
Improved Decimal Rounding Module based on

Compound Adder

Heba Hakim

Computer Engineering Department

Engineering College, University of

Basrah

Basrah, Iraq

hiba.abdulzahrah@uobasrah.edu.iq

Hanadi A. Jaber

Computer Engineering Department

Engineering College, University of

Basrah

Basrah, Iraq

hanadi.jaber@uobasrah.edu.iq

Zaineb M. Alhakeem

Department of Chemical and Petroleum

Refining Engineering

Basrah University for Oil and Gas

Basrah, Iraq

zainebalhakeem@buog.edu.iq

Abstract— A new approach and architecture have been

presented in this paper to efficiently merge the decimal

rounding stage according to the IEEE 754-2008 standard based

on the compound adder. This integration serves as a crucial key

to improve the computation performance of both decimal

floating point multiplication and fused multiply add (FMA)

operation. The decimal rounding control unit is based on the

IEEE 754-2008 five rounding modes. The decimal combined

add/round module has been coded in the VHDL and verified

using the Xilinx ISE 13.2. The overall critical path delay is

compared with another design based on the BCD adder with the

decimal rounding. The results have shown at least 3.4 %

improvement in terms of delay reduction.

Keywords—DFP, BFP, FMA, Rounding module, VHDL

I. INTRODUCTION

The accurate representation of decimal numbers with
limited digits is a perpetual challenge in computer systems.
The rounding problem happens when only a portion of the
digits in the calculation result can be preserved. Rounding a
number means estimate or approximate it, on the other hand,
rounding might reduce the digits in a number without effect
the expected value. So, the result will be less accurate but
easier to use. The five rounding modes defined by the IEEE
754-2008 must provide exactly rounded results (Markstein,
2008).Rounding operation is used to approximate a number to
a specific value, selecting one of the two nearest possible
decimal floating point (DFP) numbers based on to the
specified rounding direction (rounding mode). Floating-point
number (FP) is a fractional number that result from the
division of two integers. A computer can process and
recognize real number in a form of complex coded [1, 2]. The
design of Decimal floating point has garnered considerable
interest due to the development of real-time applications in
recent years. This leads to a significant demand for high-
performance of adder and multiplier units [3].

The most important issue in the Binary floating point
(BFP) numbers even in the DFP is that, the fractional numbers
representation. Sometimes, the fractional numbers (i.e. 0.1,
0.2 or 0.3) cannot be represented accurately using the BFP.
This issue is considered as a main challenge in the most of
engineering, financial and commercial application.
Especially, when the errors have been occurred due to the
error propagation into the rounding module after execution of
an arithmetic operation (i.e. multiplication, addition,
subtraction and division) with the involvement of fractional
numbers [4, 5]. For example, if two fractional numbers are
added (i.e. 0.6 + 0.3) then the result should be produced 0.9,
but actually it is 0.8999999999999991. The DFP format can
be used to fix the accuracy representation problem and it

should be enhanced using accurate round module to decrease
the error effect [6].

This issue is considered as one of the most important
issues in the design of the arithmetic processor. In commercial
and financial applications, calculations adhere to the human
rules and standards of decimal arithmetic, which can differ
from the traditional arithmetic used in scientific calculations.
So, the decimal numbers that utilized in financial applications
are typically represented as the integer coefficients scaled by
a power of 10. For example, the value 834.50 is denoted as an
integer coefficient 83450 with an exponent -2, which is
expressed as 83450 × 10^(-2). Since more than one coefficient
can denote the same value, this integer scaled encoding is
redundant. Both coefficients 050 (with an exponent 1) and 005
(with an exponent 2) denote the value 500. Although it is
possible to utilize a normalized fixed-point (non-redundant)
coefficient as well, this is more suitable for scientific
computations [7, 8].

The rounding error is considered as a common issue
between the both DFP and BFP. As a consequence, this
problematic issue cannot be avoided any more especially
when a finite number of bits could be used to represent a
fractional number. The rounding errors and its impact can be
reduced when the precision digits in the DFP is increased.

Therefore, when required, implementations of decimal
arithmetic should have the capability to retain the complete
precision of the numbers, including the trailing fractional
zeroes, in addition to calculating numerical values. To support
the full accuracy and range that necessary for the financial
computations, early computers utilized exact decimal
arithmetic. For example, in order to perform precise decimal
multiplication, the precision digits of the largest input value
must be doubled. Thus, the series of multiplications would
rapidly exceed any hardware precision capability. Therefore,
rounding is required in commercial and financial applications
in two various ways:

- rounding placed by precision: to ensure an exact
approximation in numerous complex computations.

- rounding placed by legal requirements: in order to
decrease the exact result to a lower precision required
by the application.

This paper is organized as follow: section 2 mentions the
overview of the related work on the rounding operation;
section 3 illustrates in details the proposed decimal add/round
module; section 4 describes the comparison result, and the
conclusion is presented in section 5.

255

2024 IEEE 17th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)

2771-3075/24/$31.00 ©2024 IEEE
DOI 10.1109/MCSoC64144.2024.00050

20
24

 IE
EE

 1
7t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Em
be

dd
ed

 M
ul

tic
or

e/
M

an
y-

co
re

 S
ys

te
m

s-
on

-C
hi

p
(M

C
So

C
) |

 9
79

-8
-3

31
5-

30
47

-1
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
M

C
So

C
64

14
4.

20
24

.0
00

50

Authorized licensed use limited to: UNIVERSITY PUTRA MALAYSIA. Downloaded on January 08,2025 at 20:05:33 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUNDIN

According to the guidelines of IEEE 754 standard for
binary floating-point arithmetic, FP64 denoted the format of
data that utilized 8 bytes for both encoding and storage. FP64
storage space includes three components as demonstrated in
Figure 1: (a) the sign (S) which is represented by most
significant bit; (b) the exponent (E) which is expressed by the
middle 11bits; and (c) the fraction (M) which is represented
by the lowest 52bits. The normalized number of FP64 can be
mathematically expressed by the following equation:

𝑁 = (−1)𝑆 × 2𝐸−1023 × (1 × 𝑀) ()

The value of actual exponent represents the difference
between E and exponential bias. To compare the sizes of
exponent for 2 floating-point numbers, all values of exponent
can be expressed by unsigned integers to make it easiest.

In engineering application, the operation (𝑎 × 𝑏 + 𝑐) is
often needed and executed in 2 steps involving 2 rounding
operation.

Fig. 1. FP64 storage format

The FMA operator is used in the execution of single
instruction with operands of single/double precision floating
point. Since there is a single rounding operation is executed
on the merged full precision sum and product by employing
the FMA operator. So, the latency is reduced and enhanced
arithmetic precision for floating point [1,4,9].

To obtain exact final result during the DFP/BFP
multiplication or FMA operation, the two vectors (sum and
carry) which outputs from the partial reduction tree (i.e. 128-
bit per each) should be added. The same concept in the
addition/subtraction operation must be achieved to get the
final result, too. Comprehensive works have been
implemented in both decimal/binary multiplication and
addition field. A. Vazquaz el. [10] accomplishes the decimal
rounding operation after performed the BCD addition
operation. The conventional BCD addition stage usually
consists of three parts: pre-correction, compound addition and
post-correction. The rounded model which is presented in [10]
will be the reference to the proposed decimal rounding module
in this work in term of delay comparison. When the multiple
stages can be migrated in the same module then the
computation performance will be enhanced. The proposed
decimal add/round architecture presents the following
advantage:

- For the trailing 9's detection, decimal rounding will be
performed without additional carry propagation. The
signals (C5 and C6) which are required for the
rounding decision could be computed using the
enhanced compound adder.

- The result of binary compound adder (sum and
sum+1) can be corrected using a fast and simple
decimal post-correction.

- Enables the rounding control unit to compute the
round, guard and sticky digits concurrently with the
operation of addition for two operands using the
compound adder.

- Simplest and high-performance achievement.

- Two stages are implemented concurrently.

For instance, accurate decimal rounding is necessary to
provide precisely rounded results for approximative
computations

III. PROPOSED DECIMAL ADD/ROUND ARCHITECTURE

In this section, the proposed decimal add/round module
will be presented in details. Figure 2 demonstrates the regular
stages for the addition and rounding of 2 vectors (sum and
carry) after the normalization staged is performed in the
decimal multiplication or FMA operation. It consists mainly
of a series of pre-correction (i.e. conventional (3:2) carry save
adder (CSA)), a compound adder (i.e. 64-bit prefix adder),
rounding control unit and finally, a series of post-correction
circuits.

A. Pre-correction

The word length of the two operands is assumed (3p+1)
digits, where p is equal to 16 digits. Before employing a prefix
adder tree network-based rapid binary adder, the pre-
correction of the (3p+1) digits of the two operands, sum (S)
and carry (H), is performed. A conventional (3:2) CSA adds
0110_2 (+ 6) to the two operands (S and H) (i.e. S= s3 s2 s1 s0

and H=h3 h2 h1 h0) at the same time to obtain intermediate
result (4-bit sum and 4-bit carry), this correction operation will
be performed to all digits in parallel. The next step is that the
intermediate result of adding two vectors (sum and carry)
which are added together using a 64-bit prefix adder. Figure
2 (a) shows the block diagram of the pre-correction circuit,
while Figure 3 illustrates the top level of the proposed decimal
add/round architecture.

B. Compound Adder

A more efficient alternative of the low latency of the
proposed add/round architecture based on the implementation
of the compound adder which computes sum = (S + H) and
sum + 1 = (S + H + 1), simultaneously. The benefit of this
implementation is being able to incorporate a late complement
or late increment into a 9's complement carry-propagate adder
within a small constant time increment. A prefix adder tree
implements the binary carry recurrence 𝐶𝑖+1 = 𝑔 𝑖˅ (𝑎𝑖 ˄ 𝑐𝑖),
where 𝑎𝑖 and 𝑔𝑖 are the carry alive functions and binary carry
generate for bit number i, respectively. The decimal carries
(c1٬ c2٬ c5, and c6) are the binary carries at different decimal
positions. In this approach, the addition of prefix is performed
in three stages:-

Stage 1) Pre-processing: This stage is implemented by a
simple half adder. According to computation of prefix,
generate (𝑔𝑖), carry alive (𝑎𝑖) and and propagate (𝑝𝑖) signals
are expressed in equations 2, 3, and 4 respectively.

𝑔𝑖 = 𝑠𝑢𝑚𝑖 ∧ 𝑐𝑎𝑟𝑟𝑦𝑖 (2)

𝑎𝑖 = 𝑠𝑢𝑚𝑖 ∨ 𝑐𝑎𝑟𝑟𝑦𝑖 (3)

𝑝𝑖 = 𝑠𝑢𝑚𝑖⨁𝑐𝑎𝑟𝑟𝑦𝑖 (4)

64bit (double)

S
Exp(k=11)

[62:52] Frac(n=52) [51:0]

 63 62 52 51 0

 S(sign) E(exponent) M(fraction)

256

Authorized licensed use limited to: UNIVERSITY PUTRA MALAYSIA. Downloaded on January 08,2025 at 20:05:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Decimal Combined Add/Round Block Diagram

Fig. 3. Top level of decimal comined Add/Round module

Stage 2) Prefix Computation: The construction of prefix
combinational is based on the concept of a collection carry

propagate generate signals. It is defined by the equations 5
and 6 respectively.

Conventional (3:2) CSA

Sum𝑖 Carry𝑖 +6

1-digit

(Post-Correction unit) (Post-Correction unit) +1

 +10 +11 LSD

(a)

R_Corect_sel

𝐶1 𝐶2 𝐶5

Rounding

Control Unit

𝐶6

 Sticky

GUD
ROD

R_Mode_sel

(b)

Binary Compound
Adder

Post-Correction unit

Selection Unit

16-digit

Final Decimal Result

(3p+1) digits

Sum+1 Sum

1
0

 SIR

(3p+1) digits

Pre-Correction unit

(c)

S C

LSD GUD ROD

GUD

ROD

1-digit

257

Authorized licensed use limited to: UNIVERSITY PUTRA MALAYSIA. Downloaded on January 08,2025 at 20:05:33 UTC from IEEE Xplore. Restrictions apply.

𝐺[𝑖:𝑚] = {
𝑔𝑖 𝑖𝑓 𝑖 = 𝑚

𝑃[𝑖:𝑗] ∨ 𝐺[𝑖:𝑗] ∧ 𝐺[𝑖−1:𝑚] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (5)

𝑃[𝑖:𝑚] = {
𝑃𝑖 𝑖𝑓 𝑖 = 𝑚

𝑃[𝑖−1:𝑚] ∨ 𝑃[𝑖:𝑗] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (6)

The representation of P and G can be simplified, an
operator is called dot operator and it can be represented by
'*' which could be introduced to create group of propagate
and group of generate, they are expressed by the equation 7
as follow:

(𝐺, 𝑃)[𝑖:𝑚] = (𝐺, 𝑃)[𝑖−1:𝑚] ∗ (𝐺, 𝑃)[𝑖:𝑗] (7)

Stage 3) Post-processing: The information of sum and
carry bits for each operand bit is determined in this stage.
The equations (8) and (9) are expressed 𝑐𝑖 and 𝑠𝑖
respectively.

𝑐𝑖 = 𝐺[𝑖:0] (8)

𝑠𝑖 = 𝑝𝑖⨁𝑐𝑖−1 (9)

In general, a prefix combinational network of m-bit
inputs 𝑏𝑚−1, 𝑏𝑚−2, ⋯ , 𝑏0 uses the associative (arbitrary)
operator (∘) to produce the vector of the outputs described
by:

𝑧𝑖 = 𝑥𝑖 ∘ 𝑥𝑖−1 ∘ 𝑥𝑖−2 ∘ ⋯ ∘ 𝑥1 ∘ 𝑥0 (10)

The carry computation can be defined as below:

𝑧𝑖 = (𝑔(𝑖,0), 𝑎(𝑖,0)), 𝑏𝑖 = (𝑔𝑖 , 𝑎𝑖) (11)

It has to be noticed that it can be implemented by a cell
contains inputs of two pairs of bits (𝑔𝐿 , 𝑔𝑅) and (𝑎𝐿 , 𝑎𝑅) ,
where R and L represents (𝑔𝑜𝑢𝑡 , 𝑎𝑜𝑢𝑡), such that:

𝑔𝑜𝑢𝑡 = 𝑔𝐿 ∨ (𝑎𝐿 ∧ 𝑔𝑅) (12)

𝑎𝑜𝑢𝑡 = (𝑎𝐿 ∧ 𝑎𝑅) (13)

According to the above two equations, a variety of cells
in multiple levels of the prefix adder network can be used to
compute the carry bits in different positions. The point is
that the carry bit named 𝑐𝑖 engages to generate signal
spanning the bit position (-1) to (𝑖−1). The relation between
the generate signal (𝑖−1,-1) and 𝑐𝑖 defines as below:

𝑐𝑖 = 𝑔(𝑖−1−1), 𝑤ℎ𝑒𝑟𝑒 (𝑔−1𝑎−1) = (𝑐0, 𝑐0) (14)

The next step, an interconnection of these cells together
is used to produce 𝑔(𝑖−1,−1) for all 𝑖𝑖. After that, these carry

bits are used to determine the final summation result, such
that:

𝑆𝑖 = 𝑃𝑖⨁𝐶𝑖 (15)

C. Rounding Set-up Unit

The main target of the rounding set-up unit is to compute
the guard (GUD), round digits (ROD), sticky bit (STK), and
potential carry-in bit to p-digits (the most significant digits)
concurrently with the execution of the addition operation.

D. General Algorithm

The rounding setup unit is put together as a conditional
adder to ensure that at critical path only p-digit carry
rippling delay. As shown in Figure 3, the (3p+1) digits width
is divided into four groups (p-1), (p), (p-1) and 3-digit (i.e.
LSD, GUD, and ROD), then all of these digits dispatched to
the compound adders in parallel to avoid two successive

addition steps. The least significant (p-1) digits are
calculated once using 64-prefix adder network while the
other groups are calculated twice to produce the sum and
sum + 1. One of them assumes the carry-in bit to prefix
adder is equal to zero (Cin= 0) while the other could be
assumed that the carry-in bit is equal to one (i.e. Cin= 1).

The resulting carry-out (Cin) signal from the least
significant (p-1) digits is using to select the appropriate
carry-out signal to control the path of the other groups. The
next p-digit groups are added to determine the sticky bit and
carry-out (C2) signal. The appropriate ROD, GUD and LSD
should be selected using the carry-out (C2) signal. Then, the
three digits (i.e. LSD, GUD, ROD) of the two vectors are
added using the compound adder. As a consequence, these
three digits can be used to produce the carry-out (C5) signal
and intermediate vector of 3-digit. The latest two significant
digits (i.e. GUD and ROD) of this vector should be
dispatched to the rounding control unit. The remaining digit
is considered as the LSD of the final result which should be
corrected using the post-correction circuit. Finally, the most
significant (p-1) digits should be input to the compound
adder and the final (p-1) digit of the result could be selected
using the carry (C5) signal. To find the correct (p-1) digits
and the LSD, a small circuitry of post-correction is utilized.
However, the less significant digit could be contributed only
to the sticky and their exact values are not required. Instead,
the rounding control unit is utilized to determine their
correct sticky bit. In the meantime, the carry-out (C5 and C6)
two signals are fed into the rounding control unit.

As mentioned previously, the correct round and guard
digits can be selected using the carry-out signals which are
computed from multiple groups of least significant digits via
the prefix adder network. This method is equivalent to
determine the most significant (p) digits except the LSD.
The EoP signal represents the carry-in. The intermediate
result of the addition step should be included two vectors
(sum and sum+1). Moreover, In the case of negative result,
it should be complemented. At last, the rounding decision
depends on the value of both guard and round digits which
are computed in the rounding set-up module and the carry-
out signals (C5 and C6) with signal (R_mode_sel) together
could be used to select the final correct rounded result (R).

As a total, the final result (after complementation if
need) could be selected according the value of the following
signals: C5,C6, S_IR, R_mode_sel and R_corect_sel. The
S_IR signal should be obtained previous to the stage of
combined add/round. It can be produced with a simple
comparator (the block of intermediate sign detection) that
operates concurrently with the addition stage to indicate
which the operand is greater one. Figure 4 shows the
unrounded result can produce from the addition operation of
the two vectors (sum and carry) and there are four different
cases could be fed to the combined add/round module. The
rounding position has two possibilities based on the value
of the LSD and the temporary GUD which are produced
from the rounding set-up unit.

As shown in Figure 4, the temporary round (ROD) and
sticky digit (STK) are generated from the rounding set-up
unit. This approach requires determining whether the value
of GUD, ROD, and STK digits of the un-rounded result is
zero or non-zero. Furthermore, these signals indicate
whether the minimum exponent has been generated or the
preferred exponent is determined.

258

Authorized licensed use limited to: UNIVERSITY PUTRA MALAYSIA. Downloaded on January 08,2025 at 20:05:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. FP64 storage format

E. General Algorithm

In parallel with binary prefix addition and post-
correction, the decimal rounding control unit determines the
selection signals and a decision of the rounding mode in
cooperate with ROD and GUD. An important section of the
rounding control unit is that the rounding decision. It is
mainly depending on the value of round, guard, sticky digits
and intermediate sign which are determined in the rounding
set-up unit. In the meantime, the (p-1) digits of un-rounding
result, LSD, and two signals (𝐶5 and𝐶6) could be used to
select the appropriate rounding result. The correct most (p-
1) significant digits of the un-rounded result can be
predicted using the MSD of sum or sum+1 based on the
value of the signal (𝐶5). It consists of two parts:

• Rounding Logic: A combinational logic
implementation can be used directly to obtain the
rounding condition of every decimal rounding
mode. Furthermore, various conditions must be
implemented on 4 probable rounding positions.
Alternatively stated, the rounding operation should
be implemented speculatively on sum or sum+1
which represent two possible rounding positions.
The signals C1and C2) can be used to perform the
rounding decision either at LSD as shown in Fig.4
case (1) or at guard digit as shown in Figure 4 case
(2, 3), after that the carry is propagated via the
rounding digit. Finally, the (2:1) multiplexer can
be used to select the final summation result based
on the rounding position.

• Rounding Conditions: The proposed decimal
rounding architecture is supported the five modes
of IEEE 754-2008 decimal rounding. Table I
provides a summary of the conditions governing
each mode of decimal rounding. The logical

operator ‘˅’ and ‘˄’ denote logical OR and logical
AND, respectively. Figure 4 demonstrates the
meaning of symbols that are used in Table I.

TABLE I. Top Level of Decimal Combined Add/Round
Module

Rounding

Mode

Rounding

Position
Action

Round Ties

to Even

GUD

If (ROD>4 ˅ ROD=5 ˄ STK=1)

Round to the nearest up

Elseif (ROD=4 ˄ STK=0 ˄

GUD↠odd) Round to the

nearest up

Elseif (ROD=4 ˄ STK=0 ˄

GUD↠odd) truncate

LSD

If (ROD>4 ˅ ROD=5 ˄

(ROD>0 ˅ STK=1)) Round to

the nearest up

Elseif (ROD=5 ˄ ROD=0 ˄

STK=0 ˄ LSD↠odd) Round

up

Elseif (ROD=5 ˄ ROD=0 ˄

STK=0 ˄ LSD↠odd)truncate

Round

Toward

Zero

GUD Truncate

LSD Truncate

Round Ties

To Away

GUD
If (GUD≥5) round up

Else truncate

LSD
If (LSD≥5) round up

Else truncate

Round

Toward

Positive

GUD

If (𝑆𝐼𝑅=0 ˄ (ROD>0 ˅ STK=1))

round up

Else truncate

LSD

If (𝑆𝐼𝑅=0 ˄ (GUD>0 ROD>0 ˅

STK=1)) Round up

Else truncate

Round

Toward

Negative

GUD

If (𝑆𝐼𝑅=1 ˄ (ROD>0 ˅ STK=1))

Round up

Else truncate

LSD

If (𝑆𝐼𝑅=1 ˄ (GUD>0 ROD>0 ˅

STK=1)) round up

Else truncate

F. Post-correction and Final Selection Stage

The layout of the post-correction circuit has been shown
in Figure 5 and the implementation of this circuit is very
simple. The importance of this circuit, when some digits
exceeded the permitted range of decimal numbers, then it
should be used to correct them.

In case of the intermediate result is greater than 9 then
the 1010 should be added digitally to correct the selected
summation result in order to produce the post-corrected
result. It is equivalent to subtract 0110 from each digit. The
correct output of Sum or Sum + 1 is selected. The selected
final results for all possible cases are shown in Table II.

Un-rounded Result

Rounded

Position

Result L GUD ROD STK

p-digit

Case0

Rounded

Position

Result L <4 <4 0

p-digit

Case 1

Rounded

Position

Result L >4 >4 1

p-digit

Case 2

Rounded

Position

Result L >4 >4 1

p-digit

Case 3

Rounded

Position

Result L >4 >4 1

p-digit

259

Authorized licensed use limited to: UNIVERSITY PUTRA MALAYSIA. Downloaded on January 08,2025 at 20:05:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Post-correction Circuit

TABLE II. Selected Final Result

Case

cmp 𝑪𝟏 𝑪𝟐 𝑪𝟓
Final Result

1 0 0 0 0 {sum,LSD}

2 0 1 0 0 {sum,LSD}

3 0 0 1 0 {sum,LSD+1}

4 0 1 1 0 {sum,LSD+1}

5 0 0 0 1 {sum+1,LSD}

6 0 1 0 1 {sum+1,LSD}

7 0 0 1 1 {sum+1,LSD+1}

8 0 1 1 1 {sum+1,LSD+1}

9 1 0 0 0 {𝑠𝑢𝑚̅̅ ̅̅ ̅̅ ,LSD}

10 1 1 0 0 {𝑠𝑢𝑚̅̅ ̅̅ ̅̅ ,LSD}

11 1 0 1 0 {𝑠𝑢𝑚̅̅ ̅̅ ̅̅ ,LSD+1}

12 1 1 1 0 {𝑠𝑢𝑚̅̅ ̅̅ ̅̅ ,LSD+1}

13 1 0 0 1 {𝑠𝑢𝑚 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,LSD}

14 1 1 0 1 {𝑠𝑢𝑚 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,LSD}

15 1 0 1 1 {𝑠𝑢𝑚 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,LSD+1}

16 1 1 1 1 {𝑠𝑢𝑚 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,LSD+1}

IV. IMPLEMENTATION RESULT

The Xilinx Vertex-5 FPGA family has been used to
synthesis and verify the performance of the proposed
decimal add/round method. The results of this architecture
have been compared with the decimal rounding model
presented in [10]. Table III provides the performance
comparison result in term of # FO4 delay, a metric that is
used to measure the taken time in logic gate to drive four
times of its load capacitance.

TABLE III. Performance Comparison

Stage (#FO4)
Proposed Add/Round

architecture

Decimal Rounding Model

[10]

Pre-correction 6.5 6.5

Binary Adder 10.3 10.5

Rounding 2.4 2.5

Selection 6 6.6

Total (#FO4) 25.2 26.1

V. CONCLUSION

In this research, a new decimal add/round approach has
been presented according to the IEEE 754-2008. The

floating-point multiplication and FMA are considered as an
important key component in many engineering applications;
the speed in the rounding architecture could be improved the
overall performance. The latency of the proposed decimal
add/round architecture is improved 3.4% than fast decimal
rounding model. Future work may include implementing
this architecture on different hardware platforms and
expanding the design to work on extend-precision 128-bit
and support broader application where decimal precision is
critical.

REFERENCES

[1] V. Dasu and K. Ragini, “Implementation of Unbiased Rounding for
64-Bit Floating Point Adder,” IEEE International Conference on
Recent Trends in Microelectronics, Automation, Computing and
Communications Systems (ICMACC), pp. 309–394, 2022. [Online].
Available: https://doi.org/10.1109/ICMACC54824.2022.10093518

[2] B. Harish, M. Rukmini, and K. Sivani, “Design of MAC unit for
digital filters in signal processing and communication”, International
J Speech Technol, pp.561–565, 2022. [Online]. Available:
https://doi.org/10.1007/s10772-021-09824-0

[3] P. Kuo, Y. Huang, and J. Huang, “Configurable Multi-Precision
Floating-Point Multiplier Architecture Design for Computation in
Deep Learning”, IEEE 5th International Conference on Artificial
Intelligence Circuits and Systems (AICAS), pp. 1-5, 2023. [Online].
Available: https://doi.org/10.1109/AICAS57966.2023.10168572

[4] D. Li, K. Mo, L. Liu, B. Pan, W. Li, W. Kang, and L. Li, “All-Digital
Computing-in-Memory Macro Supporting FP64-Based Fused
Multiply-Add Operation”, Applied Sciences vol. 13, pp. 1-13, 2023.
[Online]. Available: https://doi.org/10.3390/app13074085.

[5] P. Markstein, “The New IEEE-754 Standard for Floating Point
Arithmetic”, IEEE Std 754-2019-Redline, pp.1-148, 2019.

[6] M. Nabil, F. Al-Assfor, and M. Al-Ebadi, “ Fast Combined
Decimal/Binary Multiplier Based on Redundant BCD 4221-
8421Digit Recoding”, Basrah journal for engineering science,
pp.40-47, 2017. [Online]. Available:
https://doi.org/10.33971/bjes.17.1.6

[7] P. Sri, V. R S, and C. Poongodi, “A Low Power 10NM FinFET
design of the GRFU-Multiply Accumulate Unit for DNN
Accelerators”, Research Square Journal, pp. 1-23, 2023. [Online].
Available: https://doi.org/10.21203/rs.3.rs-3249825/v1.

[8] R. Turaka, K. Bonagiri, T. Rao, G. Kumar, S. Jayabalan, V.
Sreenivasulu, A. Panigrahy, and M. Prakash, “Design of
approximate reverse carry select adder using RCPA”, International
Journal of Electronics Letters, pp. 146-156, 2023. [Online].
Available: https://doi.org/10.1080/21681724.2022.2062791.

[9] R. Vincent and S. Anju, “Decimal floating point format based on
commonly used precision for embedded system applications”, IEEE
Annual International Conference on Microelectronics,
Communication and Renewable Enenry, pp. 1-4,2013. [Online].
Available:https://doi.org/10.1109/AICERA-CMiCR.2013.6575957

[10] A. Vazquez and E. Antelo, “A High-Performance Significand BCD
Adder with IEEE 754-2008 Decimal Rounding”, 19th IEEE
Symposium on Computer Arithmetic, pp.135-144, 2009. [Online].
Available: https://doi.org/10.1109/ARITH.2009.30.

260

Authorized licensed use limited to: UNIVERSITY PUTRA MALAYSIA. Downloaded on January 08,2025 at 20:05:33 UTC from IEEE Xplore. Restrictions apply.

