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Abstract

This paper is devoted to the study of geometry of nearly cosymplectic
manifold of holomorphic sectional curvature tensor. In particular,
the necessary conditions in which a nearly cosymplectic manifold is
a manifold of point constant holomorphic sectional curvature tensor
have been found.

1. Introduction

One of the interesting benefits in the study of Kahlel manifold is
to present the concept of nearly Kahler manifold. Nearly cosymplectic
manifold (NC-manifold) was defined by the same way from coKahler or also
called cosymplectic manifold.

The notion of NC-manifold was introduced by Blair and Showers [5, 6].
Endo and Fueki [8-10] studied certain curvature tensors of NC-manifold of
®-sectional curvature. Concerning nearly cosymplectic manifold, Nicola et
al. [18] proved that NC-manifold (hon-symplectic manifold) of dimension
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2n+1> 5 islocally isometric to one of the Riemannian products; Rx N 2n

and M°x N2"4 where N2" is a nearly Kahler (non-Kahler) manifold,

N2 isa nearly Kahler manifold and M Sisa nearly cosymplectic (non-

cosymplectic) manifold. Kirichenko and Kusova [15] studied the geometry
of NC-manifold. They found its structure equations and the components of
Riemann-Christoffel tensor in the G-adjoined structure space.

The present paper deals with the study of (NC-manifold) holomorphic
sectional curvature tensor related with the projective tensor. Many
researchers studied the geometric properties of projective tensor on some
kinds of almost Hermitian manifolds and almost contact manifolds. For more
details, we refer to [1-3] and [11].

2. Preliminaries

In this section, we demonstrate many concepts and facts of almost
contact manifold and nearly cosymplectic manifold, in particular, the
structure equations of these manifolds have been explained.

Definition 2.1 [4]. Let M be an 2n + 1-dimensional smooth manifold.
The set of tensors (n, &, ®@, g) is caled an almost contact metric structure
if such that: m(§)=1 ®(E)=0, no®=0 and ®?>=—-id+1n®E,
where n is differential 1-form called contact form, & is a vector field
caled the characteristic, ® endomorphism of X(M) called the structure

endomorphism and g = (., .) is a Riemannian structure on M such that
(®X, ®Y) =(X,Y)-n(X)n(Y), X,Ye X(M). Then M with amost
contact metric structure is called an almost contact metric manifold
(AC-manifold).

Definition 2.2 [7]. An amost contact manifold is called a nearly
cosymplectic manifold (NC-manifold) if the equality

V(@)Y +Vy (@)X =0, X,Y e X(M)

holds.
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Definition 2.3[12]. Suppose that (M, 1, &, @, g) isan AC-manifold. In
the module X¢(M), define two endomorphisms ¢ and G asfollows: ¢ =
%(id ~J-1®) and G = —%(id + ,/-1®) and we can define two projections

asfollows:
1,.0 =  _ 1 2
M=cot=-5(@ - J-1®) and M=5ot=3( +J-10),

where cod =®ooc=ic and o ® = Do =—ic. Therefore, if we

denote Im[] = D(}D_/i1 and Im[] = Dg,‘ﬁl, then
X¢M) = Dyt @ D3’ @ DY,

where Dg ~, Dg and Dc% are proper submodules of endomorphism @

with proper values /-1, —/—1 and 0, respectively.

Definition 2.4 [16]. At each point p e M 2" we can construct a
frame in Tp(M)C by the form (p, €, €1, -y &n, €}y - €a), Where g5 =
@cp(ep), €4 = x/§6(ep) and &g =&,. The frame (p, &, &1, ... &n,
€y v ¢p) is caled an A-frame. The principle fiber bundle of all A-frames
with structure group {1} x U(n) is called a G-adjoined structure space.

Lemma 2.1 [14]. For an AC-manifold, the matrices of the AC-structure
@, and Riemann metric g, in A-frame are given by the following forms:

0 0 0 1 0 0
(@) =0 -, 0 | (gj)=|0 0 ~lyy,
0 0 -, 0 I, O

where |, istheidentity matrix of order n.

The following lemma describes the structure equations of NC-manifold
in the G-adj oined structure space.



174 Habeeb M. Abood and Nawaf J. Mohammed
Lemma 2.2 [15]. The structure equations of NC-manifold in G-adjoined

structure are given by the following forms:

(1) do? = of A o + Babcoab A g + gCabo)b Ao,

(2) dog = —(x)g A op + Babcoob A @ + gCabmb A,

(3) do = Cbcoob A ¢ + Cbcoob A ©F;

(4) dof = oF A of + [ ag - ZBathth + gCadCbc}ooc A O,

where B¢ ~ L2 | 0% _ 102 | Gy — (10 g and Bpe -

c® = \/—_1<Dg ;- The tensors B, C and A are called the first, second and
third structure tensors, respectively.

Definition 2.5 [17]. A Riemann-Christoffel tensor of a smooth manifold
M isatensor of type (4, 0) which isdefined by

R(X,Y, Z, W) = g(R(Z, W)Y, X),
where R(X,Y)Z =([Vx, Vy]-V[x,y]z), and sdtisfies the following
properties:
(1) R(X,Y, Z,W)=-R(Y, X, Z, W);
2 R(X,Y, Z,W)=-R(X,Y,W, Z);
(3) R(X,Y, Z,W)=R(Z W, X,Y);
@) R(X,Y, Z,W)+R(X, Z,W, Y)+RX,W, Y, Z) = 0.

The components of Riemann-Christoffel tensor of NC-manifold are
given in lemma bel ow:

Lemma 2.3 [15]. In the G-adjoined structure space, the components of
Riemann-Christoffel tensor of NC-manifold have the following forms:
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(D Rabea = 6;
(2) Raped = —2Bapjcd];

(3) Ry = —2B"Brey;
(4) Ragno = C*C;

h 5
o — BBy, — 2 C™Cy,.

©® R -

abcd —
The other components of Riemann-Christoffel tensor R can be obtained by

the property of symmetry for R or equal to zero.
Definition 2.6 [19]. A tensor of type (2, 0) which is defined as

k K
rij = Rijk = 9" Rl
iscaled aRicci tensor.

Lemma 2.4 [15]. The components of Ricci tensor of NC-manifold in the
G-adjoined structure space are given by the following forms:

(1) rap =G;

2
(2) rp = —Ace + 3B By + §cb"cac;

(3) rao =0
(4) rop = —2C¥Cy;
and the others are conjugate to the above components or equal to zero.

The previous definitions of Riemann-Christoffel and Ricci tensors
completed the requirements of the projective tensor which is embodied in the
next definition.

Definition 2.7 [11]. Let M 2™ be an AC-manifold. Then a tensor of
type (4, 0) whichisdefined as
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Rik = Rik — 5= [ 0ji ~ Mk0i]
1jkl jki on ikYjl jk il
is called aprojective curvature tensor, where Bjy = —Pjiw = —Rjik = Rij-

We will demonstrate the projective tensor on one of the AC-manifolds
which is NC-manifold. The following theorem gives the components of this
tensor on NC-manifold.

Theorem 2.1. In the G-adjoined structure space, the components of
projective curvature tensor of NC-manifold are given by the following forms:

(1) Paped = —Bap[ed]:

1
(2) Pypeg = —2B%"Breg — 5 [0 — 1088 ]

q dh 5 .ad 1 d.
(3) Papog = A — B Brag — 3C& — 51808

1
(4) Psono = C*Cpe — on i

and the others are conjugate to the above components or equal to zero.

Proof. By using Lemmas 2.3, 2.4 and Definition 2.7, directly we obtain
the above components.

Definition 2.8 [12]. An AC-manifold M is caled the vanishing
projective tensor, if the projective tensor is equal to zero.

Definition 2.9 [13]. Let M be an AC-manifold. Then a ®-holomorphic
sectional curvature (®HS-curvature) of a manifold M in the direction
X e X(M), X # 0 isafunction H(X) which isdefined as:

H(X) = (R(X, ®X) X, dX)| X [

Definition 2.10 [13]. An AC-manifold is called a manifold of point
constant ®HS-curvature if
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(R(X, ®X)X, ®X) = ¢ X [*,
where c e C*(M), foral X € X(M).

Lemma 2.5 [13]. An AC-manifold is a manifold of point constant
®HS-curvature Cy if and only if, on the G-adjoined structure, the following

equation holds:

d) _ Co ad
o) = 05 2.1)

where Cp e C*(M) and 529 = 5259 + 5258,

Definition 2.11. An NC-manifold has ®-invariant Ricci tensor, if
Dor=ro.

Lemma 2.6. An NC-manifold has ®-invariant Ricci tensor if and only if,
in the G-adjoined structure space, the following condition

rbé‘ =Igp =0
holds.

Concerning the projective tensor, we defined three specia classes of
AC-manifold which are given in the definition below.

Definition 2.12. Let M be an AC-manifold. Then M is a manifold of
class:

(1) R if, P(X, Y, Z,W) = P(X, Y, ®Z, W),

2 P, if, P(X,Y, Z, W) = P(®X, ®Y, Z, W) + P(®X, Y, ®Z, W) +
P(®X, Y, Z, dW),

3) Ry if, P(X,Y, Z, W) = P(®X, ®Y, dZ, dDW),

where X, Y, Z,W € X(M).
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3. TheMain Results

This section highlights on the study of NC-manifold of point constant
®HS-curvature. In particular, we find the necessary conditionsin which M is
an Einstein manifold.

Theorem 3.1. Suppose that M is an NC-manifold. Then the necessary
and sufficient condition in which M is a manifold of point constant
®HS-curvature Cq is

Co

AS = BB, + ey, + >

<ad
3 5L (3.1

Proof. The relation (3.1) can be found directly from Lemma 2.3 and
equation (2.1).

Theorem 3.2. Suppose that M is an NC-manifold of ®HS-curvature
tensor and is projectively vanishing with ®-invariant Ricci tensor. Then M is
an Einstein manifold.

Proof. Let M be an NC-manifold of ®HS-curvature tensor and be
projectively vanishing. Then by using Theorem 2.1 and equation (3.1), we
get

1258 = nCo[525¢ + 5350 1. (32)
Contracting (3.2) by induces (b, a), we have
rCOI = eésg,

where e = n(n+1)Cy. According to the ®@-invariant Ricci tensor, we get
that M is an Einstein manifold.

Theorem 3.3. Suppose that M is an NC-manifold of ®HS-curvature
tensor with ®-invariant Ricci tensor. Then the necessary condition in which

M is an Einstein manifold is Ay = %5e+ C.
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Proof. Let M be an NC-manifold of ®HS-curvature tensor. From
Theorem 3.1, we have

A = BBy + %Cadcbc +

Co

2 [358¢ + 5285 ] (3.3)

Symmetrizing and antisymmetrizing (3.3) by theindices (d, h), we have

o = 2CCy + D s308 + 5358

Contracting theindices (c, d), we obtain

5 Co(n+1
o = 2C*Cy + Co(n+1) )53.

3 2
Contracting theindices (a, b), we get
% = 2C®Cq + nin+ S +21) o (34)

According to Lemma 2.2, equation (3.4) becomes

ac _ -5 n(n + l)Co

c—@foo+ 2

Since M is an Einstein manifold, we conclude
& = %5 e+Cy.

Theorem 3.4. Suppose that M is an NC-manifold of class P, and
dHS-curvature tensor with ®-invariant Ricci tensor. Then M is an Einstein
manifold.

Proof. Let M be an NC-manifold of class P,. From Definition 2.12 and
Theorem 2.1, we have

abh 1 b . b h
~2Bapjed] = ~2B™""Bnog — 5 [1€8d — e8] — And + Bfid

+§C€§ +

1 a

2n d

[ ad adh ad
Sp + Apc — Bhbe —3Che -

1 a

d
%rcfib.
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Since M isamanifold of ®HS-curvature, according to Lemma 2.5, we obtain
2Byt = —2B%NB, - L [r2sh — rPs3]— S0 5z
abfcd] = hed ~ 57 e 0d — cdd]— = nd

1 ac
+2nrd8d+

Co
2

1 a

d
%rcéc.

58 -
By symmetrization and anti-symmetrization of theindices (a, b) and (a, c),
we get

1l a

o016 59. (3.5)

S0 [580¢ + 5258] =
Contracting equation (3.5) by theindices (b, d), it follows that
ré& = Co(n+1)588.
Since M is ®-invariant Ricci tensor, M is an Einstein manifold.
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