TEM Journal. Volume 13, Issue 3, pages 2341-2349, ISSN 2217-8309, DOI: 10.18421/TEM133-61, August 2024.

Low-Complexity and Secure Clustering-Based
Similarity Detection for Private Files

Duaa Fadhel Najem ', Nagham Abdulrasool Taha >, Zaid Ameen Abduljabbar ***,
Vincent Omollo Nyangaresi ° , Junchao Ma *, Dhafer G. Honi >’

" Department of Cyber Security, College of Computer Science and Information Technology,
University of Basrah, Basrah 61004, Iraq
? Department of Computer Science, College of Education for Pure Sciences,

University of Basrah, Basrah, 61004, Iraq

7 College of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518118, China

? Shenzhen Institute, Huazhong University of Science and Technology, Shenzhen 518000, China

? Department of Computer Science and Software Engineering, Jaramogi Oginga Odinga
University of Science & Technology, Bondo 40601, Kenya;,
S Department of Applied Electronics, Saveetha School of Engineering, SIMATS,
Chennai, Tami Inadu 600124, India
"Department of IT, University of Debrecen, Debrecen, 4002, Hungary

Abstract — Detection of the similarity between files is
a requirement for many practical applications, such as
copyright protection, file management, plagiarism
detection, and detecting duplicate submissions of
scientific articles to multiple journals or conferences.
Existing methods have not taken into consideration file
privacy, which prevents their use in many delicate
situations, for example when comparing two
intellectual agencies' files where files are meant to be
secured, to find file similarities. Over the last few
years, encryption protocols have been developed with
the aim of detecting similar files without compromising
privacy. However, existing protocols tend to leak
important data, and do not have low complexity costs.
This paper addresses the issue of computing the
similarity between two file collections belonging to two
entities who desire to keep their contents private.
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We propose a clustering-based approach that
achieves 90% accuracy while significantly reducing the
execution time. The protocols presented in this study
are much more efficient than other secure protocols,
and the alternatives are slower in terms of similarity
detection for large file sets. Our system achieves a high
level of security by using a vector space model to
convert the files into vectors and by applying Paillier
encryption to encrypt the elements of the vector
separately, to protect privacy. The study uses the
application of the Porter algorithm to the vocabulary
set. Using a secure cosine similarity approach, a score
for similar files was identified and the index of the
similarity scores is returned to the other party, rather
than the similar files themselves. The system is
strengthened by using clustering for files, based on the
k-means clustering technique, which makes it more
efficient for large file sets.

Keywords —
detection.

File similarity, privacy, similarity

1. Introduction

File similarity detection techniques have begun to
be used in many important applications since the first
research in this field began in 1993 [1]. For example,
this approach is used in a file management system,
which can work more efficiently if similar files are
identified. It is also used to improve the function of
web crawlers in terms of detecting similar pages [2],
[3], [4]. Finally, this method is used in applications
related to plagiarism detection and copyright
protection [5], [6].

The problem of security is considered very
important in the process of data matching.
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This scheme was not secure, as one party revealed
all of the 3-grams to the other party. This can be
considered a security weakness.

In [13], the authors suggested an efficient
approach to evaluate the set similarity. The JS was
used to measure the similarity between two private
sets. Specifically, two approaches were applied to
compute the similarity of the sets: the first was to
compute the exact secure JS, while the second used
the MinHash technique to reduce the computation
and communication overheads. The PSI-CA protocol
[19] was used in both approaches to specify the
common 3-gram sets. The work in [20] used the
MinHash technique, an efficient method of detecting
the similarity of files in a secure manner. The authors
of [20] used the SJCM protocol, where the frequency
of each N-gram is computed using the JS during
secure computation. Blundo et al. [16] used the
secure algorithm presented by De Cristafaro et al.
[13] to detect the secure similarity between two sets.
More recently, in [22], Schoppmann et a/. introduced
a secure system for documents using classification
(K-NN).

However, all of the systems described above
detect the actual similarity scores for the other side.
In contrast, our scheme encrypts the data and only
sends back the index of the matching file to the other
party. Furthermore, the scheme has low complexity
due to the use of the k-means clustering technique,
where the files are grouped into clusters, meaning
that only the similarity scores for the nk files inside
the closest cluster are computed when the first party
wants to inquire about a file.

3. Cryptographic Background

The following part provides a brief explanation of the
basic tools that are used in this paper.

3.1. Homomorphic Encryption

Homomorphic encryption occupies the largest
position among encryption systems in order to secure
data and maintain its privacy. This approach has
many valuable properties [22], [24]. Through
homomorphic  encryption, any  mathematical
operation on encrypted texts can be performed
without the need to know the private key. In 2009,
Gentry [25] was the first author to design a fully
homomorphic scheme that supported multiplication
operations, and many authors later improved on this
technique [26], [27], [28]. The study employs an
additive homomorphic encryption process for the
scheme. Additive homomorphic encryption has the
following properties:
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1- Dy (Epk(x)-Epk(Y)) =x+y.
where x and y are given integers, (pr,pk) are the
public key pairs, D,,() is the decryption algorithm,
and Epk() is the encryption algorithm.
2- L Ep ()€ =x.c
for any positive integer ¢ and x in the
message space.
3- The multiplicative

Epk(y)_l i
Dpr(Epk(x)-Epk(Y)_l) =x—-Yy

inverse  Epx(y)

3.2. Paillier Cryptosystem

In 1999, Pascal Paillier [29] invented a strong
public-key cryptosystem that supports additive
homomorphic and multiplication homomorphic
functions. Paillier’s cryptosystem is semantically
secure. The authors used the algorithms of this
cryptosystem in the scheme which is explained in
detail in [29].

3.3. DGK Encryption System

There are many protocols that can be used for
comparing encrypted numbers, and these have been
applied in numerous fields, including secure
classification [30]. Veugen [31] created a protocol
that is considered efficient for comparing two
encrypted integers [[a]], [[b]] s.t. [[0]] < [[«]] and
[[A]] < [[2¢]] without the need for decryption. The
DGK encryption system compares two private
numbers while preserving privacy [32], and is
additively homomorphic used in our scheme.

The main idea underlying our scheme is to
calculate [[z]] = [[2¢]]-[[a]]+[[/]] for the (£ + 1)-bit
and determine its most significant bit z,. [[a]] >=
[[b]] if it is 1, and [[a]] < [[b]] otherwise. Thus, to
determine whether or not [[a]] > [[b]], all that is
needed is to compute the bit z,.

In Veugen’s protocol [31], there are two parties:
Alice inputs an encrypted number [[a]], and Bob
inputs an encrypted number [[b]] , where [[d]] =
([[a]] < [[b]]) = [[1 —2¢]] is the result. The power of
this protocol lies in its ability to prevent the other
party from knowing the true values of a, b, and the
comparison bit §. In [31], Veugens outlines the
fundamental steps of this protocol.

4. Secure Comparison Scenario
The following problem is solved in this paper.
Bob and Alice both wish to use a secure comparison

to find similarities in their text files. Alice's private
file is u, while Bob's input is F.
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Bob:
Vj=1,..m: Foreachfile f; €F

e Vector w; of size n.

Alice:
o [[(u]']] «— Epk(a)]’-), vji=1,..,n
* [[Zj'l:l ‘“’J?]]]
o [[w;]],j =1,..,n (Transmit to Bob)
o [[Z;-’zl a)’]?]]] (Transmit to Bob)
e Setinx <1

Bob:

- Secure dot product [[Fj]]Vj =1,.m: /I As

shown in Equations 1and 2.

Bob:
e Select a random permutation € over
{1,..,m}
e Set [maxv] « [th]
* [F]=0]
o Vi=1,.m:
o Bob: Secure comparison of

encrypted integers by a protocol as
explained by Veugen [25] for
(Imaxv], [[Fg(i)]]). The output is
comparison bit.

o Alice: Send [§] to Bob

o Bob:[F] = [F]. [6]?".

e Bob: Send [F] to Alice.
e Alice: Decrypt [F]; if all locations of binary
form are one then the files are similar.

Protocol 1 is effective in terms of comparison, but
it has a long computation time, as each file is
compared with all the others (for a secure
comparison). In other words, we compare each file
with the whole database. For each comparison, we
need a secure dot product, so to speed up the
protocol; we can use a representative for each cluster
of files. The comparison will then only involve the
representatives, and a few clusters can be chosen for
pairwise comparisons. To explain the protocol
further, the comparison process takes place for each
file with another file, and thus you need the
computation of the secure cosine.

The proposed work is built to use a representative
for each cluster of files, so only the representatives
are compared for pairwise comparisons between a
few clusters. In this scenario, the execution time will
depend on the number of representatives.
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The best way to select representatives without
losing too much accuracy is by clustering the file
collection into £ (number of representatives).

Protocol 2 as seen in the Figure 1 that follows
outlines the phases of the SSFD protocol, which is
based on each party’s clustering file dataset. In the
first and second steps, the two parties must work for
their files as a cluster into k clusters. In this protocol,
assume that both sides create clusters of equal
numbers. The findings for the k-means clustering
technique are provided.

The distance function by these clustering
algorithms with the conventional cosine similarity
between the frequency vectors is employed. In
addition, the mean frequency vector for the files in
the cluster is chosen to determine the cluster centres.
For n files and k representatives, n — k merges have
applied, which is accomplished by indiscriminately
selecting the files that are the closest to one another
for merging. The files are represented by the centre
of the cluster when the two nearest files have been
combined into a single cluster.

In Steps 1(b) and 2(b), the two parties create the
representative vectors for the & clusters. In Step 3(a),
a comparison is made between the representatives for
the first party’s files and the other party’s
representative vectors. When the similarity score (o7,
J) is greater than the similarity threshold oth between
the i-th and j-th clusters for Alice and Bob, files in
clusters Alice 4; and Bob A; are using a protocol 1
(SSFD) for securely compared. The clustering model
reduces the number of computations involving the
secure dot product, as not all of the files are
compared. The accuracy remains intact if there are
exactly as many files as there are representatives.

Inputs

)

AV

Fy: Alice’s query file. £,- Bob's collection.

o

K Number of tepresentative. gzh :Similarity

threshold . -
3: Alice Vi=1,..k:

(a). Run SSFDwith Bob to

1: Alice:

2: Bob:
(@). Clusterfilesin Fy to & get the similarities of u; with

(@). Cluster filesin F, to k clusters: By, ...

By

clusters: 4., ..., A,. : i
¥ % VieocoaWy B8O Oig

(b). Create fcluster G- Yi=1..k

If (0;; 2 oth ) then run SSFD
between every filein 4;
against every file in 4; .

representatives as the cluster (b). Create kcluster representatives as the

centers; Uy ..... Ui cluster centers: v,, ., .

Figure 1. Protocol 2 (clustering-based SSFD)
5.1. Security Analysis
Our work is designed as a privacy-preserving

computation (secure two-party computation) under
the semi-honest model.
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Table 2. Execution time pre-computation

Execution time (sec.)
Size of File Secure dot | Finding Total
file vector product similar | running
collection | encryptio | computatio files time
(m) n n
100 0.72 5.715 16.824 7.7753
300 0.74 14.757 81.25 32.249
600 0.78 40.855 134.963 | 58.866
800 0.7 62.616 193.741 85.685
990 0.759 82.73 252.998 | 112.162

The sizes of the file collection m and the file
vector n determine the computational cost for the
secure dot product operation used in our system. The
execution times for the secure similarity function,
which increases linearly with the size of the file
collection, are shown in Table 3. The execution time
becomes longer when the larger vector's collection
size is fixed. This is because clustering is not applied
to the files, and thus Protocol 1 is slow for large
datasets, despite its efficiency, as explained earlier.

Table 3. Execution times for the secure dot product
operation

Duration (s)

Size of file Query length (n)

collection 100 200 300 400
(m)
200 8.685 9.023 9.847 9.185
500 25.941 28.249 36.952 37.01
800 44228 45.105 45.564 47.747
990 62.981 64.522 69.099 69.11

To increase security, the size of the key in all of
the experiments was 1024. Table 4 shows the
variation in the execution time with an increase in the
key size.

Table 4. Paillier key with different sizes k

Execution times (s)

Paillier | File vector Secure Finding Total
key encryption calculation similar running
size of dot files time

(bits) products

128 0.026 3.093 39.892 | 14.337
256 0.042 6.677 54.007 20.242
512 0.107 20.979 97.938 | 39.674
1024 0.655 64.068 187.271 | 83.998

6.2. Effectiveness with Clustering Technique

In this stage of the experiments, the authors
applied Protocol 2 to 900 files randomly selected
from the original set of 990 files. This was the same
dataset that was used in 20news collection [18].
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From these 900 files, two collections are
produced, each containing 495 files, and found that
there were 150 files that were the same in both
collections. As a result, each collection had 345
unique files and 150 perfectly identical files (with a
cosine similarity score of 1.0). In total, if the cosine
score was equal to or greater than 0.80, there were
210 unique pairs of files. This stage treats these 210
files as similar files.

Through this research, it is clear that the proposed
clustering technique works more quickly to identify
the matches, as fewer comparisons are made. This
experiment calculates how long the k-means
clustering procedure will take on the given file
collection. The running times for the A-mean
clustering algorithm are displayed in Table 5.
Through this experiment, the number of clusters from
100 to 500 is varied. As shown in the table below,
the execution times for the clustering step were much
lower than for Protocol 1 SSFD .

Table 5. Running times for clustering of 500 files

Number Runnin
of clusters g time (s)
100 45.18
200 62.1
300 65.81
400 69.31
500 110.5

Table 6 shows that the accuracy and the effect of
the number of representations on it (Protocol 2
explains that in the Step 3(b) the precision does not
reduce). The percentage of matches detected
generally remained above 70% when using values
from 0.5 to 0.9 for the threshold. As the threshold for
similarity increases, some similar files are excluded,
resulting in a percentage of similar files detected that
is less than 100%.

Table 6. The accuracy and the effect of the number of
representations

Similarity 0.5 | 0.6 0.7 0.8 09 |1
threshold

Number of % of matches found
representative

files

100 94 90 75 75 23 2
200 95 89 80 55 15 5
300 94 | 94 75 58 15 5
400 95 95 85 65 18 12
500 99 95 90 75 50 35

The k-means clustering method reduces the
number of file comparisons (by reducing the number
of computations of secure dot products).
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