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Abstract 

The permutation BF-algebras was given as a new class of BF-algebras and their basic 

features in this work were studied. We considered and discussed some new notions in 

permutation BF-algebras, like permutation BF1/BF2-algebras, permutation BF-ideals, 

permutation BF-subalgebras, normal permutation BF-subalgebras. We further looked at 

the homomorphism of BF-algebras, congruence relation, quotient permutation BF-

algebras, and Quotient map. 
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1. Introduction 

BF-algebras, which are a generalization of B-algebras, were introduced by A. Walendziakin [1]. In 

BF-algebras, Walendziak introduced the concepts of an ideal and a normal ideal, as well as their 

characteristics and characterizations. Different fields [2-8] examine symmetric and alternating 

groups, as well as their permutations. Some classes of algebra, group theory, and topology in non-

classical sets, such as permutation sets [9-24], fuzzy sets [25-39], soft sets [40-53], nano sets [54], 

neutrosophic sets [55-62] and others [63-71] have been investigated in recent years. 

In various domains, such as computer science, information science, cybernetics, and artificial 

intelligence, logic algebras serve as the algebraic underpinning of reasoning mechanisms. Imai and 

Iséki [72, 73] proposed the concepts of BCK-algebras and BCI-algebras in 1966. Agboola and 

Davvaz [74] used one of these sets on BCI/BCK-algebras; it is the neutrosophic set, which takes into 

account neutrosophic BCI/BCK-algebras. As a result, we will use the peremutation set on BF-

algerbra. 

In this paper, we introduced permutation BF-algebras as a new class of BF-algebras and gave their 

basic features. New notions in permutation BF-algebras, like permutation BF1/BF2-algebras, 

permutation BF-ideals, permutation BF-subalgebras, normal permutation BF-subalgebras were 

invvestigated. We further looked at homomorphism of BF-algebras, congruence relation, quotient 

permutation BF-algebras and Quotient map. 

TABLE I . 2. Preliminary Notes 

We will go over the fundamental concepts and findings that are needed for this investigation in this 

section. 
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Definition 2.1: [1] Let     and   be a constant with a binary operation  . We say that (     ) is a 

B-algebra if it satisfies the following conditions: 

a)        

b)        

c) (   )      (  (   ))         . 

Definition 2.2:[1] Let  ( ) be the class of all algebras of type   (   ). By a BF-algebra we mean 

a system (     ) in which the following axioms are satisfied: 

(1)      ,       

(2)      ,       

(3)   (   )     ,          

We say that   is the unit in  . 

Definition 2.3: [2] 

For any permutation   ∏   
 ( )
     in a symmetric         , where *  +   

 ( )
 is a composite of 

pairwise disjoint cycles *  +   
 ( )

 
where    (  

    
         

 )      ( ) , for some        ( )  

 . If   (            )  
is   cycle in    , we define   set as    *            + and is called 

  set of cycle  . So the   sets of *  +   
 ( )

 are defined by  *  
 
 *  

    
         

 +   

    ( )+   

Definition 2.4: [16] Let   be a collection of  -sets ,  
 
-
   

 ( )

, where   is a permutation in the 

symmetric group      with {1}. Then    ,  
 
-
   

 ( )

 * +  with a binary operation        

  is said to be a permutation B-algebra if     satisfies the condition: 

(1)   
 
   
 
 * +     

(2)    
 
 * +     

 
,  

(3)  (   
 
   
 
)     

 
     

 
 (   

 
 (* +     

 
))     

 
   
 
   
 
  . 

Also, we say that * +  is the fixed element in  . It is denoted by (    * +). 

3. Permutation BF-Algebras 

In this section, we'll investigate new implications in permutation BF-algebras and look at some of 

their fundamental features. 

Definition 3.1: Let ,  
 
-
   

 ( )

 be a collection of  -sets, where   is a permutation in the symmetric 

group     . Then   ,  
 
-
   

 ( )

 * +  is said to be a permutation BF-algebra if there exists a 

mapping          such that 

(1)   
 
   
 
 * +           

 
    

(2)    
 
 * +    
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(3)  * +  (  
 
   
 
)    

 
   
 

,      
 
   
 
     

We say that * + is the fixed element in  . 

Example 3.2: 

Let (   , ) be a symmetric group and   (
             
             

) be a 

permutation in      So,   (
            
            

)  (   )( )(   )( )(  ). 

Therefore, we have    ,  
 
-
   

 

 * +  {*     + * + *     + * + *  + * +}. Define       

  by  (
i  

 j )  
i  

 j  
k

, where k
 its cycle 

k  such that k =
1

ji , where i  and j  

are cycles for i  and i , respectively. Then    is a permutation BF-algebra. 

Remark 3.3: In Example (3.2), we can consider that the three conditions in Definition (3.1) are hold 

for any   
 
   
 
   as following: 

( )      
   ( )    

 
   
 
 * +  

( )   ( )
        

 
 * +    

 
  

( )( ) ((     
  )))   ( ) (     

  )  (     
  ). Hence * +  (  

 
   
 
)    

 
   
 

.  

Proposition 3.4: Let (X, #,{1}) be a permutation BF-algebra, then 

( ) * +  (* +    
 
)    

 
    
 
    

(2) If * +    
 
 * +    

 
, then   

 
   
 
         

 
   
 
  , 

(3) If   
 
   
 
 * +, then   

 
   
 
 * +         

 
   
 
  . 

Proof: (1) Let (    * +) be a permutation BF-algebra and   
 
  , then 

* +  (* +    
 
)    

 
 * +    

 
  

(2) If * +    
 
 * +    

 
, then * +  (* +    

 
)  * +  (* +    

 
) and   

 
   
 

 from (1). 

(3) Let   
 
   
 
   and   

 
   
 
 * +. Then  

* +  * +  * +  * +  (  
 
   
 
)    

 
   
 

 

Proposition 3.5: Any permutation BF-algebra (    * +) that satisfies the identity 

(  
 
   
 
)  (  

 
   
 
)    

 
   
 

  is a permutation B-algebra. 

Proof: If (    * +) is a permutation BF-algebra, then Proposition 3.4 (1), shows that 

* +  (* +    
 
)    
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Now (  
 
   
 
)  (  

 
   
 
)    

 
 *(  

 
   
 
)  (* +    

 
)+ 

               
 
 *  

 
 ((* +    

 
)  (* +    

 
))+ 

                        
 
 *  

 
 * ++     (     ( )                  ) 

                       
 
   
 
                   (     ( )                  ) 

Now from Proposition 3.4 (1),   
 
 * +  (* +    

 
)  (  

 
   
 
)  (* +    

 
)    

 
 * +. 

Also from the condition, we have 

(  
 
   
 
)  (  

 
   
 
)    

 
   
 
        

 
 * + 

Then (  
 
   
 
)  (* +    

 
)    

 
 * +    

 
    (               ( )                  ) 

Thus   
 
 (  

 
 (* +    

 
))  *(  

 
   
 
)  (* +    

 
)+  *  

 
 (* +    

 
)+  (  

 
   
 
)  

  
 

. Hence (     ) is a permutation B-algebra. 

Definition 3.6: 

 A permutation BF-algebra is called a permutation BF1-algebra if it such that   
 
 (  

 
   
 
)  

(* +    
 
) and is said to be a permutation BF2-algebra if it such that   

 
   
 
 * +         

 
 

  
 
 * +        

 
   
 
  

Note that every permutation B-algebra is a permutation BF1/BF2-algebra. 

Proposition 3.7: A permutation algebra (    * +) of type (2,0) is a permutation BF1-algebra if and 

only if it such that: 

(1)   
 
   
 
 * +  

(2) * +  (  
 
   
 
)    

 
   
 
  

(3)   
 
 (  

 
   
 
)  (* +    

 
)  

Proof: Suppose that (    * +) satisfies condition (1), (2), and (3). Let   
 
  . Substituting   

 
   
 

 

in (3), we have 

  
 
 (  

 
   
 
)  (* +    

 
) 

              * +  (* +    
 
)  (     ( )) 

       
 
 * +         (     ( )) 

Then (    * +) is a permutation BF1-algebra. 



Advances in Nonlinear Variational Inequalities 

ISSN: 1092-910X 

Vol 27 No. 3 (2024) 

 

366 
https://internationalpubls.com 

Conversely, if (    * +) is a permutation BF1-algebra, then conditions (1), (2) and (3) holds from 

the definition. 

Proposition 3.8: Let (    * +) be a permutation                 (   )  Then (    * +) is a 

permutation BF2-       , if and only if it such that: 

(1)   
 
 * +    

 
  

(2) * +  (  
 
   
 
)    

 
   
 
  

(3)   
 
   
 
 * + if and only if   

 
   
 
  

 

Proof: Let (    * +) be a permutation    -       . Then condition (1) and (2) satisfies (    * +). 

Suppose that   
 
   
 
 * +    

 
   
 
  . We have from Proposition 3.4 (3) that   

 
   
 
 * +. 

Now from Definition 3.2,   
 
   
 

. If   
 
   
 

, then   
 
   
 
 * + from Definition 3.2, then 

  
 
   
 
 * +        

 
   
 
  

Now let (    * +) satisfies   
 
 * +    

 
, * +  (  

 
   
 
)    

 
   
 

 and   
 
   
 
 * +   

   
 
   
 

. Thus if   
 
   
 

, then   
 
   
 
 * +      

 
   
 

. 

Thus (    * +) is a permutation    -       . 

Proposition 3.9: If (    * +) is a permutation   -       , then the                      are 

equivalent: 

(1) (    * +) is a permutation    -       . 

(2)   
 
 *  

 
 (* +    

 
)+    

 
        

 
   
 
    

(3)   
 
   
 
 *(* +    

 
)  (* +    

 
)+     

 
   
 
    

 

Proof: ( )  ( )  Let (    * +) be a permutation    -        and   
 
   
 
  . Substitute * +  

  
 

 for   
 

 in   
 
 (  

 
   
 
)  (* +    

 
), we have that 

  
 
 (  

 
 (* +    

 
))  (* +  (* +    

 
))  *  

 
 (* +    

 
)+    

 
 

( )  ( ) We have from (2), that 

* +    
 
 *(* +    

 
)  (* +    

 
)+    

 
 

Hence * +  (* +    
 
)  * +  *((* +    

 
)  (* +    

 
))    

 
+      

 
   
 
 *(* +    

 
)  

(* +    
 
)+                        ( )     ( )     Definition (   )  

( )  ( ). If (3) holds, then 
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* +    
 
 *(* +    

 
)  (* +    

 
)+    

 
 

Substituting * +    
 

 for   
 
     * +    

 
 for   

 
, we have 

* +  (* +    
 
)  *(* +  (* +    

 
))  (* +  (* +    

 
))+  (* +    

 
) 

                  
 
 (  

 
   
 
)  (* +    

 
)     (                    ( )) 

Thus (    * +) is a permutation BF1-algebra. 

Proposition 3.10: Let (    * +) be a permutation   - algebra. Then   
 
   
 
 * +    

 
   
 

 . 

Proof: If   
 
   
 
 * +      

 
   
 
    Then from 

  
 
 (  

 
   
 
)  (* +    

 
)  * +  (* +    

 
)    

 
     (                    ( )) 

Proposition 3.11: Every permutation    -         is a permutation    -       . Every 

permutation BF2-algebra satisfying   
 
 (  

 
   
 
)  (* +    

 
) is a permutation    -       . 

Proof: From Proposition 3.10(1), it follows that every permutation    -        is a permutation 

BF2-algebra. The second part follows immediately from the definitions. 

Note: From above we consider figure (1): 

 

Figure (1) 

Proposition 3.12: Let (    * +) be a permutation    - algebra. Then (   ) is a quasi-group. 

Proof: Let (    * +) be a permutation    -        and   
 
   
 
  . Setting    

 
   
 
 (* +    

 
) 

and    
 
 (* +    

 
)  (* +    

 
). Then from Proposition 3.9, we have   

 
    
 
   
 

 and 

  
 
   
 
    
 

. Thus Proposition 3.10 shows that (   ) is a      -     . 

Definition 3.13: Let (    * +) be a permutation   -         A non-empty subset   of   is called 

apermutation   -ideal of   if it such that 

(1) * +   , 

(2)   
 
   
 
   and   

 
       

 
        

 
   
 
     

A permutation   -ideal   is said to be normal if for all   
 
   
 
   
 
  ,  

 
   
 
    (  

 
   
 
)  

(  
 
   
 
)   . 

A permutation   -ideal   of (    * +) is said to be proper if    . {* +} and   are obviously 

permutation   -ideals of (    * +). Also,   is normal but {* +} is not normal. 
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Lemma 3.14: Let   be a normal permutation   -ideal of a permutation   -        (    * +) and 

  
 
   
 
    Then  

(1)   
 
    * +    

 
    

(2)   
 
   
 
       

 
   
 
    

Proof: (1) Let   
 
  . Then   

 
   
 
 * +   . Since   is normal (* +    

 
)  (* +  * +)   . 

Thus * +    
 
    

(2) Let   
 
   
 
  . By (1), * +  (  

 
   
 
)   . Then from Definition 3.1,   

 
   
 
  . 

Definition 3.15: Let (    * +) be a permutation   -        and        . We say   is a 

permutation   -subalgebra of   if   
 
   
 
   for all   

 
   
 
  . 

Lemma 3.16: Let   be a permutation   -subalgebra of (    * +) and let   
 
   
 
  . If   

 
   
 
 

 , then   
 
   
 
    

Proof: Let   
 
   
 
  . Then by Definition 3.1,   

 
   
 
 * +  (  

 
   
 
). Since * +    and 

  
 
   
 
  , we have that * +  (  

 
   
 
)   . Thus   

 
   
 
  . 

Proposition 3.17: Let (    * +) be a permutation   -algebra. If   is a normal permutation   -ideal 

of  , then   is a permutation   -subalgebra of   such that: 

If   
 
   and   

 
  , then   

 
 (  

 
   
 
)   . 

Proof: Let   
 
   and   

 
    Lemma 3.14 (1), shows that * +    

 
    Since   is a normal 

permutation   -ideal, we have that  

(  
 
 * +)  (  

 
   
 
)     

Thus   
 
 (  

 
   
 
)   . 

Now, let   
 
   
 
  . Therefore   

 
 (  

 
   
 
)   . Lemma 3.14 (2) shows that (  

 
   
 
)    

 
 

 . From the definition of an ideal, we have that   
 
   
 
  . Thus   is a permutation   -subalgebra 

satisfying the condition. 

Definition 3.18: Let (    * +) be a permutation   -        and   be a permutation   -

           of (    * +).   is said to be a normal permutation   -           if  

(  
 
   
 
)  (  

 
   
 
)       

 
   
 
   
 
   
 
    

Proposition 3.19: Let (    * +) be a permutation B-algebra and let   (    * +). Then   is a 

normal permutation   -subalgebra of (    * +) if and only if   is a normal permutation   -ideal. 

Proof: Let   be a normal permutation   -subalgebra of (    * +). Clearly, * +   . 
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Suppose that   
 
   
 
   and   

 
  . Then * +    

 
  . Since    is a permutation   -

subalgebra, we have that (  
 
   
 
)  (* +    

 
)   . But (  

 
   
 
)  (* +    

 
)    

 
, because 

every permutation B-algebra satisfies 

  
 
 (  

 
   
 
)  (* +    

 
). Therefore   

 
  , and thus   is a permutation   -ideal. 

Let now   
 
   
 
   
 
   and   

 
   
 
  . From Definition 3.18, (  

 
   
 
)  (  

 
   
 
)   . 

Thus   is a permutation   -normal.  

 Conversely, if   is a normal permutation   -ideal, then from Proposition 3.17 and the fact 

that   is normal if and only if it satisfies the condition in Proposition 3.17, then   is a normal 

permutation   -subalgebra. 

Definition 3.20: Let (    * + ) and (    * + ) be two permutation BF-algebras. A mapping 

      is called a homomorphism from (    * + ) to (    * + ) if 

 (  
 
   
 
)   (  

 
)   (  

 
)     

 
   
 
    

Note that  (* + )  * + . The kernel of the homomorphism denoted by      is defined by 

     ,  
 
    (  

 
)  * + -  

Lemma 3.21: If       is a homomorphism from (    * + ) to (    * + ). Then      is an 

ideal of (    * + ). 

Proof: Clearly, * +      . Let   
 
   
 
      and   

 
     . Then 

* +   (  
 
   
 
)   (  

 
)   (  

 
)   (  

 
)  * +   (  

 
)  

Thus   
 
     . Therefore,   is a permutation   -ideal of (    * + ). 

Proposition 3.22: If (    * + ) and (    * + ) are two permutation BF2-algebras and let     

  be a homomorphism from (    * + ) to (    * + ). Then 

(1)      is a normal permutation   -ideal, 

(2)   is one-to-one if and only if      ** + +. 

Proof: (1) From Lemma 3.21,      is a permutation   -ideal of (    * + ). Let   
 
   
 
   
 
   and 

  
 
   
 
     . Then * +   (  

 
   
 
)   (  

 
)   (  

 
). 

It follows from Proposition 3.8 (3), that  (  
 
)   (  

 
). Thus 

 ((  
 
   
 
)  (  

 
   
 
))   (  

 
   
 
)   (  

 
   
 
)  ( (  

 
)   (  

 
))

 ( (  
 
)   (  

 
))  * +   
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And hence (  
 
   
 
)  (  

 
   
 
)      . 

(2) Clearly, if   is one-to-one, then      ** + +.  

On the other hand, suppose that   
 
   
 
   and  (  

 
)   (  

 
). Then 

 (  
 
   
 
)   (  

 
)   (  

 
)   (  

 
)   (  

 
)  * +   

Hence   
 
   
 
      ** + +, and so   

 
   
 
 * + . From Proposition 3.8 (3), it follows that 

  
 
   
 

. Therefore,   is one-to-one. 

Equivalence relation 3.23:   

Let (    * +) be a permutation   -        and   be a                      -      of (    * +). 

For all   
 
   
 
    we define 

  
 
    
 
       

 
   
 
    

From Definition 3.13,   
 
   
 
 * +   , that is,   

 
    
 

 for all   
 
  . Thus    is reflexive. 

From Lemma 3.14 (2),   
 
   
 
       

 
   
 
  , that is   

 
    
 
    

 
    
 

. Thus    is 

transitive. 

Let   
 
    
 

 and   
 
    
 

. Then   
 
   
 
  and   

 
   
 
  . Since   is normal               - 

     , 

(  
 
   
 
)  (  

 
   
 
)     

Thus   
 
   
 
   because   

 
   
 
  . Hence we conclude that   

 
   
 
   and thus   

 
   
 
  , 

and so   
 
    
 

 and    is transitive. Therefore    is an                          . 

Proposition 3.24: If   is a normal                -      of a permutation   -                (   

 * +). Then    is a                     of (    * +). 

Proof: Let   
 
   
 
   
 
   
 
    Suppose that   

 
    
 

 and   
 
    
 

. Then   
 
   
 
   and   

 
   
 
 

 . Then   
 
   
 
   and   

 
   
 
  . Since   is normal, (  

 
   
 
)  (  

 
   
 
)    and hence 

** +  (  
 
   
 
)+  ** +  (  

 
   
 
)+   . 

From Definition 3.2, we have that 

(  
 
   
 
)  (  

 
   
 
)     

Thus,      
 
   
 
    
 
   
 

. 

Since   
 
   
 
   we have that (  

 
   
 
)  (  

 
   
 
)   . 
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Therefore,   
 
   
 
    
 
   
 

. Thus    is a                     of (    * +). 

Definition 3.25: Let   be a                      -      of (    * +). For   
 
  , we write   

 
   

for the                  containing   
 

, i.e. 

  
 
   ,  

 
     

 
    
 
-  

We note that   
 
    
 
     

 
     

 
  . 

Denote     ,  
 
      

 
  - and set   

 
       

 
   (  

 
   
 
)  . 

The operation    is             , since    is                     of (    * +). It is easy to see 

that (    * +)   (       * +  ) is a permutation   -       . The               -         

(    * +)   is called the quotient permutation   -        of (    * +)         . there is a 

normal map   , called the quotient map, from (    * +) and (    * +)   defined by 

  (  
 
)    

 
        

 
    

   is clearly a homomorphism from (    * +) to (    * +)  . 

Note that    (  )   . Indeed   
 
   * +          

 
  * +      

 
 * +      

 
  . 

Proposition 3.26: If (    * + ) and (    * + ) are two permutation   2-         and let     

  be a homomorphism from (    * + ) onto (    * + ). Then (    * + )    ( ) is isomorphic 

to (    * + ). 

Proof: From Proposition 3.22 (1),      ( ) is a                      -      of           (   

 * + ). Define a mapping 

 (  
 
  )   (  

 
)       

 
    

Let   
 
     

 
  . Hence   

 
    
 
  i.e.   

 
   
 
  . Thus  (  

 
)   (  

 
)  * + . From Proposition 

3.8 (3), we have  (  
 
)   (  

 
). Thus,  (  

 
  )   (  

 
  ).  

                                                           is a                   (    * + ) 

  to (    * + ). Observe that      ** +   +. Indeed,   
 
            (  

 
  )  * +  

   (  
 
)   * +     

 
     

 
   * +   . From Proposition 3.22 (2), it follows that   is one-

to-one. Thus   is an isomorphism from (    * + )   to (    * + ). 

4. Conclusion  

Some novel conceptions that are extensions of BF-algebras are explored in this research, like 

permutation BF-algebras, permutation BF1/BF2-algebras, permutation BF-ideals, permutation BF-

subalgebras, normal permutation BF-subalgebras, homomorphism of BF-algebras, congruence 

relation, quotient permutation BF-algebras and Quotient maps. On the other hand, their 

characteristics are specified using permutation sets, which have also been used to study various 
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mathematical concepts in recent work. As a result, in future study, instead of using permutation sets, 

we will use nano and neutrosophic sets to extend our concepts and outcomes in this research using 

other non-classical sets. 
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