollution and the development 
of diagnostic screening procedures increased. By the middle of the 1980s, many people became aware of 
cryptosporidium as a recently discovered and possibly dangerous human intestinal virus 7–9. This paper aims 
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to propose a fractional-order age-structured model for the analysis of smoking epidemic with a focus on 
the influence of the age factor on the smoking behaviour and its dynamicity 10. Therefore, the present paper 
aims to develop a fractional model for co-infection of Marburg and Monkeypox virus, which gives a clearer 
understanding of the possibility of the transmission of the two diseases 11. The study conducted on a fractional-
order model of Ebola and Malaria co-infection focuses on the impact of detection and treatment parameters to 
the diseases 12. This research aims at discussing the mechanisms of smoking behaviour by developing Age-Scale 
Models with Fractal-Fractional Derivatives, concentrated on the impact of the government interventions 13. 
Zarin et al. studied haar wavelet collocation methods of the fractional-order antidotal computer virus model 14. 
Jitsinchayakul et al. studied fractional modeling of the COVID-19 epidemic model with harmonic mean type 
incidence rate 15. Chu et al. studied a vigorous study of fractional order mathematical model for the SARS-CoV-2 
epidemic with Mittag–Leffler kernel 16. Zarin studied a numerical study of a nonlinear COVID-19 pandemic 
model by finite difference and meshless methods 17. Zarin et al. studied fractional modeling of the COVID-19 
pandemic model with real data from Pakistan under the ABC operator 18.

Applications of fractional-order differential models in the context of infectious diseases present unique benefits 
in the modeling of real-world infectious disease transmission. These models employ non-integer derivatives with 
a fractional-boundary condition to model memory effects and long-range temporal dependencies that appear in 
actual epidemiological data but can be described only approximately with the help of integer-order derivatives. 
For example, the fractional order models can be more effective in capturing long-term dependencies of disease 
epidemics in a population, which involve past infection rates in formulating the current behavior. This capability 
is particularly useful where diseases and incubation periods are lengthy or where diseases are cyclic in nature. 
Furthermore, fractional order models can be used at different scales of transmission rates ranging from small 
outbreaks to world spreading and hence they are helpful in public health. In concrete situations, they enrich 
the accuracy of predicting the development of diseases, evaluating the efficiency of measures to limit them, and 
distributing significant resources during a pandemic. In this sense, the improvement in the complexity of the 
model, through a fractional order approach, yields a system response that is closer to the actual behavior of the 
disease, allowing for better strategy conception for its prevention and control.

Adjusting the fractional order of equations that describe the dynamics of a disease can affect the behavior and 
results of the model, making it much more practical in comprehending the spread and control of various diseases. 
The fractional only in these models signifies the memory and hereditary nature of the models, which shows how 
past states are effective in the current behavior of the system. In summary, enhancing disease dynamic models 
with fractional orders enhances realism, and gets researchers closer to capturing key aspects of infectious disease 
epidemiology, thereby improving the development of public health intervention strategies.

Definitions and preliminaries
Some fundamental definitions for the fractional derivatives are given in this section.

Definition 1  The Gamma function is defined as,

	
Γ (θ) =

∫ ∞

0
e−yyθdy.

Definition 2  Let y(τ) satisfies some smoothness conditions in every finite interval (0, t) with t ≤ τ . Then

	

c
0D

ϕ
t y (t) = 1

Γ (m − ϕ)

t∫

0

(t − τ)−ϕ−1+m dm

dτm y (t) dτ, m − 1 < ϕ < m.

Definition 3  Single parameter Mittag-Laffler (M-L) function is defined as,

	
Eα (s) =

∞∑
k=0

sk

Γ (αk + 1) , αϵR+, s ∈ C.

Moreover, two parameter form of (M-L) function can be written as,

	
Eα,β (s) =

∞∑
k=0

sk

Γ (αk + β) , α, βϵR+, s ∈ C. and Eα,β (s) = s.Eα,α+β (s) + 1
Γ (β) .

Definition 4  Let Z(τ) satisfy some smoothness condition in every finite interval (0, t) with t ≤ τ. Then Caputo 
fractional derivative is defined as,

	

c
0D

u
t Z (t) = 1

Γ (m − u)

t∫

0

(t − τ)−u−1+m dm

dτm Z (τ) dτ, m − 1 < u < m.
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where the norm is defined as, ∥Z∥∞ = sup{|Z (t)| : t ∈ I}. By C(I, R) we mean the Banach space of all 
continuous functions from I into R 19.

Unraveling of the model
The state variables in the model are S(t), I(t), R(t) and E(t) which describe the susceptible, infected, recovered 
individuals and microbial population respectively the parameters are enlisted below.

Parameter symbol Parameter rates

∧ Recruitment

ω Lose of immunity

σ Recovery

µ Natural

ψ Mortality

υ Contact of microbe population

κ Concentration of microbe population in the environment

π Cryptosporidiosis infected to the environment

µb Mortality of microbes

ρ Contact with the environment
 

By replacing Caputo derivatives instead of ordinary derivative, the fractional delayed model will adopt the 
form as explained in system.

	

c
0Dλ

t S (t) = ∧λ + ωλR (t) − µλS (t) −
(

υλI (t)
Kλ + I (t) + ρλE (t)

)
S (t) ,

c
0Dλ

t I (t) =
(

υλI (t)
Kλ + I (t) + ρλE (t)

)
S (t) −

(
µλ + ψλ + σλ

)
I (t) ,

c
0Dλ

t R (t) = σλI (t) −
(
µλ + ωλ

)
R (t) ,

c
0Dλ

t E (t) = πλI (t) − µλ
b E (t) .

� (1)

Model analysis
In this section, we investigate the positivity, boundedness, unique existence of solution to the model (1).

Positivity
The compartmental epidemic model have some key traits such as positivity, boundedness and convergence 
toward the steady states. Here, we will establish the result with proof for the positivity of the system (1).

Theorem 1  For any initial positive values, then (1) is positive invariant in R4
+.

Proof  Consider 1st equation system (1),

	

c
0Dλ

t S (t) = ∧λ + ωλR (t) − µλS (t) −
(

υλI (t)
Kλ + I (t) + ρλE (t)

)
S (t) ,

c
0Dλ

t S (t) ≥ −µλS (t) −
(

υλI (t)
Kλ + I (t) + ρλE (t)

)
S (t) .

Let M1 = µλS (t) +
(

υλI(t)
Kλ+I(t) + ρλE (t)

)
.

So, the above expressions becomes as,
c
0Dλ

t S(t) ≥ − (M1) S, this implies that c0Dλ
t S(t) + M1S ≥ 0.

By taking Laplace transformation

	

L{c
0D

λ
t S (t)} + L{M1S} ≥ 0,

sλL {S (t)} − sλ−1s (0) + M1L {S (t)} ≥ 0,

L {S (t)} ≥ sλ−1s (0)
M1 + sλ

.

Now, applying the inverse Laplace transformation
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L−1L {S (t)} ≥ L−1
{

sλ−1s (0)
M1 + sλ

}
,

S (t) ≥ s (0) L−1
{

sλ−1

M1 + sλ

}
using L−1 Sα−β

(sα + M) = tβ−1Eα,β (Mtα) ,

S (t) ≥ S (0) Eλ,1
(
M1tλ

)
,

S (t) ≥ 0, ∀t ≥ 0.

Similarly doing for the rest of the equations. We conclude that the model holds the positivity.□

Boundedness
In this segment, we prove another paramount feature of the model (1) i.e. the boundedness.

Lemma 1  For positive initial conditions, the system (1) is bounded for all t ∈ [0, tm).

Proof  Consider the system (1) in the following form,

	

c
0Dλ

t N (t) = c
0Dλ

t S (t) + c
0Dλ

t I (t) + c
0Dλ

t R (t) ,
c
0Dλ

t N (t) = ∧λ + ωλR (t) − µλS (t) −
(
µλ + ψλ + σλ

)
I (t) + σλI (t) −

(
µλ + ωλ

)
R (t) ,

c
0Dλ

t N (t) = ∧λ − µλ (S (t) + I (t) + R (t)) − ψλI (t) ,
c
0Dλ

t N (t) ≤ ∧λ − µλN (t) − ψλN (t) ,
c
0Dλ

t N (t) ≤ ∧λ −
(
µλ + ψλ

)
N (t) ,

c
0Dλ

t N (t) +
(
µλ + ψλ

)
N (t) ≤ ∧λ.

By taking Laplace transformation on both sides

	

Lc
0Dλ

t {N (t)} +
(
µλ + ψλ

)
L {N (t)} ≤ ∧λL {1} ,

sλL {N (t)} − sλ−1N (0) +
(
µλ + ψλ

)
L {N (t)} ≤ ∧λ

s
,

{
sλ +

(
µλ + ψλ

)}
L {N (t)} ≤ ∧λ

s
+ sλ−1N (0) ,

L {N (t)} ≤ sλ−1N (0)
{sλ + (µλ + ψλ)} + ∧λ

s {sλ + (µλ + ψλ)} ,

L {N (t)} ≤ N (0) sλ−1

{sλ + (µλ + ψλ)} + ∧λ s−1

{sλ + (µλ + ψλ)} ,

L {N (t)} ≤ N (0) sλ−1

{sλ + (µλ + ψλ)} + ∧λ sλ−(1+λ)

{sλ + (µλ + ψλ)} .

Now by taking inverse Laplace transformation on both sides

	

N (t) ≤ N (0) L−1 sλ−1

{sλ + (µλ + ψλ)} + ∧λL−1 sλ−(1+λ)

{sλ + (µλ + ψλ)} ,

N (t) ≤ N (0) Eλ,1
{

−
(
µλ + ψλ

)
tλ

}
+ ∧λtλEλ,1+λ

{
−

(
µλ + ψλ

)
tλ

}
,

N (t) ≤ N (0) Eλ,1
{

−
(
µλ + ψλ

)
tλ

}
+

(
µλ + ψλ

)
.

∧λ

(µλ + ψλ) tλEλ,1+λ

{
−

(
µλ + ψλ

)
tλ

}
.

Let,

	

M = max

{
N (0) ,

∧λ

(µλ + ψλ)

}
,

N (t) ≤ MEλ,1
{

−
(
µλ + ψλ

)
tλ

}
+

(
µλ + ψλ

)
tλEλ,1+λ

{
−

(
µλ + ψλ

)
tλ

}
.

By using, Eα,β (z) = zEα,α+β (z) + 1
Γ(β) .

We can write above inequality as

	
N (t) ≤ M

{
−

(
µλ + ψλ

)
tλEλ,λ+1

(
−

(
µλ + ψλ

)
tλ

)
+ 1

Γ (1) +
(
µλ + ψλ

)
tλEλ,1+λ

(
−

(
µλ + ψλ

)
tλ

)}
,

N (t) ≤ M , Which is required (Γ (1) = 1). □
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Existence and uniqueness
In this section, we present the unique existence of the solution of system (1),

Lemma 2  For positive initial conditions, the solution of (1) will exist and unique.

Proof  Consider,

	

X (S) = ∧λ + ωλR (t) − µλS (t) −
(

υλI (t)
Kλ + I (t) + ρλE (t)

)
S (t) ,

∥X (S1) − X (S2)∥ =
∥∥∥∥∧λ + ωλR (t) − µλS1 (t) −

(
υλI (t)

Kλ + I (t) + ρλE (t)
)

S1 (t) − (∧λ + ωλR (t)

−µλS2 (t) −
(

υλI (t)
Kλ + I (t) + ρλE (t)

)
S2 (t)

∥∥∥∥ ,

∥X (S1) − X (S2)∥ =
∥∥∥∥
(

µλ + υλI (t)
Kλ + I (t) + ρλE (t)

)
(S2 (t) − S1 (t))

∥∥∥∥ ,

∥X (S1) − X (S2)∥ ≤ µλ + υλ

Kλ + ∥I (t)∥ ∥I (t)∥ + ρλ ∥E (t)∥ ∥S2 (t) − S1 (t)∥ ,

∴ ∥S (t)∥ , ∥I (t)∥ , ∥R (t)∥ , ∥E (t)∥ ≤ M, where
1

kλ + ∥I (t)∥ ≤ 1,

∥X (S1) − X (S2)∥ ≤ µλ + υλM + ρλM ∥S2 (t) − S1 (t)∥ ,

∥X (S1) − X (S2)∥ ≤ µλ +
(
υλ + ρλ

)
M ∥S2 (t) − S1 (t)∥ .

Therefore, X(S) satisfies the Lipchitz condition, for contraction mapping

	 µλ +
(
υλ + ρλ

)
M < 1.

Similarly, for the rest of the equations we have,

	

F1 = µλ +
(
υλ + ρλ

)
M,

F2 = µλ + ψλ + σλ + υλ,

F3 = µλ + ωλ,

F4 = µλ.

Also, F = max {F1, F2, F3, F4}.
Therefore,

	

∥X(S1) − X(S2)∥ ≤ F ∥S1 − S2∥ ,

∥M(E1) − M(E2)∥ ≤ F ∥E1 − E2∥ ,

∥N(I1) − N(I2)∥ ≤ F ∥I1 − I2∥ ,

∥L(R1) − L(R2)∥ ≤ F ∥R1 − R2∥ .

For F < 1, K(S), M(E), N(I) and L(R) are contraction mappings. □

Basic reproductive number (R0)
In this section, next generation matrix method is used for the calculation of R0 and it is formed 

as,R0 = υλ∧λµλ
b+ρλ∧λπλµλKλ

µλ
bµλKλ(µλ+ψλ+σλ) .

In this section, the sensitivity index of the parameters involved in the reproduction number and its graphical 
representation are presented. All parameters are sensitive, but most are more sensitive, showing a positive ratio 
at given data, and others are less sensitive.
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W∧λ = ∂R0

∂∧λ
× ∧λ

R0
= 1 > 0, Wµλ = ∂R0

∂µλ
× µλ

R0
= µλ

b µλ

µλ
b µλ + ρλπλµλKλ

> 0,

Wρλ = ∂R0

∂ρλ
× ρλ

R0
= ρλπλµλKλ

µλ
b µλ + ρλπλµλKλ

> 0, WKλ = ∂R0

∂Kλ
× Kλ

R0
= −µλ

b µλ

µλ
b µλ + ρλπλµλKλ

< 0,

Wψλ = ∂R0

∂ψλ
× ψλ

R0
= −ψλ

µλ + ψλ + σλ
< 0, Wσλ = ∂R0

∂σλ
× σλ

R0
= −σλ

µλ + ψλ + σλ
< 0,

Wµλ = ∂R0

∂µλ
× µλ

R0
=

−
[(

µλ
b µλ ∧λ

(
2µλ +

(
ψλ + σλ

)))
+ ρλ ∧λ πλµλµλKλ

]
(
µλ

b µλ + ρλ ∧λ πλµλKλ
)

(µλ + ψλ + σλ)
< 0,

Wµλ
b

= ∂R0

∂µλ
b

× µλ
b

R0
= −ρλπλµλKλ

µλ
b µλ + ρλπλµλKλ

< 0.

Steady states
In this section, two equilibrium points are of the model (1) are presented in this section.

Definition 5  A point x∗ is said to be an equilibrium point of the system c
0Dλ

t   =  f (t, x (t)) , x (t0) > 0, 
ifff (t, x∗ (t)) = 0.

The disease-free equilibrium point of system (1) is,

	
E0 = (S0, I0, R0, E0) =

(
∧λ

µλ
, 0, 0, 0

)
.

To find the endemic equilibrium point first consider,

	

∧λ +ωλR (t) − µλS (t) −
(

υλI (t)
Kλ + I (t) + ρλE (t)

)
S (t) = 0

(
υλI (t)

Kλ + I (t) + ρλE (t)
)

S (t) −
(
µλ + ψλ + σλ

)
I (t) = 0

σλI (t) −
(
µλ + ωλ

)
R (t) = 0

πλI (t) − µλ
b E (t) = 0

πλI (t) = µλ
b E (t)

E (t) = πλI (t)
µλ

b

σλI (t) =
(
µλ + ωλ

)
R (t) ,

R (t) = σλI (t)
(µλ + ωλ) ,

∧λ +ωλ

(
σλI (t)

(µλ + ωλ)

)
=

(
µλ + υλI (t)

Kλ + I (t) + ρλ

(
πλI (t)

µλ
b

))
S (t) ,

∧λ
(
µλ + ωλ

)
+ ωλσλI (t)

(µλ + ωλ) =

(
µλµλ

b

(
Kλ + I (t)

)
+ µλ

b υλI (t) + ρλπλI (t)
(
Kλ + I (t)

)
Kλ + I (t)

)
S (t) ,

S (t) =

( (
Kλ + I (t)

) [
∧λ

(
µλ + ωλ

)
+ ωλσλI (t)

]
[
µλµλ

b (Kλ + I (t)) + µλ
b υλI (t) + ρλπλI (t) (Kλ + I (t))

]
(µλ + ωλ)

)
,

(
υλI (t)

Kλ + I (t) + ρλπλI (t)
µλ

b

) ( (
Kλ + I (t)

) [
∧λ

(
µλ + ωλ

)
+ ωλσλI (t)

]
[
µλµλ

b (Kλ + I (t)) + µλ
b υλI (t) + ρλπλI (t) (Kλ + I (t))

]
(µλ + ωλ)

)

−
(
µλ + ψλ + σλ

)
I (t) = 0,( [

µλ
b υλ + ρλπλ

(
Kλ + I (t)

)] [
∧λ

(
µλ + ωλ

)
+ ωλσλI (t)

]
[
µλµλ

b (Kλ + I (t)) + µλ
b υλI (t) + ρλπλI (t) (Kλ + I (t))

]
(µλ + ωλ)

)
−

(
µλ + ψλ + σλ

)
= 0,

[
µλ

b υλ + ρλπλKλ + ρλπλI (t)
] [

∧λ
(
µλ + ωλ

)
+ ωλσλI (t)

]

−
(
µλ + ψλ + σλ

) (
µλ + ωλ

) [
µλµλ

b

(
Kλ + I (t)

)
+ µλ

b υλI (t) + ρλπλI (t)
(
Kλ + I (t)

)]
= 0

ωλσλρλπλI2 (t) +
[[

ωλσλ
] [

µλ
b υλ + ρλπλKλ

]
+ ∧λ

(
µλ + ωλ

)
ρλπλ −

(
µλ + ψλ + σλ

) (
µλ + ωλ

) (
µλµλ

b + ρλπλ
)]

I (t)

+
[
µλ

b υλ + ρλπλKλ
] [

∧λ
(
µλ + ωλ

)]
−

(
µλ + ψλ + σλ

) (
µλ + ωλ

) (
µλµλ

b + ρλπλ
)

Kλ

−
(
µλ + ψλ + σλ

) (
µλ + ωλ

)
µλ

b υλ = 0

AI2 (t) + BI (t) + C = 0,

where,
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A = ωλσλρλπλ

B =
[[

ωλσλ
] [

µλ
b υλ + ρλπλKλ

]
+ ∧λ

(
µλ + ωλ

)
ρλπλ −

(
µλ + ψλ + σλ

) (
µλ + ωλ

) (
µλµλ

b + ρλπλ
)]

C =
[
µλ

b υλ + ρλπλKλ
] [

∧λ
(
µλ + ωλ

)]
−

(
µλ + ψλ + σλ

) (
µλ + ωλ

) (
µλµλ

b + ρλπλ
)

Kλ

−
(
µλ + ψλ + σλ

) (
µλ + ωλ

)
µλ

b υλ

since A > 0,

B > 0 if
[[

ωλσλ
] [

µλ
b υλ + ρλπλKλ

]
+ ∧λ

(
µλ + ωλ

)
ρλπλ >

(
µλ + ψλ + σλ

) (
µλ + ωλ

) (
µλµλ

b + ρλπλ
)]

,

C > 0 if
[
µλ

b υλ + ρλπλKλ
] [

∧λ
(
µλ + ωλ

)]
>

(
µλ + ψλ + σλ

) (
µλ + ωλ

) (
µλµλ

b + ρλπλ
)

Kλ

+
(
µλ + ψλ + σλ

) (
µλ + ωλ

)
µλ

b υλ.

Thus,

	

S∗ =
(
Kλ + I∗) [

∧λ
(
µλ + ωλ

)
+ ωλσλI∗]

[
µλµλ

b (Kλ + I∗) + µλ
b υλI (t) + ρλπλI (t) (Kλ + I∗)

]
(µλ + ωλ)

E∗ = πλ

µλ
b

I∗

R∗ = σλ

(µλ + ωλ) I∗

Local stability
In this section, local stability of the epidemic model is investigated at the disease free equilibrium point. In this 
connection the following result are established.

Definition 6  An equilibrium point x∗ of the system c0Dλ
t = f (t, x (t)) , x (t0) > 0, is said to be asymptotically 

stable if all the eigenvalues of the Jacobian matrix (J) evaluated at x∗ satisfies |arg(λi)| > απ
2 , where λi are 

eigenvalue of J.

Theorem 2  The disease-free equilibrium E0 is locally asymptotically stable if all the eigen values of the Jacobian 
matrix are negative.

Proof  The Jacobian matrix of the system (1) and its elements are given below

	

JD =




J11 J12 J13 J14
J21 J22 J23 J24
J31 J32 J33 J34
J41 J42 J43 J44


 .

Consider Jacobian at E0,

	

JE0 =




−µλ −υλ∧λ

µλKλ ωλ −ρλ∧λ

µλ

0 υλ∧λ

µλKλ − (µλ + ψλ + σλ) 0 ρλ∧λ

µλ

0 σλ −(µλ + ψλ) 0
0 πλ 0 −µλ

b


 .

Since det (JE0 − λI) = 0,

	
(
−µλ − λ

)
= 0,

root is negative and real,

	 λ1 = −µλ,

where λ2,λ3 and λ4 belongs to

	

p (x) =
[

υλ∧λ

µλKλ
−

(
µλ + ψλ + σλ

)
− λ

] [(
−

(
µλ + ψλ

)
− λ

) (
−µλ

b − λ
)]

+ ρλ∧λ

µλ

[(
−

(
µλ + ψλ

)
− λ

)
πλ

]
= 0,

by using the Routh-Hurwitz criterion for 3rd order polynomials we have

	 P (λ) = λ3 + a2λ2 + a1λ + a0,
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Here

	

a0 = µλ
b

(
µλ + ψλ

) (
µλ + ψλ + σλ

)
+ ρλ ∧λ πλ

µλ

(
µλ + ψλ

)
,

a1 = µλ
b

(
µλ + ψλ + σλ

)
+

(
µλ + ψλ

) (
µλ + ψλ + σλ

)
+ µλ

b

(
µλ + ψλ

)
+ ρλ ∧λ πλ

µλ
,

a2 =
(
µλ + ψλ + σλ

)
+ µλ

b +
(
µλ + ψλ

)
.

All the three roots are positive and must be satisfied the condition

	 a1a2 − a0 > 0.

Hence, by Routh-Hurwitz criterion E0 is stable. □

Theorem  The existing equilibrium (EE) is locally asymptotically stable, if, R0 > 1.

Proof  The Jacobian matrix of the system (1) and its elements are given below.

	

JD =




J11 J12 J13 J14
J21 J22 J23 J24
J31 J32 J33 J34
J41 J42 J43 J44


 ,

The Jacobian matrix at existing equilibrium (EE) is as follows,

	

J =




−µλ −
(

υλI∗(t)
Kλ+I∗(t) + ρλE∗ (t)

)
−KλS∗(t)

(Kλ+I∗(t))2 0 −ρλS∗ (t)(
υλI∗(t)

Kλ+I∗(t) + ρλE∗ (t)
)

−
(
µλ + ψλ + σλ

)
0 ρλS∗ (t)

0 σλ −
(
µλ + ωλ

)
0

0 πλ 0 −µλ
b




,

λ1 = −
(
µλ + ωλ

)

λ3 +
[(

µλ
b +

(
µλ + ψλ + σλ

))
+

(
µλ +

(
υλI∗ (t)

Kλ + I∗ (t) + ρλE∗ (t)
))]

λ2

+
[(

µλ
b +

(
µλ + ψλ + σλ

)) (
µλ +

(
υλI∗ (t)

Kλ + I∗ (t) + ρλE∗ (t)
))

+µλ
b

(
µλ + ψλ + σλ

)
+

(
KλS∗ (t)

(Kλ + I∗ (t))2

) (
υλI∗ (t)

Kλ + I∗ (t) + ρλE∗ (t)
)]

λ

+
[(

µλ +
(

υλI∗ (t)
Kλ + I∗ (t) + ρλE∗ (t)

))
µλ

b

(
µλ + ψλ + σλ

)
+

(
KλS∗ (t)

(Kλ + I∗ (t))2

) (
υλI∗ (t)

Kλ + I∗ (t) + ρλE∗ (t)
)

+πλρλS∗ (t)
(

υλI∗ (t)
Kλ + I∗ (t) + ρλE∗ (t)

)]

= 0,

λ3 + a2λ2 + a1λ + a0 = 0,

where,

	

a2 =
[(

µλ
b +

(
µλ + ψλ + σλ

))
+

(
µλ +

(
υλI∗ (t)

Kλ + I∗ (t) + ρλE∗ (t)
))]

> 0

a1 =
[(

µλ
b +

(
µλ + ψλ + σλ

)) (
µλ +

(
υλI∗ (t)

Kλ + I∗ (t) + ρλE∗ (t)
))

+ µλ
b

(
µλ + ψλ + σλ

)

+
(

KλS∗ (t)
(Kλ + I∗ (t))2

) (
υλI∗ (t)

Kλ + I∗ (t) + ρλE∗ (t)
)]

> 0,

a0 =
[(

µλ +
(

υλI∗ (t)
Kλ + I∗ (t) + ρλE∗ (t)

))
µλ

b

(
µλ + ψλ + σλ

)
+

(
KλS∗ (t)

(Kλ + I∗ (t))2

) (
υλI∗ (t)

Kλ + I∗ (t) + ρλE∗ (t)
)

+πλρλS∗ (t)
(

υλI∗ (t)
Kλ + I∗ (t) + ρλE∗ (t)

)]
> 0.

All the three roots are positive and must be satisfied the condition

	 a1a2 − a0 > 0.

Hence, by Routh-Hurwitz criterion system is locally stable at EE. □

Numerical scheme and results
This section is devoted to present the numerical scheme for the solution of underlying model.
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Definition 7  Let y(τ) satisfies some smoothness conditions in every finite interval (0,t) with t ≤ τ. The non-
standard Grunwald–Letnikov Approximation for y(τ) is

	
yn+1 −

n+1∑
v=1

eλ
v yn+1−v − rλ

n+1y0 = hλ (yn+1) ,

where eλ
v = −(1)v−1

(
λ
v

)
, rλ

n+1 = hλrλ
0 (τn+1) = γλ

0,−1(n + 1)−λ

and the coefficient

	
γλ

0,−1 = Γ(µλ + 1)
Γ(kλ + 1) , µ, k ∈ N0 ∪ {−1} .

The Grunwald–Letnikov Approximation is the extension of the Euler method, so its order of convergence 
coincides with order Euler method by taking λ=1. For more details, the reference 20 is helpful.
Using above approximation for system (1), we have

	

1
φ (h)λ

{
Sn+1 −

n+1∑
i=1

eiSn+1−i − γn+1S0

}
= ∧λ + ωλRn − µλSn+1 −

(
υλIn (t)

K + In (t) + ρλEn (t)
)

Sn+1 (t)

	
Sn+1

[
1 + ϕ (h)λ

{
µλ +

(
υλIn

K + In
+ ρλEn

)}]
=

n+1∑
i=1

eλ
i Sn+1−i + γλ

n+1S0 + ϕ (h)λ ∧λ +ϕ (h)λ ωλRn

	

Sn+1 =
∑n+1

i=1 eλ
iSn+1−i + γλ

n+1S0 + ϕ(h)λ∧λ + ϕ(h)λωλRn

1 + ϕ(h)λ
[
µλ +

(
υλIn
K+In

+ ρλEn

)] ,� (2)

similarly, we have the following results

	
In+1 =

∑n+1
i=1 eλ

iIn+1−i + γλ
n+1I0 + ϕ(h)λ

(
υλIn
K+In

+ ρλEn

)
Sn+1

1 + ϕ(h)λ (µλ + ψλ + σλ)
,� (3)

	
Rn+1 =

∑n+1
i=1 eλ

i Rn+1−i + γλ
n+1R0 + ϕ(h)λσλIn+1

1 + ϕ(h)λ (µλ + ωλ)
,� (4)

	
En+1 =

∑n+1
i=1 eλ

i En+1−i + γλ
n+1E0 + ϕ(h)λπλIn+1

1 + ϕ(h)λµλ
b

.� (5)

Now the following results ensure the ability of proposed technique to retain the positive and bounded behavior 
of solution.

Lemma 3  Assume that all of the variables and control parameters are positive i.e.,

S0 > 0, I0 > 0, R0 > 0, E0 > 0 and ∧λ > 0, ωλ > 0, µλ > 0, ψλ > 0, σλ > 0, 
ρλ > 0, υλ > 0, κλ > 0, πλ > 0, µλ

b > 0, ϕ(h)λ > 0, are all positive, then Sn > 0, In > 0, Rn > 0 and 
En > 0 is satisfied for all n = 0, 1, 2, 3 . . . ϵZ+.

Proof  Since

	

Sn+1 =
∑n+1

i=1 eλ
i Sn+1−i + γλ

n+1S0 + ϕ (h)λ ∧λ +ϕ (h)λ ωλRn

1 + ϕ (h)λ
[
µλ +

(
υλIn
K+In

+ ρλEn

)] .

For n = 0,

	

S1 =
∑1

i=1 eλ
iS1−i + γλ

1S0 + ϕ(h)λ∧λ + ϕ(h)λωλR0

1 + ϕ(h)λ
[
µλ +

(
υλI0
K+I0

+ ρλE0

)] ,

since, S0 and all the parameters are positive.
Then S1 ≥ 0. Similarly it can easily be proved that I1, R1andE1 ≥ 0. Next we suppose that the result holds 

for n = {1,2, 3,4, . . . , n − 1} i.eSn, In, Rnand En ≥ 0, ∀n = {1,2, 3,4, . . . , n − 1}.
Moreover for n ∈ Z+ we have

Scientific Reports |        (2025) 15:14002 9| https://doi.org/10.1038/s41598-025-92144-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

Sn+1 =
∑n+1

i=1 eλ
iSn+1−i + γλ

n+1S0 + ϕ(h)λ∧λ + ϕ(h)λωλRn

1 + ϕ(h)λ
[
µλ +

(
υλIn
K+In

+ ρλEn

)] ,

since, all the discretize state variables and parameters are positive. Therefore Sn+1 ≥ 0. Similarly 
In+1, Rn+1, En+1 ≥ 0. Hence the proposed numerical scheme preserved the positivity for n ∈ Z+. □

Lemma 4  Let S0, I0, R0 are finite so, S0 + I0 + R0 ≤ L0. All the parameters ∧λ, ωλ, µλ, ψλ, σλ, ρλ, πλ, υλ, κλ

,µλ
b  and ϕ(h)λ are positive.

Then there is a constant Mn+1 such that Sn+1 ≤ Mn+1,In+1 ≤ Mn+1, and 
Rn+1 ≤ Mn+1∀n ∈ Z+0 < En+1 < 1 for microbe papulation.

Proof  Since all the parameters and state variables are positive then there exists a constant Mn+1, such that 
Sn+1, In+1, Rn+1and En+1 ≤ Mn+1.

Adding the Eqs. (2) to (5).

	

Sn+1 + ϕ (h)λ µλSn+1 + ϕ (h)λ

(
υλIn

K + In
+ ρλEn

)
Sn+1 + In+1 + ϕ (h)λ

(
µλ + ψλ + σλ

)
In+1

+ Rn+1 + ϕ (h)λ
(
µλ + ωλ

)
Rn+1 =

n+1∑
i=1

eλ
i Sn+1−i + γn+1S0 + ϕ (h)λ ∧λ +ϕ (h)λ ωλRn

+
n+1∑
i=1

eiIn+1−i + γn+1I0 + ϕ (h)λ

(
υλIn

K + In
+ ρλEn

)
Sn+1

+
n+1∑
i=1

eλ
i Rn+1−i + γλ

n+1R0 + ϕ (h)λ σλIn+1,

(
1 + ϕ (h)λ µλ

)
Sn+1 +

{
1 + ϕ (h)λ

(
µλ + ψλ

)}
In+1 +

{
1 + ϕ (h)λ

(
µλ + ωλ

)}
Rn+1

=
n+1∑
i=1

eλ
i (Sn+1−i + In+1−i + Rn+1−i) + γn+1 (S0 + I0 + R0) + ϕ (h)λ ∧λ +ϕ (h)λ ωλRn,

∴ S0 + I0 + R0 = L0.

This result is proved by mathematical induction. Firstly, consider the case when n = 0 in the above expression.

	

(
1 + ϕ (h)λ µλ

)
S1 +

{
1 + ϕ (h)λ

(
µλ + ψλ

)}
I1 +

{
1 + ϕ (h)λ

(
µλ + ωλ

)}
R1

= eλ
1 (S0 + I0 + R0) + γ1 (S0 + I0 + R0) + ϕ (h)λ ∧λ +ϕ (h)λ ωλR0,(

1 + ϕ (h)λ µλ
)

S1 +
{

1 + ϕ (h)λ
(
µλ + ψλ

)}
I1 +

{
1 + ϕ (h)λ

(
µλ + ωλ

)}
R1 ≤ eλ

1 L0

+ γ1L0 + ϕ (h)λ ∧λ +ϕ (h)λ ωλR0 = M1,

(
1 + ϕ (h)λ µλ

)
S1 ≤

(
λ + 1

Γ (1 − λ)

)
L0 + ϕ (h)λ ∧λ +ϕ (h)λ ωλR0 = M1,

(
1 + ϕ (h)λ µλ

)
S1 ≤ M1,

⇒ S1 ≤ M1(
1 + ϕ (h)λ µλ

) ,

∴
(
1 + ϕ (h)λ µλ

)
≥ 1.

S1 ≤ M1,

similarly, it is easy to check that this constant is such that I1 ≤ M1, R1 ≤ M1 and E1 ≤ M1. We define M1 as 
the maximum. Now for n = 1 we can see that

	

(
1 + ϕ (h)λ µλ

)
S2 +

{
1 + ϕ (h)λ

(
µλ + ψλ

)}
I2 +

{
1 + ϕ (h)λ

(
µλ + ωλ

)}
R2 ≤ eλ

1 M1

+ eλ
2 L0 + γ2L0 + ϕ (h)λ ∧λ +ϕ (h)λ ωλR1 = M2,

(
1 + ϕ (h)λ µλ

)
S2 ≤ M2 ⇒ S2 ≤ M2(

1 + ϕ (h)λ µλ
) ,

∴
(
1 + ϕ (h)λ µλ

)
≥ 1

S2 ≤ M2,
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similarly, I2 ≤ M2, R2 ≤ M2 and E2 ≤ M2.
Now for some positive n ∈ Z+

	

(
1 + ϕ (h)λ µλ

)
Sn+1 +

{
1 + ϕ (h)λ

(
µλ + ψλ

)}
In+1 +

{
1 + ϕ (h)λ

(
µλ + ωλ

)}
Rn+1 ≤ eλ

1 (Mn + Mn−1 + Mn−2 + . . . + M1)

+
(

λ + 1
Γ (1 − λ)

)
L0 + ϕ (h)λ ∧λ +ϕ (h)λ ωλRn = Mn+1,

(
1 + ϕ (h)λ µλ

)
Sn+1 ≤ Mn+1,

⇒ Sn+1 ≤ Mn+1(
1 + ϕ (h)λ µλ

) ,

∴
(
1 + ϕ (h)λ µλ

)
≥ 1.

Sn+1 ≤ Mn+1,

similarly, In+1 ≤ Mn+1, Rn+1 ≤ Mn+1 and En+1 ≤ Mn+1.
Hence, scheme preserve the boundedness. □

Numerical simulations
In this segment, graphs are plotted for different values of the parameters given in the above Table 1 to support 
our claimed feature of the scheme. Figure 1 shows the sensitivity indices of parameter’s involved in reproduction 
number.

All the plots in Fig. 2 show the dynamics of susceptible individuals due the cryptosporidiosis disease toward 
the disease-free equilibrium point. Four different graphs are plotted against the different values of fractional 
order parameter λ. The values of λ are described in the Fig. 2. Every graph converges towards the disease-free 
equilibrium point with a different rate of convergence depending upon the value of λ.It can be observed that the 
graph having the higher value of λ converges fastly to the fixed point as compared to the graph with a smaller 
value of λ. So, it can be concluded that the rate of convergence towards the disease-free equilibrium point is 
directly proportional to the value of λ.

Fig. 1.  Sensitivity indices of parameter’s involved in reproduction number.

 

Parameter symbol Parameter rates Parameter values

∧ Recruitment 0.5

ω Lose of immunity 0.001

σ Recovery 2

µ Natural 3

ψ Mortality 1

ν Contact of microbe population 1

κ Concentration of microbe population in the environment 1

π Cryptosporidiosis infected to the environment 0.02

µb Mortality of microbes 0.02

ρ Contact with the environment

Table 1.  The values of parameters involved in the model (1).
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All the graphs in Fig. 3 show the progress of infected individuals due the cryptosporidiosis toward the disease-
free equilibrium. Four different graphs are plotted against the different values of fractional order parameter λ 
and these values are 0.75 0.8 0.85 0.9. The values of λ are described in the Fig. 3. Every graph converges towards 
the disease-free equilibrium point with a different rate of convergence depending upon the value of λ.It can be 
observed that the graph against the higher value of λ converges fastly to the fixed point as compared to the graph 
with smaller value of λ. So, it can be concluded that rate of convergence towards the disease-free equilibrium 
point is directly proportional to the value of λ.

All the sketches in Fig.  4 reflect the progress of infected individuals due the cryptosporidiosis toward 
the disease-free equilibrium point. Four different graphs are plotted against the different values of fractional 
order parameter λ. The values of λ are described in the Fig. 4. Every graph converges towards the disease-free 
equilibrium point with a different ratio of convergence depending upon the value of λ.It can be noticed that 
the graph with the higher value of λ converges fastly to the fixed point as compared to the graph with smaller 
value of λ. So, it can be concluded that rate of convergence towards the disease-free equilibrium point is directly 
proportional to the value of λ.

All the patterns in Fig. 5 reflect the progress of infected individuals due the cryptosporidiosis toward the 
disease-free equilibrium point. Four different graphs are plotted against the different values of fractional order 
parameter λ and these values are 0.75 0.8 0.85 0.9. The values of λ are mentioned in the Fig. 5. Every graph 
converges towards the disease-free equilibrium point with a different ratio of convergence depending upon 
the value of λ.It can be observed that the graph with the higher value of λ converges fastly to the fixed point 

Fig. 3.  The graphs of infected population with different values of λ.

 

Fig. 2.  The graphs of susceptible population with different values of λ.
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as compared to the graph with smaller value of λ. So, it can be concluded that rate of convergence towards the 
disease-free equilibrium point is directly proportional to the value of λ.

All the sketch in Fig.  6 reflect the progress of infected individuals due the cryptosporidiosis toward the 
endemic equilibrium point. Four different graphs are plotted against the different values of fractional order 
parameter λ. The values of λ are mentioned in the Fig. 6. Every graph converges towards the endemic equilibrium 
point with a different ratio of convergence depending upon the value of λ. It can be noticed that the graph with 
the higher value of λ converges fastly to the fixed point as compared to the graph with smaller value of λ. So, it 
can be concluded that rate of convergence towards the endemic equilibrium point is directly proportional to the 
value of λ.

All the plots in Fig. 7 reflect the progress of infected individuals due the cryptosporidiosis toward the endemic 
equilibrium point. Four different graphs are plotted against the different values of fractional order parameter λ 
and these values are 0.75 0.8 0.85 0.9. The values of λ are mentioned in Fig. 7. Every graph converges towards 
the endemic equilibrium point with a different ratio of convergence depending upon the value of λ.It can be 
observed that the graph with the higher value of λ converges fastly to the fixed point as compared to the graph 
with a smaller value of λ. So, it can be concluded that the rate of convergence towards the endemic equilibrium 
point is directly proportional to the value of λ.

All the sketches in Fig. 8 reflect the progress of recovered individuals due the cryptosporidiosis toward the 
endemic equilibrium point. Four different graphs are plotted against the different values of fractional order 
parameter λ. The values of λ are mentioned in Fig. 8. Every graph converges towards the endemic equilibrium 
point with a different ratio of convergence depending upon the value of λ. It can be noticed that the graph with 
the higher value of λ converges fastly to the fixed point as compared to the graph with a smaller value of λ. So, 

Fig. 5.  The graphs of microbial population with different values of λ.

 

Fig. 4.  The graphs of recovered population with different values of λ.
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it can be concluded that the rate of convergence towards the endemic equilibrium point is directly proportional 
to the value of λ.

All the graphs in Fig. 9 reflect the progress of recovered individuals due the cryptosporidiosis toward the 
endemic equilibrium point. Four different graphs are plotted against the different values of fractional order 
parameter λ and these values are 0.75 0.8 0.85 0.9. The values of λ are mentioned in Fig. 9. Every graph converges 
towards the endemic equilibrium point with a different ratio of convergence depending upon the value of λ
.It can be noticed that the graph with the higher value of λ converges fastly to the fixed point as compared to 
the graph with a smaller value of λ. So, it can be concluded that the rate of convergence towards the endemic 
equilibrium point is directly proportional to the value of λ.

GL NSFD simulations are more flexible and render high accuracy results which makes it possible to predict 
the dynamics of disease by considering the biological systems accurately. As compared to the standard finite 
difference methods, GL NSFD can handle the nonlinearities and it is capable to preserve crucial properties 
such as positivity as well as the boundedness which is essential in modelling the spread of diseases in the real 
world. These models enable one introduce complexities such as transmission rates, recovery rates and spatial 
distribution of a disease hence offering a more realistic account of how diseases originate and develop. Due to 
the capabilities of GL NSFD simulations in accurately depicting the dynamics of disease transmission, its output 
can be used in development of public health principles, prediction of possible scenarios of outbreaks and the 
assess the likely effects of measures including vaccination, quarantine and social distancing. It also improves the 
accuracy of epidemiological models, and helps implement disease control measures that are more efficient and 
relevant.

Fig. 7.  The graphs of infected population with different values of λ.

 

Fig. 6.  The graphs of susceptible population with different values of λ.
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Covariance of cryptosporidiosis model
The correlation coefficient is a statistical value that shows how closely two sets of values are related, both 
positively, negatively and the coefficient ranges from + 1 and − 1 respectively. Specifically, a value of + 1 on the 
coefficient signifies a perfect positive linear relationship and it means, that as the values of one variable go up, 
the other variable also goes up in a perfectly linear fashion. On the other hand, a value of -1 signifies a negative 
linear correlation which means a perfect negative correlation in which the increase of one is related to the perfect 
linear decrease of the other. A positive value indicates that there is a positive linear relationship and if the value 
is equal to zero then there is no linear relationship in the pair of variables. Co-efficient of correlation shows how 
one variable might influence another; yet, it does not express cause and cause-and-effect relationship. We have 
discussed the covariance of the model for Cryptosporidiosis transmission epidemic between compartments in 
this section. In order to address these, we calculated correlation coefficients and described the results in Table 
2. The susceptible class has an inverse relationship with other compartments as shown by solutions in Table 2. If 
the susceptible class increases eventually, it will be possible to decrease other compartments thus resulting into 
a cryptosporidiosis-free equilibrium of the model.

Conclusions
A cryptosporidiosis model is taken into consideration for the study in this article. The state variables in the 
mathematical model are S, I, R, and E. For the model, two steady equilibrium states endemic and disease-free are 
defined. The next-generation matrix calculates a basic reproduction number. At DFE, the model’s stability and 
the numerical scheme’s stability are both examined. The part of analyzing disease stability and transmission is 
also looked at. For validating the preliminary findings, a numerical example and simulations are also presented. 
The technique may be used to model non-linear integer order epidemic models with delay factors in the 
future. The numerical scheme illustrates the dynamics of the disease in the model’s many compartments. Every 

Fig. 9.  The graphs of microbial population with different values of λ.

 

Fig. 8.  The graphs of recovered population with different values of λ.
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equation verifies the convergence to the real steady state and the positive, bounded solutions. So, for the solution 
of non-linear epidemic models, the NSFD scheme is a trustworthy and effective numerical design. The study 
findings provide a predictive tool for incident patterns of outbreaks to public health authorities and prioritize 
the interventions for cryptosporidiosis control. Stressing major transmission drivers underlines the need for 
improved water quality, public awareness campaigns, and better surveillance systems. These insights support 
preferential strategies for mitigating disease spread and protecting vulnerable populations.

Data availability
The datasets used and analysed during the current study are available from the corresponding author on rea-
sonable request.
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