Agric Res J **62** (2): 161-167, April 2025 DOI: 10.5958/2395-146X.2025.00019.7

*Corresponding author: ramizalasadi@gmail.com

Date of receipt: 21.02.2024, Date of acceptance: 28.03.2025,

NITRIC OXIDE-MEDIATED MODULATION OF BIOCHEMICAL RESPONSES

AND LEAF SPOT DISEASE PROGRESSION IN DATE PALM (Phoenix

dactylifera L.) UNDER DROUGHT STRESS

Ali S Mahdi, Ramiz Mahdi Salih Alasadi and Firas M Al-Hamoud

Date palm Research Center, University of Basrah, Basra, 42001, Iraq

ABSTRACT

This study investigates the role of sodium nitroprusside (SNP) in enhancing drought tolerance and

mitigating leaf spot disease in date palm (*Phoenix dactylifera* L.). Three SNP concentrations (0, 75, and

150 μ M) were applied under progressive drought stress (1, 3, and 6 weeks). The results showed that

drought stress significantly increased oxidative stress markers, including malondialdehyde (MDA)

and hydrogen peroxide (H_2O_2), while SNP, particularly at 150 μ M, reduced their levels. Additionally,

SNP treatment enhanced antioxidant enzyme activities (catalase and peroxidase). SNP also reduced

the severity of leaf spot symptoms caused by *Alternaria alternata*, limiting lesion size. These findings

suggest that SNP modulates physiological and biochemical responses to drought stress, improving

plant defense and disease resistance. Thus, SNP application could be a promising strategy to support

the long-term viability of date palm cultivation, particularly in arid regions.

Keywords: Antioxidant enzymes, Oxidative stress, Plant disease