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Abstract: Estimates bounds for Carathéodory functions in the complex domain are applied
to demonstrate sharp limits for the inverse of analytic functions. Determining these values
is considered a more difficult task compared to finding the values of analytic functions
themselves. The challenge lies in finding the sharp estimate for the functionals. While
some recent studies have made progress in calculating the sharp boundary values of
Hankel determinants associated with inverse functions, the Toeplitz determinant is yet
to be addressed. Our research aims to estimate the determinants of the Toeplitz matrix,
which is also linked to inverse functions. We also focus on computing these determinants
for familiar analytical functions (pre-starlike, starlike, convex, symmetric-starlike) while
investigating coefficient values. The study also provides an improvement to the estimation
of the determinants of the pre-starlike class presented by Li and Gou.
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1. Introduction
We symbolize the category of analytic functions f in U as A, where

f (z) = z +
∞

∑
j=2

ajzj, (aj =
f (j)

j!
) (1)

and
U = {z ∈ C : |z| < 1}

is the open unit disc. The set S ⊂ A comprises of all functions f that are both normalized
( f (0) = f ′(0)− 1 = 0) and univalent. Bieberbach [1] initially proposed the well-known
coefficient conjecture for the function f ∈ S of the form (1) in 1916, and de-Branges [2]
proved it in 1985. Between 1916 and 1985, several studies attempted to validate or refute this
conjecture. As a result, they identified many subfamilies S associated with various domains.
The most basic subfamilies of S are the starlike function family S∗, the convex function
family C and the close-to-convex function family K. These families have a geometric
description. The following describes these families:
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Definition 1 ([3]). The families of pre-starlikeness Spre, starlikeness S∗, convexity C, and
symmetric-starlike Ssym, which are involved in univalent functions, can be stated as

Spre :=
{

f ∈ S : ℜ f ′(z) > 0
}

, (2)

S∗ :=
{

f ∈ S : ℜ
(

z f ′(z)
f (z)

)
> 0

}
, (3)

C :=
{

f ∈ S : ℜ
(

1 +
z f ′′(z)
f ′(z)

)
> 0

}
, (4)

Ssym :=
{

f ∈ S : ℜ
{

2z f ′(z)
f (z)− f (−z)

}
> 0

}
, (5)

respectively.

Further, the families S∗ and C can be formulated by z f ′(z) = γ(z) f (z) and f ′(z) +
z f ′′(z) = γ(z) f ′(z), respectively, where γ(z) is the familiar class of Carathéodory functions
γ(z) = 1 + ∑∞

j=1 γjzj with R(γ(z)) > 0 pointed by P .
We list some examples that satisfy the starlike and convex functions.

Example 1. The Köebe function k(ζ) = ζ
(1−ζ)2 is starlike, since

ℜ
(

ζk′(ζ)
k(ζ)

)
= ℜ

(
1 − ζ2

(1 − ζ)2

)
=

(1 − rcos2ϑ)

(1 + r2 − 2rcosϑ)
> 0, (ζ = reiϑ; ζ ∈ U).

Example 2. i. The function h(ζ) = ζ + 1/4ζ2 is convex, since

ℜ
(

1 +
ζh′′(ζ)
h′(ζ)

)
= ℜ

(
1 + ζ

1 + 1
2 ζ

)
= ℜ

(
(1 + ζ)(1 + 1

2 ζ̄)

(1 + 1
2 ζ)(1 + 1

2 ζ̄)

)
> 0, (ζ ∈ U).

ii. Similarly, with |ζ| < 1, the functions h̄1(ζ) =
1
2 log( 1+ζ

1−ζ ) and h̄2(ζ) = −log(1 − ζ) are also
convex functions.

The inverse function f−1 of the univalent function f has been satisfied utilizing the
Köebe Theorem of 1/4 (see [4]), which asserts that a disc with a radius of f ′(0)/4 and a
center at f (0) is present in the image of f if a holomorphic function f is univalent in U. The
form of the inverse functions is stated by

f−1( f (z)) = z, z ∈ U, and f
(

f−1(w)
)
= w

(
|w| < r0( f ), r0( f ) ≥ 1

4

)
, (6)

where

f−1(w) = w +
∞

∑
j=2

ujwj.

Since w = f
(

f−1(w)
)
, we attain

u2 = −a2, (7)

u3 = 2a2
2 − a3, (8)

u4 = −5a3
2 + 5a2a3 − a4, (9)

and
f−1(w) = w + u2w2 + u3w3 + u4w4 + . . .. (10)
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The function f considers as a bi-univalent function if f and f−1 are both univalent. Σ
represents the family of bi-univalent functions.

Example 3. The familiar examples for this family are presented as follows:

1. The inverse of logarithm function 1
2 log

(
1+z
1−z

)
is e2w−1

e2w+1 .

2. The inverse of function z
1−z is w

1+w .
3. The inverse of function − log(1 − z) is ew−1

ew .

The subsequent illustrations (Figure 1) elucidate the concept of the analytic function 2 and its
corresponding inverse. It also indicates that the structure (6) is satisfied.

(a) The function f (z) = z
1−z . (b) The inverse function f−1(w) = w

1+w .

Figure 1. Graphs of the analytic function and its inverse.

As demonstrated by Löwner [5], the boundary values for the coefficients of inverse
analytic function f−1 are estimated by

|uj| ≤
(2j)!

j!(j + 1)!
. (11)

Afterward, many scholars provided that the sharpness is attained by the inverse of Köebe
function. No known limits seem to exist for the difference in coefficients |uj+1 − uj|, even
when j = 2, despite the fact that sharp boundaries for |uj| for j ≥ 2 are discovered. Sharp
boundaries for |u3 − u2| were given by Sim and Thomas [6] in 2020. Libera et al. [7] (also
refer to [8,9]) determined the correlation between the f and f−1 coefficients. Conversely,
Kapoor and Mishra [10] expanded on the findings of Krzyz et al. [11], who looked at bounds
on the initial coefficients of the inverse of starlike functions. Furthermore, when a function
comes into the family of strongly starlike functions, Ali [12] investigated the sharpness of
the coefficients of inverse functions and the Fekete–Szegö problem. Determining how the
inverse function f−1 provided in (10) behaves when the original function f is limited to
certain valid geometric subfamilies of S has garnered a lot of attention. Yang [13] provided
a more straightforward demonstration, while several writers have provided other proofs of
the inequality (11). Very recently, Lecko and Śmiarowska [14] went towards studying the
second-order Hankel determinant involving the logarithmic function 1

2 log f (z)
z . For further

investigation on the sharpness of inverse holomorphic functions, see [15,16].
The estimation of Hankel matrix limits has received a great deal of attention in the

field of univalent function theory. Hankel matrices and determinants have a significant role
in several mathematical applications (see [17,18]). There is a strong relationship between
Toeplitz determinants and Hankel determinants. In contrast to Hankel matrices, which
have constant entries along the inverse diagonal, Toeplitz matrices have constant entries
along the diagonal.



Mathematics 2025, 13, 676 4 of 12

The Toeplitz matrix defined by Ali et al. [19] for integers j,m ∈ N is provided by

T j
m =

∣∣∣∣∣∣∣∣∣∣
aj aj+1 . . . aj+m−1

aj+1 aj . . . aj+m−2
...

...
...

...
aj+m−1 aj+m−2 . . . aj

∣∣∣∣∣∣∣∣∣∣
.

This leads to

T 2
2 =

∣∣∣∣∣ a2 a3

a3 a2

∣∣∣∣∣, T 3
2 =

∣∣∣∣∣ a3 a4

a4 a3

∣∣∣∣∣, T 1
3 =

∣∣∣∣∣∣∣
1 a2 a3

a2 1 a2

a3 a2 1

∣∣∣∣∣∣∣, and T 2
3 =

∣∣∣∣∣∣∣
a2 a3 a4

a3 a2 a3

a4 a3 a2

∣∣∣∣∣∣∣.
Rogozina [20] investigated the employee of Toeplitz matrices to find difference equations in
numerical and time-dynamic models. For estimating the limits of Hankel and Toeplitz de-
terminants for families when the coefficients are inverse functions, Maharana et al. [21] in
2020 investigated the Hankel determinants H1

2 and H1
3 for the starlike functions. Addition-

ally, the analysis of Hankel inequalities for various families was looked at by Ali et al. [19]
(also [22–29]). In 2023, the exact bounds of Hankel determinants for the strongly inverse
analytic functions were derived by Allu and Shaji [30]. The fifth estimation |u5| for the
families of strongly convex inverse functions was deduced by Daniswara et al. [31]. Nu-
merous analyses concentrated on utilizing inverse analytic functions to estimate the limits
of Hankel determinants (for further pertinent work; see [6,32–37]). Shi et al.’s [38] investi-
gation of the Hankel determinant in relation to inverse functions is the most current. For
the inverse holomorphic functions, Shi and Colleagues [39] revealed the limit of the third
Hankel inequality H1

3 , adding a new dimension to this field. On the other hand, Kumar [40]
computed the third Hankel determinant for the class of pre-starlike functions, providing
accurate results that enhance mathematical understanding. Rath et al. [41] also made a
significant contribution to clarifying the sharp limit of the third Hankel determinant for
symmetric starlike functions, adding important insights to previous studies. The most
recent study, by Abbas et al. [42], sheds light on the sharp limit of the Hankel functional for
starlike functions relevant to the cosine function.

The coefficient boundaries of the Toeplitz determinant are not known at this time. Due
to the difficulty of calculating the upper limit of the Toplitz inequalities, only one article
was published in [43] for these inequalities related to the family of pre-starlike. Inspired by
the research undertaken by the scholars Li and Gou [43] in their work, we attempt to give
basic findings for the Toeplitz determinants whose coefficients depend on inverse analytic
functions containing the families of pre-starlike, starlike, convex, and symmetric-starlike
functions. The second and third-order T 2

2 , T 3
2 , T 1

3 , and T 2
3 determinants are among them.

2. Preliminary Lemmas
To be able to demonstrate our primary findings, we necessitate the following lemmas,

which are considered part of the procedures used to acquire the asset results connected to
the inverse of analytic functions.

Lemma 1 ([4]). If the function γ(z) ∈ P , then

|γj| ≤ 2 (j ≥ 1).

Lemma 2 ([44]). If the function γ(z) ∈ P and ζ ∈ C, then

|γn+k − ζγnγk| ≤ 2 max{1; |2ζ − 1|}.
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Lemma 3 ([8]). If the function γ(z) ∈ P , for some µ, z ∈ U = U∪ {1} with γ1 ≥ 0, then

2γ2 = γ2
1 + µ

(
4 − γ2

1

)
and

4γ3 = γ3
1 + 2

(
4 − γ2

1

)
γ1µ −

(
4 − γ2

1

)
γ1µ2 + 2

(
4 − γ2

1

)(
1 − |µ|2

)
z.

3. Main Results
Inspired by initial coefficient bounds for pre-starlike holomorphic functions Spre, that

were studied by Radhika et al. [29], Li and Gou [43] examined the upper bounds of
Toeplitz determinants for inverse holomorphic functions. They claimed that the results
were |T 2

2 ( f−1)| ≦ 0.73, |T 1
3 ( f−1)| ≦ 1.4, |T 3

2 ( f−1)| ≦ 3.023, and |T 2
3 ( f−1)| ≦ 1.27. With

some simple calculations, noting that the results are not correct. In demonstrating these
estimations, we notice that the values are inaccurate. Since the inequality |T j

m| is not
rotational invariant because∣∣∣T j

m( f )
∣∣∣ ̸= ∣∣∣T j

m( fθ)
∣∣∣, for all θ ∈ R, j,m ∈ N.

Similarly, the inequality |T j
m f−1| is not rotational invariant because∣∣∣T j

m

(
f−1
)∣∣∣ ̸= ∣∣∣T j

m

(
f−1
θ

)∣∣∣, for all θ ∈ R, j,m ∈ N.

Particularly,∣∣∣T 2
2

(
f−1
)∣∣∣ = ∣∣∣u2

3 − u2
2

∣∣∣ ̸= ∣∣∣T 2
2

(
f−1
θ

)∣∣∣ = ∣∣∣∣(ei2θu3

)2
−
(

eiθu2

)2
∣∣∣∣, for all j,m ∈ N.

In Theorem 1 below, we demonstrate and discuss the limit of Toeplitz determinants.

Theorem 1. If f (z) ∈ Spre, for f (z) in (1), then the sharp bounds of the Toeplitz inequalities are

1. |T 2
2 ( f−1)| ≦ 7.22.

2. |T 3
2 ( f−1)| ≦ 168.694.

3. |T 1
3 ( f−1)| ≦ 3.88.

4. |T 2
3 ( f−1)| ≦ 64.79.

These estimates are sharp (except inequality T 2
3 ) for when

f (z) =
1 + iz
1 − iz

= 1 + 2iz − 2z2 − 2iz3 + 2z4 + · · · .

Proof. The initial coefficients |aj| analyzed by Radhika et al. [29] are given by

a2 =
1
2

γ1, (12)

a3 =
1
3

γ2, (13)

a4 =
1
4

γ3. (14)
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Correspondence of the values |aj|, (aj = 2, 3, 4) above to the coefficients (7)–(9), it fol-
lows that

u2 = −1
2

γ1, (15)

u3 = −1
6

(
2γ2 − 3γ2

1

)
, (16)

u4 = − 1
12

(
15γ3

1 − 10γ1γ2 + 3γ3

)
. (17)

1. In investigating this estimate, the researchers claimed that the maximum value is

achieved by γ =
√

17
14 . In fact, the authors made incorrect simplifications to find

out the value of Φ(γ, 1). We show, in short, that the maximum value happens when
γ = 2.

T 2
2 ( f−1)| = |u2

3 − u2
2| ≦

∣∣∣u2
3

∣∣∣+ ∣∣∣u2
2

∣∣∣ = | 1
36

(4γ2
2 − 12γ2

1γ2 + 9γ4
1)|+ |1

4
γ2

1|

| 4
36

(|γ2||γ2
2 − 3γ2

1|+
9
4
|γ4

1|)|+
1
4
|γ1|2 ≦

56
9

+ 1 = 7.22.

2. We conclude by using u3 and u4 in (16) and (17), respectively, that

|T 3
2 ( f−1)| = |u2

4 − u2
3| ≦

∣∣∣u2
4

∣∣∣+ ∣∣∣u2
3

∣∣∣ ≦ (
25
16

|γ6
1|+

25
36

|γ2
1||γ2||γ2 − 3γ2

1|

+
5
2
|γ1||γ3||γ2 −

12
8

γ2
1|+

1
16

|γ2
3|) +

56
9

= 168.694.

The expected values are derived by considering Lemmas 1 and 2. It has been shown
that the maximum values occur at γ = 2. Subsequently, the estimate is sharp.

3. Lemmas 1 and 2, u2 and u3 in Theorem 1 allow us to deduce that

|T 1
3( f−1)| =

∣∣∣1 + 2u2
2(u3 − 1)− u2

3

∣∣∣ ≦ 1 + 2
∣∣∣u2

2

∣∣∣+ |u3|
∣∣∣u3 − 2u2

2

∣∣∣
≦ 1 + 2 +

4
9
|γ2| ≦ 1 + 2 +

8
9
= 3.88

and the sharp bound of the Toeplitz inequality T 1
3 is achieved.

4. The precise formula for the functional |T 2
3 ( f−1)| is

|T 2
3 ( f−1)| =

∣∣∣(u2 − u4)(u2
2 − 2u2

3 + u2u4)
∣∣∣. (18)

By computing the values of |u2 − u4| and
∣∣u2

2 − 2u2
3 + u2u4

∣∣, we may be estimated the
boundary value of this determination.
Firstly, it is clear that

|u2 − u4| ≦ |u2|+ |u4| = |1
2

γ1|+
1

12
|15γ3

1 − 10γ1γ2 + 3γ3|

≦ 1 +
5
6
|γ1||γ2 −

6
4

γ2
1|+

1
4
|γ3| ≦ 1 +

20
3

+
1
2
= 8.16.

Now, estimating the second part of the functional with the assistance of u2, u3, u4,
Lemmas 1 and 2 as follows:∣∣∣u2

2 − 2u2
3 + u2u4

∣∣∣ = 1
72

∣∣∣9γ4
1 + 18γ2

1 + 18γ2
1γ2 − 16γ2

2 + 9γ1γ3

∣∣∣
≦

1
72

[
9|γ1|4 + 18|γ1|2 + 16|γ2||γ2 −

9
8

γ2
1|+ 9|γ1||γ3|

]
≦ 7.94.
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Theorem 2. If f (z) ∈ S∗, for f (z) appearing in (1), the sharp bounds of the Toeplitz inequalities are

1. |T 2
2 ( f−1)| ≦ 51.

2. |T 3
2 ( f−1)| ≦ 116.33.

3. |T 1
3 ( f−1)| ≦ 24.

4. |T 2
3 ( f−1)| ≦ 650.56.

All sharp estimates are derived from the inverse of

f (z) =
z

(1 − iz)2 = z + 2iz2 − 3z3 − 4iz4 + · · · .

Proof. Building on simplification of the starlike form z f ′(z) = γ(z) f (z), we deduce

a2 = γ1, (19)

a3 =
1
2

(
γ2 + γ2

1

)
(20)

and
a4 =

1
6

γ3
1 +

1
2

γ1γ2 +
1
3

γ3. (21)

Comparing (7)–(9) with (19)–(21), we have

u2 = −γ1, (22)

u3 = −1
2

(
γ2 − 3γ2

1

)
, (23)

u4 = −1
3

(
γ3 − 6γ1γ2 + 8γ3

1

)
. (24)

1. Since f ∈ S∗, then via Lemma 2, we have

|T 2
2 ( f−1)| = |u2

3 − u2
2| ≦

∣∣∣u2
3

∣∣∣+ ∣∣∣u2
2

∣∣∣ = |(1
2
(γ2 − 3γ2

1))
2|+ |γ1|2 (25)

≦
9
4
|γ4

1|+
1
4
|γ2||γ2 − 6γ2

1|+ |γ2
1| ≦ 47 + 4 = 51. (26)

2. By considering |γj| ≦ 2, the upper bound of the inequality’s permissible range, we
may now easily proceed to the largest possible value of T 3

2 ( f−1).

|T 3
2 ( f−1)| = |u2

4 − u2
3| ≦

∣∣∣u2
4

∣∣∣+ ∣∣∣u2
3

∣∣∣ ≦ 64
9
|γ1|6 +

4
3
|γ1||γ3||γ2 −

4
3

γ2
1|

+ 4|γ2
1||γ2||γ2 −

8
3

γ2
1| ≦

208
3

+ 47 = 116.33.

3. With analogous technique to Theorem 1, we readily procure that

|T 1
3( f−1)| ≦ 1 + 2

∣∣∣u2
2

∣∣∣+ |u3|
∣∣∣u3 − 2u2

2

∣∣∣
≦ 1 + 2

∣∣∣γ2
1

∣∣∣+ 5
2

∣∣∣γ2 + γ2
1

∣∣∣ ≦ 1 + 8 + 15 = 24.

4. The technique used for the functional |T 2
3 ( f−1)| in (18) yields

|u2 − u4| ≦ |u2|+ |u4| ≦ |γ1|+
1
3
|γ3|+ 2|γ1||γ2 −

4
3

γ2
1| ≦ 2 +

2
3
+

40
3

= 16.
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Afterwards∣∣∣u2
2 − 2u2

3 + u2u4

∣∣∣ = 1
6

∣∣∣6γ2
1 − 11γ4

1 + 6γ2
1γ2 − 3γ2

2 + 2γ1γ3

∣∣∣
≦

1
6

[
11|γ1|4 + 6|γ1|2 + 3|γ2||γ2 − 2γ2

1|+ 2|γ1||γ3|
]
≦ 40.66,

which leads to the result.

The following investigations give the sharp boundary values of the convex functions
associated with the inverse functions:

Theorem 3. If f (z) ∈ C, for f (z) appearing in (1), then the bounds of the Toeplitz inequalities are

1. |T 2
2 ( f−1)| ≦ 2.7.

2. |T1
3 ( f−1)| ≦ 4.

3. |T 3
2 ( f−1)| ≦ 10.27.

4. |T2
3 ( f−1)| ≦ 7.24.

All sharp estimates are derived from the inverse of f (z) := z/(1 − iz).

Proof. By the simplification of the convex form f ′(z) + z f ′′(z) = γ(z) f ′(z), we obtain

a2 =
1
2

γ1, (27)

a3 =
1
6

(
γ2 + γ2

1

)
, (28)

a4 =
1

24

(
γ3

1 + 3γ1γ2 + 2γ3

)
. (29)

Comparing (7)–(9) with (27)–(29), we have

u2 = −1
2

γ1, (30)

u3 = −1
6

(
γ2 − 2γ2

1

)
, (31)

u4 = − 1
24

(
2γ3 − 7γ1γ2 + 6γ3

1

)
. (32)

1. Substituting in the form of T 2
2 as in (25) and employing Lemmas 1 and 2, we consider

T 2
2 ( f−1)| =

∣∣∣u2
3 − u2

2

∣∣∣ ≦ ∣∣∣u2
3

∣∣∣+ ∣∣∣u2
2

∣∣∣ = |(−1
6
(γ2 − 2γ2

1))
2|+ |(−1

2
γ1)

2|

≦
1
9
|γ1|4 +

1
36

|γ2||γ2 − 4γ2
1|+

1
4
|γ1|2 ≦

16
9

+
7
9
+ 1 = 2.7.

2. With follow-up from values of u2 and u3 along with Lemmas 1 and 2, we attain that

|T 1
3( f−1)| ≦ 1 + 2

∣∣∣u2
2

∣∣∣+ |u3|
∣∣∣u3 − 2u2

2

∣∣∣
≦ 1 +

1
2
|γ1|2 +

1
6
|γ2 + γ2

1| ≦ 1 + 2 + 1 = 4.

3. Similarly for T 3
2 ( f−1), we have

|T 3
2 ( f−1)| = |u2

4 − u2
3| ≦

∣∣∣u2
4

∣∣∣+ ∣∣∣u2
3

∣∣∣ ≦ 139
18

+
23
9

= 10.27.
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4. By leveraging the aforementioned technique, the subsequent inequalities hold:

|u2 − u4| ≦ |u2|+ |u4|

≦
1
2
|γ1|+

1
24

(2|γ3|+ 7|γ1||γ2 −
6
7

γ2
1|) ≦ 1 +

32
24

= 2.33,

∣∣∣u2
2 − 2u2

3 + u2u4

∣∣∣ = 1
144

|36γ2
1 − 14γ4

1 + 11γ2
1γ2 − 8γ2

2 + 6γ1γ3|

≦
1

144
[36|γ1|2 + 14|γ1|4 + 11|γ1||γ1γ2 +

6
11

γ3|+ 8|γ2|2] ≦ 3.11

and
|T2

3 ( f−1)| ≦ 7.24.

This deduces the demonstration.

Finally, the method of computing the previous theories will help us to calculate the
upper limits of the family Ssym as the following.

Theorem 4. If f (z) ∈ Ssym, for f (z) appearing in (1), the bounds of the Toeplitz inequalities are

1. |T 2
2 ( f−1)| ≦ 8.

2. |T1
3 ( f−1)| ≦ 4.

3. |T 3
2 ( f−1)| ≦ 2.

4. |T2
3 ( f−1)| ≦ 39.

Proof. By the simplification of the symmetric-starlike form 2z f ′(z)
( f (z)− f (−z)) = γ(z), we have

a2 =
1
2

γ1, (33)

a3 =
1
2

γ2, (34)

a4 =
1
8
(γ1γ2 + 2γ3). (35)

Comparing (7)–(9) with (33)–(35), we observe

u2 = −1
2

γ1, (36)

u3 = −1
2

(
γ2 − γ2

1

)
, (37)

u4 = −1
8

(
2γ3 − 9γ1γ2 + 5γ3

1

)
. (38)

With analogous methods to Theorem 1, we gain that

|T 2
2 ( f−1)| ≦ 8, |T 1

3 ( f−1)| ≦ 4, |T 3
2 ( f−1)| ≦ 2, and |T2

3 ( f−1)| ≦ 39.

The demonstration of Theorem is carried out.

4. Conclusions
The study of the bounds of Hankel determinants has expanded as a result of schol-

ars’ interest in determining the initial coefficients of inverse analytical functions. In our
investigation, we were able to estimate the upper and lower bounds of the Toeplitz deter-
minant with different degrees for the family of holomorphic functions related to its inverse.
The primary techniques employed in our findings, together with the outcome relating to
the parameters of Carathéodory’s functions, seem to be really helpful for the estimates.
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Additionally, the inverse coefficient’s sharp estimate has been determined. This paper’s
approach may be used with a variety of holomorphic function families to determine the first
inverse coefficients’ upper estimates. Regarding the sharp values of the starlike function, it
is verified by the inverse of the function f (z) = z/(1 − iz)2. As for the convex function, it
is proven using the function f (z) = z/(1 − iz).

Author Contributions: Conceptualization, S.H.H. and Y.H.S.; methodology, S.H.H., Y.H.S., A.A.L.
and A.A.; software, S.H.H., Y.H.S., A.A.L., K.M.K.A. and A.A.; validation, S.H.H. and A.A.; formal
analysis, S.H.H., Y.H.S., A.A.L., K.M.K.A. and A.A.; investigation, S.H.H., Y.H.S. and A.A.L.; re-
sources, S.H.H., Y.H.S., A.A.L., K.M.K.A. and A.A.; data curation, S.H.H.; writing—original draft
preparation, S.H.H., Y.H.S., A.A.L., K.M.K.A. and A.A.; writing—review and editing, S.H.H., Y.H.S.,
A.A.L., K.M.K.A. and A.A.; visualization, A.A.L.; supervision, S.H.H., Y.H.S. and A.A.L.; project
administration, S.H.H.; funding acquisition, S.H.H., A.A.L., K.M.K.A. and A.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding authors.

Acknowledgments: The researchers would like to extend their appreciation to MD Firoz Ali for
enhancing the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bieberbach, L. Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln.

Sitzungsberichte Preuss. Akad. Der Wiss. 1916, 138, 940–955.
2. De-Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [CrossRef]
3. Robertson, M.I.S. On the theory of univalent functions. Ann. Math. 1936, 37, 374–408. [CrossRef]
4. Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA, 1983.
5. Löwner, K. Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. Math. Ann. 1923, 89, 103–121. [CrossRef]
6. Sim, Y.J.; Thomas, D.K. On the difference of inverse coefficients of univalent functions. Symmetry 2020, 12, 2040. [CrossRef]
7. Libera, R.J.; Zlotkiewicz, E.J. Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230.

[CrossRef]
8. Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87,

251–257. [CrossRef]
9. Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P − I I. Proc. Am. Math. Soc. 1984,

92, 58–60. [CrossRef]
10. Kapoor, G.P.; Mishra, A.K. Coefficient estimates for inverses of starlike functions of positive order. J. Math. Anal. Appl. 2007, 329,

922–934. [CrossRef]
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