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Abstract: Manufacturers increasingly turn to robotic gripper designs to improve the ef-
ficiency of gripping and moving objects and provide greater flexibility to these objects.
Neuro-fuzzy techniques are the most widespread in developing gripper designs. In this
study, the traditional gripper design is modified by adding a suitable cam that makes it
compatible with the basic design, and an adaptive neuro-fuzzy inference system (ANFIS)
is used in a MATLAB Simulink environment. The developed gripper investigates the fol-
lower path concerning the cam surface curve, and the gripper position is controlled using
the developed ANFIS-PID. Three methods are examined in the developed ANFIS-PID
controller: grid partitioning (genfisl), subtractive clustering (genfis2), and fuzzy C-means
clustering (genfis3). The results show that the added cam can improve the gripping strength
and that the ANFIS-PID model effectively handles the rise time and supported settling
time. The developed ANFIS-PID controller demonstrates more efficient performance than
Fuzzy-PID and traditional tuned-PID controllers. This proposed controller does not achieve
any overshoot, and the rise time is improved by approximately 50-51%, and the steady-
state error is improved by 75-95%, compared with Fuzzy-PID and tuned PID controllers.
Moreover, the developed ANFIS-PID controller provides more stability for a wide range
of set point displacements—0.05 cm, 0.5 cm, and 1.5 cm—during the testing period. The
developed ANFIS-PID controller is not affected by disturbance, making it well suited
for robotic gripper designs. Grip force control is also investigated using the proposed
ANFIS-PID controller and compared with the Fuzzy-PID in three scenarios. The result
from this force control proves objects” higher actual gripping performance by using the
proposed ANFIS-PID.

Keywords: robotic gripper design; cam mechanism; intelligent ANFIS-PID technique;
position and force control; modeling and comparison

1. Introduction

Intelligent robotic grippers have significantly contributed to technological advance-
ments over the past decade, as their use has grown steadily in various industries [1].
Industrial automation is the broadest area of use for robotic grippers, where the main
targets are picking up, holding, and manipulating objects [2,3]. Complex operation activi-
ties requiring high precision and dexterity in the assembly process still require new tools
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and methods to deliver excellent performance [4,5]. As a result, much research is being
conducted on designing robot grippers to increase industrial precision and dexterity.

There are no specific classifications for the types of robotic grippers; they can be
classified based on their working principles, modes of action, or key parameters. The
classification based on the working principle is the most popular in industrial robotic
grippers. Figure 1 provides an explanation to highlight the types in this classification. The
most used types are mechanical grippers, also known as fingered grippers, which typically
consist of two or more fingers, depending on the specific application [6,7]. Vacuum gripper
suction cups create a vacuum between the object’s surface and the gripper, enabling the
gripper to pick up objects [8,9]. Magnetic grippers employ a magnetic field to elevate
ferromagnetic materials like steel [10]. When lifting thin materials becomes necessary,
robotic grippers, made of flexible and soft materials, often operate in parallel with other
types, most notably pneumatic grippers. Adhesive grippers serve smooth, thin, and
soft surfaces that do not require significant lifting force [11]. When the classification is
based on actuation methods, the most popular types are pneumatic grippers, electric
grippers, hydraulic grippers, and servo-electric grippers, and each type has its advantages
and limitations depending on the use case [12]. When the classification is based on key
parameters in robotic grippers, many types emerge, such as grip force, stroke length,
payload capacity, grip precision, and feedback [13].

Mechanical
Grippers
(Fingered
Grippers)

Adhesive Vacuum
Grippers Grippers

Robotics
Grippers

Soft
Grippers Magnetic
(Adaptive Grippers
Grippers)

Figure 1. Main robotic grippers classified by working principle.

Well-established methods for controlling robots in structured environments rely on
synthesizing and analyzing mathematical modeling accuracy [14]. Sensor inaccuracy
creates complex issues for predicting objects” attributes in unstructured environments.
Fuzzy-controlled techniques are quite common in the design of robotic grippers. These
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grippers are based on basic parameters that are often related to weight, shape, and the
friction required between them and the objects to be moved [15]. In studies of grippers
controlled by fuzzy techniques, Vaishnav and Khan [16] and Tamilselvan and Aarthy [17]
emphasized that minimizing errors and derivatives are the most crucial factors to consider.
It should be noted that PI and PD controllers do not perform optimally in reducing transient
response and steady-state response errors, respectively. Therefore, the PID controller is
considered the most widely used. Despite its acceptability, the system performance in the
PID controller can be affected and accompanied by instability in many cases, especially
when nonlinearities are introduced into the system dynamics [18,19]. Yager and Zadeh [20]
and Somwanshi et al. [21] showed that the drawbacks of classical linear PID controllers
can be avoided or have their effects reduced by fuzzy controllers because it has enough
flexibility to deal with nonlinear cases. Aslinezhad et al. [22] developed a pneumatic
finger-like actuator for medical purposes based on an adaptive neuro-fuzzy inference
system and showed that Gaussian, trapezoidal, and triangular shapes are necessary for
optimizing fuzzy controller operations. Nguyen et al. [23] designed a compliant gripper
mechanism using a hybrid system of an ANFIS and fuzzy logic, considering frequency
values and displacement values as response parameters, and simulating the proposed
model with a finite element. The flexure gripper was the focus of a study by Dinhet
et al. [24], where they created an optimization framework by combining an ANFIS and
the Taguchi optimization method. Their findings demonstrated the ability to reduce the
standard deviation to zero, and the developed model outperformed other techniques,
particularly for the flexure gripper. Huynh and Kuo [25] used gradient descent iterative
learning control to find the best design for a robot gripper based on fuzzy rule-based
design while holding unknown objects and going through an iterative learning control
process. Mukhtar et al. [26] showed that using a multi-system ANFIS can make it more
efficient as one fuzzy controller can replace four systems in controlling an ambidextrous
robot arm, and they showed that the developed model was more efficient, stable, and less
energy-consuming. Bahedh et al. [27] developed a model to increase the efficiency of a
robotic gripper by adding a cam to a Fuzzy-PID controller using MATLAB Simulink. They
demonstrated that the developed gripper produced encouraging results by tracking the
paths in the cam surface curve where it exceeded the maximum percentage and that it
achieved ideal results for each rising time, settling time, and steady-state error. Hazem
and Bingiil [28] proposed a radial-basis neuro-fuzzy LQR-based controller for achieving
a desired torque for an inverted pendulum. Their method improved the stability of the
system and its robustness against external disturbances.

The literature mentioned above suggests that robotic gripper design is still of great
interest, with multiple directions for its development and the possibility of combining
more than one approach. Controlling the position and force of the gripper needs further
investigation and evaluation using intelligent methods and techniques.

This paper’s main contribution and novelty lies in confronting an important configu-
ration gap for improving robotic gripper design. The main contribution is presented in the
following points:

e  The proposed gripper design was developed by adding a suitable cam that makes it
compatible with the basic design. In addition, the cam is used to improve the strength
of the gripper.

e An intelligent adaptive neuro-fuzzy inference system (ANFIS) was used for this
gripper design.

e  The main objective of this proposed gripper design was to investigate the follower
path of the cam surface curve and to improve motion performance.
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e  The ANFIS-PID system considers the position control of the gripper to achieve accurate
positioning, which is necessary to keep the object safe.

e  For this purpose, three methods were examined in the developed ANFIS-PID con-
troller, which are grid partitioning (genfis1), subtractive clustering (genfis2), and fuzzy
C-means clustering (genfis3).

e  MATLAB Simulink was used to apply the ANFIS system to the gripper design.

e A comparison is executed between the results of the proposed ANFIS-PID and other
controllers, such as traditional PID and Fuzzy-PID.

o Different scenarios were applied to the proposed controller to investigate its effective-
ness, such as the use of different displacements of the robotic gripper and the effect of
the disturbances.

e  Grip force control was conducted and investigated with the proposed ANFIS to
evaluate the actual gripping performance of objects. In this case, the performance of
the proposed ANFIS-PID is compared with Fuzzy-PID. Three different scenarios were
investigated to present the efficiency of the proposed controller. All these simulations
were implemented in MATLAB.

The outline of the rest of this paper is presented as follows: Section 2 shows the
materials and methods. This section discusses the ANFIS technique and the gripper design.
In addition, the performed simulation modeling, including the inputs and outputs of the
ANFIS, is presented for both position and force control applications. Section 3 presents
the results of the gripper position control. The proposed controller is investigated using
different scenarios, and the current results are compared with traditional PID and Fuzzy-
PID results. Section 4 presents the grip force control using the proposed ANFIS-PID and
compares it with Fuzzy-PID. Finally, Section 5 concludes this paper, offering remarks on
the proposed controller, commenting on its limitations, and suggesting future work on it.

2. Materials and Methods

This section discusses the proposed neuro-fuzzy computing technique, the proposed
design of the robotic gripper using a cam mechanism, and the Simulink modeling, for both
position and force control applications. All these are discussed in the following subsections.

2.1. Neuro-Fuzzy Technique

Control systems have been steadily developing for the last decade, and it has become
clear that hybrid control systems can be more effective than traditional systems. Hybrid
control systems are characterized by their relevance to real-world problems because they
combine different techniques, such as neural networks and genetic algorithms, in addition
to fuzzy logic and rely directly on expert systems [29]. Thus, they begin to behave in a way
that is remarkably like the human mind when dealing with cognitive uncertainties. This
integrated system can be described as being neuro-fuzzy. Models built on these systems
are characterized by two scenarios: linguistic statements and multiple layers [30]. In the
first scenario, the fuzzy interface block acts as an input to a neural network, often multi-
layered, that can be adapted (by training) later to give the required decisions (outputs),
as shown in Figure 2a. In the second scenario, a multi-layered neural network drives the
fuzzy inference mechanism, as shown in Figure 2b. Neural networks’ main function in
neuro-fuzzy techniques is to tune membership functions in systems, which can appear in
different forms, such as those in Figure 2c.
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Figure 2. Structures of several fuzzy neural systems. (a) The fuzzy interface block acts as an input
to a neural network, (b) A neural network drives the fuzzy inference mechanism, and (c) Neural
network’s function in neuro-fuzzy techniques to tune membership functions in system.

Jang laid the foundations for the adaptive network-based fuzzy inference system
(ANFIS) in the early 1990s [31], and the TSK trio team (Takagi, Sugeno, and Kang) later
developed it [32], as shown in Figure 3. The ANFIS system has many advantages that
motivated us to use it, such as its ability to execute the learning process faster as well as
its ability to model and estimate complex patterns and nonlinear systems efficiently and
correctly. It has many applications across different fields, achieving high performance,
as presented in [33-35]. An ANFIS typically consists of five layers or sequential stages,
starting with the fuzzy layer (input membership functions), rule layer, normalization layer,
and consequent (defuzzification) layer and concluding with the output layer [36]. In the
ANFIS environment, nodes can be square, indicating the TSK fuzzy system’s membership
functions, or circular, non-modifiable, and static, dedicated to specifying maximum and
minimum limits as well as multiplication operations. The improvements introduced by
Sugeno have made the system more computationally efficient and ideal for mathematical
analysis [37]. It has also become flexible in dealing with linear techniques such as PID,
making it suitable for optimization and adaptive techniques [38,39].

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
(Premise Parameters) (Consequent Parameters)
X1 Xy

(Rule Computation)  (Normalization)

@ W, m W,

S|

RSRY)

Figure 3. Adaptive network-based fuzzy inference system (ANFIS).
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The rules and firing levels laid down by Sugeno and Takagi form the rationale for the
ANFIS as indicated below [40]:

R; :if xis Aj and y is By then z; = a;x+ by 1)
R, :if xis Ap and y is By then zp = ax + byy
o1 = Aq(x0) X By (o) )
o2 = Az (%) X Ba(yo)

The equations below can describe the relationships that govern the outputs of individ-
ual rules and crisp control actions, where 31 and (3, are the normalized values of o; and oty
with respect to the sum (1 + x):

Z1 = al(xo) X bl(yﬂ) (3)
Zy = az(X()) X b2(y0)
7, = % = B1z1 + Baz2
Bl = alﬁag (4)

_ o«
E’Z T m -‘50(2
Usually, in the first layer, bell-shaped membership functions represent the linguistic
terms according to the parameter set {a;1, ajp, bj;, and b;»}, as shown below:

A =exp 455’

2 )
Bi(v) = exp|—3 (%)

In gripper position control, the inputs of the proposed ANFIS are as follows: x; is the
position error, and x; is the derivative of the position error. In the gripper force control, the
inputs of the proposed ANFIS are as follows: x; is the error in the controlled force, and x; is
the derivative of the force error. The output y of the ANFIS is one gain of the PID controller
(Kp, Ki, or Kd), where Kp is the proportional gain, Ki is the integral gain, and Kd is the
derivative gain.

2.2. The Proposed Gripper Design

The construction of the gripper system and governing equations have been described
in detail in [27], some of which will be referred to in this study.

Cam and gear mechanisms are very effective tools in motion transmission and are
widely used in the design of robotic grippers. Grippers based on cam mechanisms have
been used before in previous research papers, and their results were outstanding and
effective. The research using cam mechanisms in gripper design can be found in [41-43].
The proposed gripper is designed based on an electromechanical system: a cam mechanism
driven by an electric motor. Furthermore, to avoid complexity, a simple cam mechanism
has been designed. Figure 4a indicates the main construction of the system, including the
spring arrangement mechanism and the added cam, while Figure 4b indicates the proposed
dimensions of the added cam.

In this model, an armature-controlled DC motor produces the necessary motor torque,
as depicted in Figure 5a, and directs it towards the cam, enabling object grasping, as
illustrated in Figure 5b. The equations of the proposed system are presented in the follow-
ing points.
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Figure 4. The main construction of the system. (a) The open case of the proposed gripper, (b) the
closed case of the proposed gripper, and (c) the cam profile.
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Figure 5. Schematic of the (a) DC motor loading and (b) torque effect on the DC motor. w represents
the angular speed of the motor.

The torque produced by the DC motor (T) can be written as follows:
Tn(s) = Kin Ia(s) (6)

where K, represents the permeability function of magnetic material and I, is the armature
current. This current can be calculated with respect to input voltage V; as follows:

Va(s) = (Ra + Las)Ia(s) + Vi (s) )

where R, is armature resistance, L, is armature inductance, and V}, is feedback voltage that
comes from the sensor. From Equations (6) and (7), the torque of motor can be rearranged

T, — (Vu(s> - Vb(s)) w Koy (8)

as follows:
R, + Lgs
The net load torque can be derived as follows:

Ti(s) = Tu(s) — Tu(s) ©

The equations of motion for the rotating part of the motor and gripper can be written
in Laplace form as follows:

Tp = J15% 01(s) + bysfy(s) + K(01(s) — 0a(s)) (10)

J25% 02(s) + basa(s) = K(61(s) — 62(s)) (11)

where by is the damping coefficient of the DC motor parts, b, is the damping coefficient of
the cam assembly, J; is the moment of inertia of the rotating part of the DC motor, |5 is the
moment of inertia of the rotating part of the cam assembly, K is the stiffness constant of the
shaft, and 6; and 6, are positions of the angle input and output, respectively.

Equation (11) can be rearranged to be as follows:

K01(5) = (252 + bos + k) 0a(s) (12)
For the gripper mechanism, the following equations can be formulated as follows:
y1 = (r+z)sin(6,) (13)

(r+2z)cos(6p) +x =5 (14)

From the properties of triangle similarity, it can be concluded that (y; = x), which
leads to
(r+z) (sin(6y) +cos(62)) =5 (15)
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where z is the distance from the circumference of the base circle to the cam profile and 7 is
the radius of the base circle of the cam in cm.
Then, z can be determined as follows [27]:
5

£= sin(6) + cos(6) g (16)

Then, knowing that r = 5 sin 45 and p = z sin 45, the vertical of each part of the gripper
can be calculated as follows [27]:

B 5
P= (sin(Gz) + cos(62)

-5 sin(45)> sin(45) (17)

where p is the position of the gripper or the linear displacement from the cam pushing the
gripper in the direction of the sample or the object.
For the PID controller, the general form of transfer function can be written as follows:

U(s) KI
Elo) —Kp+ ks (18)

where Kp is the proportional gain, which is estimated by an ANFIS of the genfisl type,

Kl is the integral gain, which is estimated by an ANFIS of the genfis2 type, and Kd is the
derivative gain estimated by an ANFIS of the gen fis3 type.

2.3. The Simulink Modeling

This study designed a self-adjusting intelligent controller based on the ANFIS method,
using MATLAB Simulink to tune the three main parameters of the PID controller.

Many previous research works have been executed in a modeling and simulation
environment, both in robotic and other fields. Therefore, we follow, in this paper, the
same methodology by applying our proposed approach in the simulation environment
(MATLAB), similarly to previous studies that have designed robotic grippers, such as [44—48].
These references are a few examples of the use of simulation environments, and there are
many other such research works.

Many key parameters of the ANFIS are considered, such as the step size and its
increasing and decreasing rates, the type and number of memberships of inputs, the method
of dividing the data of inputs into appropriate sets, and learning algorithm parameters
such as the learning rate and number of epochs. Also, the construction of a rule base plays
a significant role in the efficiency of ANFIS behavior.

The typical inputs in the ANFIS model are the error in quantity and the rate in change
in this error. However, in this study, the inputs are the error in position and control force and
the rates of the change in these errors. While the output in the ANFIS model is any required
variable or control signal that leads to control of the system for the desired behavior, in this
study, the outputs of the ANFIS are the main three parameters of the PID controller. The
antecedent is the event after the “if” statement, which represents the error in position or
control force as well as their rates defined with number of memberships. The consequence
is the event after the “then” statement, which represents, in this study, the proportional gain,
integral gain, or derivative gain of the PID controller in order to implement the intelligent
adaptive PID controller. The range of data is divided automatically with respect to the
strategy of obtaining the membership of the inputs. It just needs to arrange the inputs in
the columns, and the end column must be for the required output.

The Sugeno method has been widely used in previous research [49-51]. In the Sugeno
method, the ANFIS method can deal with several inputs with a unique output; thus three
of ANFIS methods (genfisl, 2, and 3) were used to tune the PID factors [52], as shown in



Automation 2025, 6, 4 10 of 35

Figure 6a. The inputs of the proposed ANFIS in developing the gripper position control
were the position error and its derivative, where the output was one of the PID gains (Kp,
Ki, or Kd). The inputs and outputs of the proposed ANFIS in developing the gripper force
control are shown in Figure 6b. In position control, the ANFIS converts the error and its
derivative into an appropriate range in the member according to the required rules until
it reaches the preferred final output, as shown in Figure 7a. The Simulink model of the
proposed ANFIS in developing the gripper force control is presented in Figure 7b.

\ Error in position
ANFIS

genfis 1,

genfis 2, or

>©< genfis 3
Derivative in error Kp, Ki, or Kd

Error in controlled force, F

><>< ANFIS

genfis 1,

Rate of error change genfis 2, or

\ /\/‘ genfis 3

/\\_/ Kp. Ki, or Kd
(b)

Figure 6. Inputs and output of ANFIS: (a) in gripper position control and (b) in gripper force control.

ANFIS(genfis1) Gain1

[
(1> r

position error

To plant

Gainz2

Add1

derivative in position error Absi

ANFIS(genfis3)

(a)

Figure 7. Cont.
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. Kd
PHurdt | |u] [ Gain20  [™FProducts
'\> >
Derivative2 Abs1
_mﬁ_q. >Gain21|-> X P huidt—
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NFIA3 roduct6 Derivative4
ANFIA Gain18

o

From controlled force

(b)

Figure 7. Simulink model of ANFIS-PID controller: (a) in developing the gripper position control
and (b) in developing the gripper force control.

Many types of membership can be used for representing the inputs, such as the
triangular membership function, trapezoidal membership function, Gaussian distribution
curve, generalized bell membership function, and sigmoidal membership function. The
type of the membership curve plays an important role in the operation of the controller,
which depends on the ANFIS through its effect on the degree of membership inputs,
which in turn affects the result of the conditions and thus will affect the controller’s
decision for the appropriate value for the outputs. However, after experimentation, the
Gaussian distribution curve was used in this research to suit the data related to the type of
application used.

3. Gripper Position Control: Results and Discussion

This section shows and discusses the results of the proposed ANFIS in controlling the
position of the designed robotic gripper. The results are divided into two main sections: the
first is the comparative analysis of FIS generation methods in the ANFIS: genfisl, 2, and 3.
In contrast, the second is related to assessing the developed model at different displace-
ments of the robotic gripper to find the best design and ideal control method.

The values of the main parameters used in the proposed simulation are presented in
Table 1.

Table 1. The values of the main parameters used in the simulation of position control applications.

Parameter Magnitude
r 3.5cm
by 0.03 N-m-s
by 8 N-m-s

I 0.02 l<g~m2

I 0.05 kg-m?
Motor constant, Km 0.023 N-m/A
Back electromotive gain, Kb 0.023 V/rad

La 0.23 Henry

Ra 1Q
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There are certainly differences among the three methods of ANFIS in terms of the
formation of the memberships and rules, which in turn affect the outputs of each method.
The genfis1 method generates memberships by dividing the data equally and according
to the required number to cover the entire range of the data. The number of rules is the
product of the memberships for all inputs. The gen fis2 method divides the data into groups
according to a specific radius, and the number of rules is the number of memberships
generated for each input, which are equal. As for the genfis3 method, the memberships
are generated according to the required number and through an objective function; the
method divides the data into the best groupings that suit the nature of the data, and the
number of rules is the amount of data. This difference in the method of generating the
rules and memberships has an impact on the speed of training as well as the flexibility
in dealing with changes in inputs and the flexibility in determining appropriate output
values. However, in the current research, the aim is not to study the differences between
these methods because the gen fis1 method is adopted for controlling and predicting the
proportional part of the PID controller, the gen fis2 method is adopted for controlling and
predicting the integral part of the PID controller, and the gen fis3 method is adopted for
the purpose of controlling and predicting the derivative part of the PID controller, and the
training data for the outputs are different for each method, so there is no opportunity to
test the differences between these methods.

The rule base of the ANFIS method is formed automatically and according to each
method (genfisl, 2, and 3). In the genfisl method, the number of rules represents the
number of the product of the memberships of the inputs so that each membership of the
first input will produce one rule for each membership of the second input to ensure that
all possibilities of changing the inputs are included. Therefore, in this work, there were
25 rules because each input has 5 memberships. In the gen fis2 method, the data are divided
according to a radius that represents the extent of the influence in each cluster, and the
clusters are equal for the inputs and the output, which is the same number of the required
rules, as in this work for this method there were three rules. In the genfis3 method, the
number of clusters is determined by the user, and the method automatically guesses the
estimated centers for the clusters and then determines an objective function that represents
the shortest distance for the data from the centers, and the process is repeated until it
reaches the best clusters to divide the data into, and the rules are the number of these
clusters. The number and nature of the rule base play a clear role in the operation of the
control system by making the appropriate decision for the value of the outputs that suit the
nature and values of the inputs to the system.

The main learning parameters are the learning algorithm, such as a combination of
backpropagation and least squares or backpropagation alone. Also, the number of epochs
and the error goal are very important for adjusting the stooping criteria and reaching
an acceptable model with a small value of errors. The step size is very significant in
controlling the learning procedure as well as its decrease and increase rates, specifically, the
behavior of errors increasing and decreasing. Table 2 shows the default and used values of
these parameters.

Table 2. The main training parameters.

Parameter Default genfisl genfis2 genfis3
Training epoch number 10 20 20 20
Training error goal 0 0 0 0
Initial step size 0.01 0.03 1.3 0.03
Step size decrease rate 0.9 1.5 15 1.5

Step size increase rate 1.1 1.5 1.5 1.5
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3.1. Comparative Analysis of FIS Generation Methods in ANFIS
3.1.1. Grid Partitioning Method: Analysis of genfis1 Results

In an ANFIS, there are several approaches to creating the required members. A grid
partition method (named in MATLAB as genfis1) is a widely used approach, such as in
predicted and controlled PID’s proportional gain (Kp) values [53]. A grid partition depends
on the principle of the regular partitioning of data space in dividing the input data into
memberships, and it divides the data with an equal step between the upper and lower
limits, according to the number required by the user [54,55]. However, the current model
automatically generated 25 rules using five memberships for each input. Later, a neural
network is used for data training to estimate the best factors of memberships that can
achieve the best agreement of the predicted ANFIS model concerning the tested data that
enable the agreement between the test and the values predicted by the ANFIS. Figure 8
displays the membership functions of the inputs before and after training using gen fis1.
This in turn leads to the formation of rules with the number of the member’s product for the
first input and the member for the second input. Therefore, the conditions in this method
will be 25, as in Figure 9. The rule base of genfisl in detail and in the form of conditions is
presented in Appendix A.

After training the scheme and creating rules that cover most of the expected cases, the
approach was assessed using selective data to match it with the extracted result. The results
proved the method’s accuracy in estimating the output’s true value, which is represented
by the proportional gain of the PID controller (Kp), as in Figure 10a. The ANFIS method’s
ability to deal with computation operations and mathematical models led to a significant
reduction in error, as shown in Figure 10b.

1
1
R
Z
i
£ 0
g 0 0.5 1 1.5 2 00 1 2
< input 1 befor train input 1 after train
g 1 ‘ ‘ ‘
ED 1
a
0.5 1 0.5]
0 0 ‘ ‘ ‘
0 0.0005 0.001 0.0015 0.002 0 0.0005 0.001 0.0015 0.002
input 2 befor train input 2 after train

Figure 8. Inputs of membership functions before and after training using genfisl. The unit of
measuring input 1 (position error) is cm; that for input 2 (derivative of error) is cm/s. The degree of
membership is dimensionless.
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Figure 10. ANFIS genfisl: (a) prediction test, (b) root-mean-squared error (training and testing).
The surface plot of input-output in genfisl is presented in Appendix A.

3.1.2. Subtractive Clustering Method: Evaluation of genfis2 Outcomes

To predict and control the second factor of PID, which is the integral gain (Ki), another
method of constructing the ANFIS was used, which is the subtractive clustering method,
which depends on dividing the data according to a radius that represents the extent of
influence on the clusters [56,57]. This method is called genfis2 in MATLAB. Choosing a
small radius means obtaining a large number of clusters, while choosing a large radius
leads to obtaining a small number of clusters and, thus, a small number of memberships.
However, a radius of 0.9 was chosen, which led to obtaining three memberships for each
input. These memberships were trained to obtain the best factors using the combination
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of backpropagation and the least-squares method, as shown in Figure 11. This method
generates rules related to the generated clusters. Thus, the rules will be according to the
number of clusters produced, which in this study were three, as shown in Figure 12. The
rule base of genfis2 in detail and in form of conditions is presented in Appendix B.

&= ~ 1
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= 0.6
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5
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§ = = |
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a
0.5 0.5
0 ‘ ‘ ‘ 0 ‘ ‘ ‘
0  0.0005 0.001 0.0015 0.002 0 0.0005 0.001 0.0015 0.002
input 2 befor train input 2 after train

Figure 11. Input membership functions before and after training using ger fis2. The unit of measure-
ment for input 1 (position error) is cm; that for input 2 (derivative of error) is cm/s. The degree of
membership is dimensionless.
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Figure 12. Rule base of genfis2.

The high ability of the ANFIS to form relationships between the input and output
data, even with little experience in determining the behavior of these data, led to perfectly
accurate results through complete agreement between the result extracted by genfis2
and the examination data, as in Figure 13a. The excellent ability of the ANFIS to form
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a continuous surface and the ability to form mathematical models even with data with
complex behavior led to a reduction in the error to a minimal value [58], as in Figure 13b.
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Figure 13. ANFIS genfis2: (a) prediction test, (b) root-mean-squared error (training and testing).
The surface plot of input-output in gen fis2 is presented in Appendix B.

3.1.3. Fuzzy C-Means Clustering Approach: Results from genfis3

To control the derivative part (Kd) of the PID, the Fuzzy C-means clustering method
(named genfis3 in MATLAB) was adopted, which depends on the user estimating the
number of clusters [53]. After determining the number of required clusters, the method
guesses the centers of these clusters, which often need to be corrected. After the initial
guess, an objective function is determined that represents the minimum distance of the data
from the centers of the guessed clusters until it reaches the best division of the clusters [59].
This method helps users of these applications divide their data into an appropriate number
of members in case they need more experience sorting data that may contain strange and
random values. However, four clusters were chosen in this study. They were trained
sufficiently to obtain member functions with appropriate parameters that represent the
true relationship between the input data and the output, as in Figure 14. The number of
rules in this method is related to the number of clusters produced, so the number of rules
was four, as in Figure 15. The rule base of genfis3 in detail and in the form of conditions is
presented in Appendix C.

Data collection covering all expected changes in error is essential. Also, sorting the
data in a way that diagnoses the correct mathematical relationship between the inputs
and the output, and the accuracy of training led to highly accurate results in this method.
Compared to the test data in Figure 16a, the result of genfis3 was perfectly accurate. Proper
training and checking of the ANFIS before entering it into operation eliminates the errors
accompanying the system’s operation in the dynamic model [60,61]. As seen in Figure 16b,
obtaining a small error during training is evidence of the method’s efficiency in the future
when it enters operation in the model designed for the robotic gripper arm.

The surface plot of input-output in genfis3 is presented in Appendix C.

After training all the methods used in the ANFIS, the proposed controller in this
research is linked with the model designed for the arm grip, as in Figure 17. In order
to make the required comparisons with the models and methods presented in previous
research, the proposed model in the previous research was placed side by side with the
current model to prove the efficiency and effectiveness of the presented controller. In this
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model, the controller receives the error in the required gripper movement and its derivative.
Each part of the controller determines the appropriate value to modify the three PID factors,
where gen fis1 modifies the value of (Kp) and gen fis2 modifies the value of (Ki). In contrast,
(Kd) is modified by genfis3.

1
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0 ‘ 0 ‘ ‘ ‘
0 0.0005 0.001 0.0015 0.002 0 0.0005 0.001 0.0015 0.002
input 2 befor train input 2 after train

Figure 14. Input membership functions before and after training using gen fis3. The unit of measuring
input 1 (position error) is cm; that for input 2 (derivative of error) is cm/s. The degree of membership
is dimensionless.
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Figure 15. Rule base of genfis3.
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Figure 16. ANFIS genfis3: (a) prediction test, (b) root-mean-squared error (training and testing).
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Figure 17. (a) The Simulink model of the system (motor, cam, and gripper). (b) Applying the
proposed ANFIS for gripper position control.
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To test and assess the efficiency of the controller presented in this study, a comparison
was made with the controller’s performance presented by [27], which used fuzzy logic
to tune the PID factors. Also, the comparison was conducted with the traditional PID in
MATLAB, as indicated in Figure 18. Moreover, even though fuzzy logic is suitable for
human input and is acceptable to some of the control fields, the accuracy of the ANFIS
method in dealing with mathematical analyses and ensuring a continuous output surface
led to superior results compared to other controllers. When examining the results either
in Figure 18 or Table 3, the rise time, which represents the time needed to reach the
required value, was 76 s for the developed controller compared with the longer times for
the other controllers. There is no doubt that this result is considered one of the required
objectives in the precise operations and in the movement of the robot gripper for carrying
out time-sensitive tasks without delay. Also, the overshoot could have been longer due
to the satisfactory prediction of the derivative gain value, while it was 10 percent in the
conventionally tuned PID. However, fuzzy logic may be able to eliminate the overshoot
through the accuracy of the construction of the conditions. However, it showed a more
significant value in the steady-state error (0.0001); this may not be desirable in precision
industries such as the manufacture of electrical circuits and the transfer of small parts by
robotic arms.

0.12
01 L /\
—— ANFIS-PID
g 0.08 —— Fuzzy-PID | |
) — Tuned-PID
.S 0.061 b
Z
A~ 0.041 b
0.02 1 |
0 L L L L L
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Time , sec

Figure 18. Position variation comparison between ANFIS-PID, Fuzzy-PID, and Tuned-PID controllers.

Table 3. Rise time, maximum overshooting, and steady-state error according to controller types.

Variable Tuned PID Fuzzy-PID ANFIS-PID
Rise time (s) 156.93 150 76
Maximum overshoot (%) 10% 0 0
Steady-state error (cm) 0.0005 0.0001 0.000025

3.2. Effects of External Disturbances

Dynamic models may be subjected from time to time to certain disturbances, so
the proposed controller was tested by applying a step disturbance to the model, as in
Figure 19a. It is noticeably clear from the curve that the other controllers were significantly
affected during the step time (200 s) and even after it, with the presence of a continuous
error in the required value. However, due to the automatically prepared rule base, the
controller presented had the ability to adjust the values of its parameters automatically to
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resist the applied disturbance and maintain the required value of the gripper movement.
Precise movement is essential in some applications, such as placing electrical resistors and
transistors in their correct positions in electrical circuits before soldering them. Regarding
the traditional and fuzzy logic controllers, the extensive range in determining the output
value related to the output membership area in the controller construction may lead to a
difference from the required values. The ANFIS-PID controller was tested in determining a
precise displacement movement of 0.05 cm, and the result shown in the curve in Figure 19b
proves the accuracy of the method compared to Fuzzy-PID because it deals with an output
with a continuous and precise data surface with memberships that are either linear or
constant. Also, the accuracy of forming the mathematical relationship between the input
and output data by taking advantage of the neural skills in training and prediction was the
reason for obtaining a precise displacement with a fast arrival time.

0.12@ T T T T T 0.06 T T T T T r - @
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o 008 ANFISTID | g 0047 Fuzzy-PID
5 — Fuzzy-PID 5
a — Tuned-PID "
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Figure 19. (a) Effect of disturbance on the ANFIS-PID, Fuzzy-PID, and Tuned-PID controllers,
(b) precision movement of gripper during ANFIS-PID and Fuzzy-PID controllers.

3.3. Effects of Displacement Variation on ANFIS Model

In robotic gripper controllers, it is necessary to ensure the controller’s flexibility in
dealing with various displacements required to perform different tasks. Therefore, the
developed controller was tested for different displacement values, as shown in Figure 20.
Three displacements were examined to cover all the required gripper movements’ ranges:
0.05 cm (small), 0.5 cm (medium), and 1.5 cm (large). The developed controller showed
the same accuracy and efficiency in controlling different displacements by correctly and
instantly tuning the PID values (Kp, Ki, and Kd). The performance showed a fast rise time
with an overshoot and a steady-state error approaching zero. This skill enables the robot
gripper to hold very fine samples with different size gradations. The controller (ANFIS-PID)
possessed the neural ability to make predictions and the fuzzy strength to make decisions.

The variations in the main parameters of the dynamic model, such as rotating mass
and damping coefficient, are considered extremely dangerous, especially for the rotating
parts. However, the effect of increasing the moment of inertia of the rotating parts in
the electric DC motor that operates the robot’s gripper has been tested. This change
dramatically affects the system’s oscillation because it relates to an integral part of the
model. This change will increase the overshoot and settling time, which requires fast
adaptation in the value of the controller’s integral gain (Ki) and an instant increase in the
derivative gain (Kd). The result shown in Figure 21 proves the acceptable performance
of the developed ANFIS-PID controller compared to Fuzzy-PID despite the presence of a
relatively small overshoot because the test was challenging. The overshoot is very small
and can be neglected. Therefore, it cannot affect the accuracy of the positioning. Figure 21
shows the efficiency of the ANFIS-PID controller in terms of quickly reaching the required
value for the location with a rise time of 30 s compared to the Fuzzy-PID method, where
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the time was relatively long (120 s). This advantage comes from the accurate prediction
of the main factors of PID, which leads the actuator to the correct direction to move the
grip at the appropriate speed. Also, the overshoot was relatively small (1.3% of set point
0.1 cm), and the error was close to zero.
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Figure 20. Testing of developed ANFIS-PID controller at different set points.
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Figure 21. Precision movement of the gripper in the developed ANFIS-PID and Fuzzy-PID controllers.

Position control is essential to the gripper or the hand of the robot, allowing for more
advanced manipulation, managing the position of the fingers, and generating a smooth
trajectory [1,62,63]. The following section presents and develops simulations with grip
force control.

4. Gripper Force Control Simulations and Results

The grip force control simulations and results are presented and discussed in this
section. Grip force control is based on the motor current and measures the grip force
directly. Controlling the force in a robot arm’s grip is an especially important topic due to
its effectiveness in safely transferring samples, pieces, objects, and varied materials. The
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grip force control is implemented using the proposed ANFIS-PID system and is tested and
evaluated with different cases and scenarios, which are (1) achieving a required force of
30 N, (2) changing the required force from 30 N to 60 N, and (3) decreasing the required
force to 0 N. In addition, the performance of the proposed controller is compared with
other methods, such as the Fuzzy-PID controller.

The analysis of the force representation on the proposed and designed gripper is
shown in Figure 22. The appropriate grip force in the presented model must equal the
spring force and the reaction force that ensure that the sample or the object does not slip,
obtained from the following equations based on Figure 22.

nN 1N

Figure 22. A mathematical model of force representation on the proposed gripper.

The sum of forces in the x— direction is equal to zero; therefore,
Y F.=0 (19)
Therefore, for one segment of the gripper,
F=Kip+N (20)

where F is the grip control force at one part of the gripper, K; is the spring constant, p is the
displacement of the spring in the x— direction or the position of the gripper, and N is the
reaction force.

The sum of forces in the y— direction is equal to zero; therefore,

Y By =0 1)
Therefore,
mg = 2puN (22)

where m is the mass of the object, g is the acceleration of gravity, and i is the coefficient of
friction between the gripper and the sample or object.
The reaction force N can be obtained from Equation (22), as follows:

N = 18 (23)
PAT
Substituting Equation (23) into (20) results in the following:
F=Kp+ 8 (24)

PAVIS
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For safety, the total control force equal to 2F is as follows:

The total control force > 2Ksp + % (25)

S
The Simulink model used for implementing the grip force control is presented in
Figure 23. Figure 23a represents only the application of the proposed ANFIS-PID on the
system. Figure 23b represents the application of the proposed ANFIS-PID and the Fuzzy-
PID on the system to compare their performance simultaneously. In addition, the values of

the main parameters used in this simulation are presented in Table 4.
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Figure 23. The Simulink model is implemented to control the gripper force. (a) Applying only the
proposed ANFIS-PID to the system. (b) Applying the proposed ANFIS-PID and the Fuzzy-PID to the

system for performance comparison.



Automation 2025, 6, 4

24 of 35

Table 4. The values of the main parameters used in the simulation of force control.

Parameter Magnitude
Ks 8-30 KN/m
m 0.2-5kg
T 0.2-0.8
by 0.03 N-m:s
by 8 N-m-s
I 0.02 kg-m?
I 0.05 kg-m?
Motor constant, Km 0.023N-m/A
Back electromotive gain, Kb 0.023 V/rad
La 0.23 Henry
r 3.5cm
Ra 10

4.1. Scenario 1: The Ability to Achieve a Required Force of 30 N to Hold an Object

The required force (set point) is determined based on the weight of the specimen to
be moved and the position of the grip that must be achieved. To achieve a position of
0.1 cm, the mass to be moved is selected, which ranges between 0.5 and 5 kg and the value
of the spring constant is determined, which ranges between 8-30 and KN/m. The grip’s
ability to achieve a force of 30 N in 75 s was tested, as shown in Figure 24. The result
from Figure 24 shows the extent and the achievement of stability in the force after the
decision to hold the sample/object and before that. This shows the high performance of
the proposed ANFIS-PID.

35

ANFIS-PID
30 Set-point

251 B

20+ B

15+ B

Force, N

_5 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
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Figure 24. Force control by the proposed ANFIS-PID to achieve a required force (set point) of 30 N.

The result of the presented ANFIS-PID model is compared with the Fuzzy-PID method,
as shown in Figure 25. From Figure 25, with the Fuzzy-PID controller, there is a clear
difference in accuracy, a clear disturbance at the beginning of the decision, and a noticeable
delay in the rise time method. There are many reasons for the decline in the strength of
the Fuzzy-PID method, including the range in the memberships and their numbers, which
causes a decision not to be taken accurately sometimes, as well as experience in writing the
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conditions. As seen in the figure, the performance of the proposed ANFIS-PID is higher
and desirable.
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Figure 25. The performance comparison between the proposed ANFIS-PID and the Fuzzy-PID in
controlling a required force of 30 N (set point).

4.2. Scenario 2: Changes in the Required Force from 30 N to 60 N During the Holding an Object

The gripper can hold and transfer some pieces, samples, or objects that require a
change in the holding force, such as soft materials or materials whose direction of transfer
changes. Therefore, the component of the friction force changes. This system is tested as
shown in Figure 26. The proposed ANFIS-PID shows a clear recovery from the change in
force and maintains the system’s stability at the value of the new force (60 N).
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Figure 26. The performance of the proposed ANFIS-PID control using two set points of forces or, in
other words, when there is change in the required force from 30 N to 60 N.
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The proposed ANFIS-PID is compared with the Fuzzy-PID method, as presented
in Figure 27. The result from this comparison shows that, with the Fuzzy-PID method,
confusion is observed at the beginning of the transition from the current grip force (30 N)
to the new force (60 N) as well as the presence of a clear overshoot and a delay in the
stability of the force. From this comparison, the performance of the proposed ANFIS-PID is
better and is desirable. The speed of bringing the controlling force to its specified value
is considered one of the important things in the work of the robot grip in avoiding any
issues with holding the sample correctly. In any case, as seen in Figure 27, it is noted that
the proposed ANFIS-PID controller achieved the required force in a rise time of 49 s, which
is a suitable time compared to the method of Fuzzy-PID, which took a rise time of 75 s.
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Figure 27. The performance comparison of the proposed ANFIS-PID and the Fuzzy-PID using two
set points of forces or when there is a change in the required force from 30 to 60 N.

4.3. Scenario 3: The Force Is Dropped to 0 N (The Gripper Is Returning to the Original Position)

In most cases, the robot gripper may succeed in holding the sample/object but fail
to release it safely. The proposed ANFIS-PID model is tested when its grip returns to the
original position and the force drops to zero. This case is presented in Figures 28 and 29.
From these figures, the efficiency of the proposed ANFIS-PID method in the case of the
force rising and falling is higher than that of the Fuzzy-PID method. The Fuzzy-PID method
shows a clear delay, particularly at the moment of descent.

From the results of these three different scenarios, the proposed ANFIS-PID has better
and desirable actual gripping performance of objects. Therefore, the proposed ANFIS-PID
can work efficiently under different conditions. The performance of the proposed controller
in controlling force is in complete agreement with many previous research works, such as
the research work of Sadun et al. and Vitrani et al. [64,65].
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Figure 28. Force control by the proposed ANFIS-PID when the set point drops from 30 N to 0.
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Figure 29. The comparison between the proposed ANFIS-PID and the Fuzzy-PID when the set point
drops from 30 N to 0.

4.4. Effects of Internal and External Disturbances

To test the proposed controller’s ability to overcome internal and external disturbances
that the system may be exposed to, an external disturbance was imposed at time 100 s and
an internal disturbance at time 120 s, as shown in Figure 30. It is noted from the figure
that the controller was able to compensate for the deficiency in the required force in the
event of an external disturbance. Also, despite the difference in the nature of the internal
disturbances being positive, the controller showed high efficiency in reducing this excess
force and returning the force curve to the required /desired force, which provides stability
in controlling the samples in a flexible and accurate manner. Also, the maximum overshoot
was almost non-existent, and the rise time was very satisfactory (approximately 45 s).

The executed codes implemented in this paper are attached as Supplementary Material
to this paper.
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Figure 30. Testing the ability of the proposed controller to overcome internal and external disturbances.

5. Conclusions and Future Work

Designing a robotic gripper and finding the best ways to control its motion is an
essential goal in the industry. This study developed a robotic gripper design by adding a
cam to improve the motion and develop the gripping mechanism effectively. In addition,
position and grip force control models based on ANFIS-PID were developed. The three
methods, grid partitioning gen fis1, subtractive clustering genfis2, and fuzzy C-means
clustering gen fis3, were used in the tests within MATLAB Simulink. The results were
compared with Fuzzy-PID and traditional tuned-PID controllers. The following are the
main conclusions:

1.  Theadded cam improved gripping strength, and the ANFIS model effectively handled
rise time and supported settling time.

2. Compared to Fuzzy-PID and conventional tuned-PID controllers, the developed
ANFIS-PID controller demonstrated more efficient performance. This performance
improvement was evident in all the scenarios tested, including grid partitioning
(genfisl), subtractive clustering (gen fis2), and fuzzy C-means clustering (gen fis3).

3. When the developed ANFIS-PID controller was examined under the influence of
dynamic disturbance, it could automatically adjust the values of its parameters to resist
the applied disturbance and maintain the required value of the gripper movement.

4. The developed ANFIS-PID controller was very flexible when dealing with variable
displacements and a wide range of set points. Although it was tested at low values of
0.05 cm, medium values of 0.5 cm, and relatively large values of 1.5 cm, the results
were encouraging, and a steady state was achieved quickly for various set points.

5. Theresult from developing grip force control by investigating three different scenarios
reveals a higher actual gripping performance of objects when using the proposed
ANFIS-PID than the Fuzzy-PID system.

6.  The force controller’s ability to overcome internal and external disturbances that the
system may be exposed to was tested. The results show that the proposed controller
presented high efficiency in reducing these disturbances and returning the force curve
to the desired value, which provides stability in controlling the samples in a flexible
and accurate manner.

The restriction of the proposed method is its application and investigation with the
input of a step function. However, in future work, other input functions, such as ramp,
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parabolic, and random functions, can be applied. Implementing the proposed design in
real experiments will be considered in future work. Robust controllers such as H-Infinity
can be applied, investigated, and compared with the current approach. Furthermore, other
intelligent controllers, such as those that use different neural network-based controllers,
can also be investigated.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /automation6010004 /s1. The executed codes in this paper are
attached and uploaded.
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List of Used Symbols

Symbol Definition Measuring Unit
r Radius of base circle of cam cm

by Damping coefficient of DC motor parts N-m-s
by Damping coefficient of cam assembly N-m-s
01 Angular movement of rotating parts of DC motor rad
02 Angular movement of rotating parts of cam assembly  rad

w Angular speed of DC motor rad/s
1, Armature current A

Ra Armature resistance Q

La Armature inductance H

Ty, Motor torque N-m
I Moment of inertia of rotating part of DC motor kg-m2
I Moment of inertia of rotating part of cam assembly kg~m2
K Stiffness constant of shaft N-m/rad
Kp Proportional gain of PID controller =~ -
Ki Integral gain of PID controller =~ -
Kd Derivative gain of PID controller =~ ——
F Control force N

Ks Spring constant N/m
m Mass of sample, piece, or object kg

N Reaction force N

us Coefficient of friction between gripper and sample =~ -
g Acceleration of gravity m/s?

Appendix A. Additional Information and Figures for genfis1
(A) Rule base of genfisl
In this rule base, ep represents the error in position, dep represents the derivative in

the error, Kp represents the proportional gain of the PID controller, and RW represents the
weight of the rule.
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Figure A1. The surface plot of input-output in gen fis1.
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Appendix B. Additional Information and Figures for genfis2
(A) Rule base of genfis2
In this rule base, ep represents the error in position, dep represents the derivative

in the error, Ki represents the integral gain of the PID controller, and RW represents the
weight of the rule.

Rule base of gen fis2

1. “If (ep is inl_clusterl) & (dep is in2_clusterl) then (Ki is out2_clusterl) (RW)”
2. “If (ep is inl_cluster2) & (dep is in2_cluster2) then (Ki is out2_cluster2) (RW)”
3. “If (ep is inl_cluster3) & (dep is in2_cluster3) then (Ki is out2_cluster3) (RW)”

(B) The surface plot of input—output in gen fis2

2.45

24

2.35

Integral gain

2.3 4

2.25

-3 .
x 10 0o 0
Derivative of error, cm/sec Error in position, cm

Figure A2. The surface plot of input-output in genfis2.

Appendix C. Additional Information and Figures for genfis3
(A) Rule base of genfis3
In this rule base, ep represents the error in position, dep represents the derivative in

the error, Kd represents the derivative gain of the PID controller, and RW represents the
weight of the rule.

Rule base of genfis3

1. “If (ep is inl_clusterl) & (dep is in2_clusterl) then (Kd is out3_clusterl) (RW)
2. “If (ep is inl_cluster2) & (dep is in2_cluster2) then (Kd is out3_cluster2) (RW)
3. “If (ep is inl_cluster3) & (dep is in2_cluster3) then (Kd is out3_cluster3) (RW)
4. “If (ep is inl_cluster4) & (dep is in2_cluster4) then (Kd is out3_cluster4) (RW)

(B) The surface plot of input-output in gen fis3
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Figure A3. The surface plot of input-output in gen fis3.

References

1.  Zhang, B.; Xie, Y,; Zhou, J.; Wang, K.; Zhang, Z. State-of-the-art robotic grippers, grasping and control strategies, as well as their
applications in agricultural robots: A review. Comput. Electron. Agric. 2020, 177, 105694. [CrossRef]

2. Takacs, K;; Mason, A.; Christensen, L.B.; Haidegger, T. Robotic grippers for large and soft object manipulation. In Proceedings of
the 20th IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2020—Proceedings, Budapest,
Hungary, 5-7 November 2020. [CrossRef]

3.  Zhakypov, Z.; Heremans, F; Billard, A.; Paik, J. An origami-inspired reconfigurable suction gripper for picking objects with
variable shape and size. IEEE Robot. Autom. Lett. 2018, 3, 2894-2901. [CrossRef]

4.  Mahmoud, K.H.; Abdel-Jaber, G.T.; Sharkawy, A.N. Neural Network-Based Classifier for Collision Classification and Identification
for a 3-DOF Industrial Robot. Automation 2024, 5, 13-34. [CrossRef]

5. Sharkawy, A.N. Task Location to Improve Human-Robot Cooperation: A Condition Number-Based Approach. Automation 2023,
4,263-290. [CrossRef]

6. Jadhav, R.; Kamble, Y.G. Designing and Optimization of Mechanical Gripper Finger Using Finite Element Analysis. In Techno-
Societal 2022; Springer: Cham, Switzerland, 2024. [CrossRef]

7. Malik, R.; Verma, Y.; Verma, A.; Rastogi, V. Grasping Force Analysis of 3-Fingered Gripper. In Lecture Notes in Mechanical
Engineering; Springer: Singapore, 2022. [CrossRef]

8. Gabriel, F,; Fahning, M.; Meiners, J.; Dietrich, E; Droder, K. Modeling of vacuum grippers for the design of energy efficient
vacuum-based handling processes. Prod. Eng. 2020, 14, 545-554. [CrossRef]

9. Maggi, M.; Mantriota, G.; Reina, G. Introducing POLYPUS: A novel adaptive vacuum gripper. Mech. Mach. Theory 2022, 167,
104483. [CrossRef]

10. Zhu, H,; Lin, Z; Yan, J.; Ye, P.; Zhang, W.; Mao, S.; Guan, Y. Compact lightweight magnetic gripper designed for biped climbing
robots based on coaxial rotation of multiple magnets. Robot. Auton. Syst. 2022, 155, 104164. [CrossRef]

11.  Son, C.H.; Jeong, S.; Lee, S.; Ferreira, PM.; Kim, S. Tunable Adhesion of Shape Memory Polymer Dry Adhesive Soft Robotic
Gripper via Stiffness Control. Robotics 2023, 12, 59. [CrossRef]

12.  Kostov, B.; Hristov, V. Comparision Between the Performance of Pneumatical and Electrical Grippers for Industrial Robots. In
Proceedings of the 2023 11th International Scientific Conference on Computer Science, COMSCI 2023—Proceedings, Sozopol,
Bulgaria, 18-20 September 2023. [CrossRef]

13. Long, Z; Jiang, Q.; Shuai, T.; Wen, F,; Liang, C. A Systematic Review and Meta-analysis of Robotic Gripper. In IOP Conference

Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2020. [CrossRef]


https://doi.org/10.1016/j.compag.2020.105694
https://doi.org/10.1109/CINTI51262.2020.9305836
https://doi.org/10.1109/LRA.2018.2847403
https://doi.org/10.3390/automation5010002
https://doi.org/10.3390/automation4030016
https://doi.org/10.1007/978-3-031-34644-6_52
https://doi.org/10.1007/978-981-16-2794-1_4
https://doi.org/10.1007/s11740-020-00990-9
https://doi.org/10.1016/j.mechmachtheory.2021.104483
https://doi.org/10.1016/j.robot.2022.104164
https://doi.org/10.3390/robotics12020059
https://doi.org/10.1109/COMSCI59259.2023.10315853
https://doi.org/10.1088/1757-899X/782/4/042055

Automation 2025, 6, 4 33 of 35

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Diveev, A.; Shmalko, E.; Serebrenny, V.; Zentay, P. Fundamentals of synthesized optimal control. Mathematics 2021, 9, 21.
[CrossRef]

Soliman, A.M.; Zaki, A.M.; El-Shafei, A.M.; Mahgoub, O.A. A robotic gripper based on advanced system set-up and fuzzy control
algorithm. In Proceedings of the 2009 IEEE International Conference on Automation and Logistics, ICAL 2009, Shenyang, China,
5-7 August 2009. [CrossRef]

Vaishnav, S.; Khan, Z. Design and performance of PID and fuzzy logic controller with smaller rule set for higher order system. In
Proceedings of the World Congress on Engineering and Computer Science 2007 WCECS 2007, San Francisco, CA, USA, 24-26
October 2007.

Tamilselvan, G.M.; Aarthy, P. Online tuning of fuzzy logic controller using Kalman algorithm for conical tank system. J. Appl. Res.
Technol. 2017, 15, 492-503. [CrossRef]

Bachi, 1.O.; Bahedh, A.S.; Kheioon, I.A. Design of control system for steel strip-rolling mill using NARMA-L2. ]. Mech. Sci. Technol.
2021, 35, 1429-1436. [CrossRef]

Caccia, M,; Bibuli, M.; Bono, R.; Bruzzone, G. Basic navigation, guidance and control of an Unmanned Surface Vehicle. Auton.
Robot. 2008, 25, 349-365. [CrossRef]

Yager, RR.; Zadeh, L.A. (Eds.) An Introduction to Fuzzy Logic Applications in Intelligent Systems; Springer: New York, NY, USA, 1992.
[CrossRef]

Somwanshi, D.; Bundele, M.; Kumar, G.; Parashar, G. Comparison of fuzzy-PID and PID controller for speed control of DC motor
using LabVIEW. Procedia Comput. Sci. 2019, 152, 252-260. [CrossRef]

Aslinezhad, M.; Malekijavan, A.; Abbasi, P. Adaptive neuro-fuzzy modeling of a soft finger-like actuator for cyber-physical
industrial systems. J. Supercomput. 2021, 77, 2624-2644. [CrossRef]

Nguyen, T.V.T.; Huynh, N.T.; Vu, N.C,; Kieu, VN.D.; Huang, S5.C. Optimizing compliant gripper mechanism design by employing
an effective bi-algorithm: Fuzzy logic and ANFIS. Microsyst. Technol. 2021, 27, 3389-3412. [CrossRef]

Dinh, V.B.; Tran, N.T.; Dao, T.P. An integration framework of topology method, enhanced adaptive neuro-fuzzy inference system,
water cycle algorithm with evaporation rate for design optimization for a flexure gripper. Neural Comput. Appl. 2022, 34, 349-374.
[CrossRef]

Huynh, B.P.; Kuo, Y.L. Optimal fuzzy impedance control for a robot gripper using gradient descent iterative learning control in
fuzzy rule base design. Appl. Sci. 2020, 10, 3821. [CrossRef]

Mukhtar, M.; Khudher, D.; Kalganova, T. A control structure for ambidextrous robot arm based on Multiple Adaptive Neuro-Fuzzy
Inference System. IET Control. Theory Appl. 2021, 15, 1518-1532. [CrossRef]

Bahedh, A.S.; Kheioon, I.A.; Munahi, B.S.; Al-Sabur, R. Modelling and controlling of modified robotic gripper mechanism using
intelligent technique scheme. In Proceedings of the 2022 Iraqi International Conference on Communication and Information
Technologies, IICCIT 2022, Basrah, Iraq, 7-8 September 2022. [CrossRef]

Hazem, B.; Bingiil. A comparative study of anti-swing radial basis neural-fuzzy LQR controller for multi-degree-of-freedom
rotary pendulum systems. Neural Comput. Appl. 2023, 35, 17397-17413. [CrossRef]

de Campos Souza, P.V. Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used
in the literature. Appl. Soft Comput. ]. 2020, 92, 106275. [CrossRef]

Vashishtha, S.; Gupta, V.; Mittal, M. Sentiment analysis using fuzzy logic: A comprehensive literature review. WIREs Data Min.
Knowl. Discov. 2023, 13, €1509. [CrossRef]

Sadighi, M.; Motamedvaziri, B.; Ahmadi, H.; Moeini, A. Assessing landslide susceptibility using machine learning models: A
comparison between ANN, ANFIS, and ANFIS-ICA. Environ. Earth Sci. 2020, 79, 536. [CrossRef]

Wang, G.; Zhou, T.; Choi, K.S,; Lu, ]. A Deep-Ensemble-Level-Based Interpretable Takagi-Sugeno-Kang Fuzzy Classifier for
Imbalanced Data. IEEE Trans. Cybern. 2022, 52, 3805-3818. [CrossRef] [PubMed]

Pal, D.; Bhagat, S.K. Design and Analysis of Optimization based Integrated ANFIS- PID Controller for Networked Controlled
Systems (NCSs). Cogent Eng. 2020, 7, 1772944. [CrossRef]

Najib, M.; Salleh, M.; Talpur, N.; Hussain, K. Adaptive Neuro-Fuzzy Inference System: Overview, Strengths, Limitations, and
Solutions. In Lecture Notes in Computer Science; LNISA; Springer: Cham, Switzerland, 2017; Volume 10387, pp. 527-535. [CrossRef]
Khuntia, S.R.; Panda, S. ANFIS approach for SSSC controller design for the improvement of transient stability performance. Math.
Comput. Model. 2013, 57, 289-300. [CrossRef]

Vargas, O.S.; De Leon Aldaco, S.E.; Alquicira, J.A.; Vela-Valdes, L.G.; Nunez, A.R.L. Adaptive Network-Based Fuzzy Inference
System (ANFIS) Applied to Inverters: A Survey. IEEE Trans. Power Electron. 2024, 39, 869-884. [CrossRef]

Datta, R.; Saravanakumar, R.; Dey, R.; Bhattacharya, B.; Ahn, C.K. Improved stabilization criteria for Takagi-Sugeno fuzzy
systems with variable delays. Inf. Sci. 2021, 579, 591-606. [CrossRef]

Elouni, M.; Hamdi, H.; Rabaoui, B.; Braiek, N.B. Adaptive PID Fault-Tolerant Tracking Controller for Takagi-Sugeno Fuzzy
Systems with Actuator Faults: Application to Single-Link Flexible Joint Robot. Int. J. Robot. Control. Syst. 2022, 2, 523-546.
[CrossRef]


https://doi.org/10.3390/math9010021
https://doi.org/10.1109/ICAL.2009.5262993
https://doi.org/10.1016/j.jart.2017.05.004
https://doi.org/10.1007/s12206-021-0308-7
https://doi.org/10.1007/s10514-008-9100-0
https://doi.org/10.1007/978-1-4615-3640-6
https://doi.org/10.1016/j.procs.2019.05.019
https://doi.org/10.1007/s11227-020-03370-3
https://doi.org/10.1007/s00542-020-05132-w
https://doi.org/10.1007/s00521-021-06374-z
https://doi.org/10.3390/app10113821
https://doi.org/10.1049/cth2.12140
https://doi.org/10.1109/IICCIT55816.2022.10010666
https://doi.org/10.1007/s00521-023-08599-6
https://doi.org/10.1016/j.asoc.2020.106275
https://doi.org/10.1002/widm.1509
https://doi.org/10.1007/s12665-020-09294-8
https://doi.org/10.1109/TCYB.2020.3016972
https://www.ncbi.nlm.nih.gov/pubmed/32946410
https://doi.org/10.1080/23311916.2020.1772944
https://doi.org/10.1007/978-3-319-61845-6
https://doi.org/10.1016/j.mcm.2011.06.052
https://doi.org/10.1109/TPEL.2023.3327014
https://doi.org/10.1016/j.ins.2021.07.089
https://doi.org/10.31763/ijrcs.v2i3.762

Automation 2025, 6, 4 34 of 35

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Ghany, M.A.A.; Bahgat, M.E.; Refaey, WM.; Sharaf, S. Type-2 fuzzy self-tuning of modified fractional-order PID based on
Takagi-Sugeno method. |. Electr. Syst. Inf. Technol. 2020, 7, 2. [CrossRef]

Alavala, C.R. Fuzzy Logic and Neural Networks: Basic Concepts & Application; New Age International Publishers: New Delhi,
India, 2017.

Koustoumpardis, PN.; Smyrnis, S.; Aspragathos, N.A. A 3-finger robotic gripper for grasping fabrics based on cams-followers
mechanism. In Mechanisms and Machine Science; Springer: Cham, Switzerland, 2018; Volume 49, pp. 612-620. [CrossRef]
Silva-Caballero, A.; Gonzélez-Palacios, M.A.; Aguilera-Cortés, L.A. Implementation of the Slide-O-Cam mechanism in the design
of a robot gripper. In Proceedings of the 13th World Congress in Mechanism and Machine Science, Guanajuato, Mexico, 19-23
June 2011; pp. 19-25.

Dang, T.N. Design and Simulation of a New Concentric Gripper with Two-Finger and Support Bar Driven by a Wedge Cam. In
Lecture Notes in Networks and Systems; LNNS; Springer Nature: Cham, Switzerland, 2024; Volume 943, pp. 352-366. [CrossRef]
Pozzi, M.; Achilli, G.M.; Valigi, M.C.; Malvezzi, M. Modeling and Simulation of Robotic Grasping in Simulink Through Simscape
Multibody. Front. Robot. AI 2022, 9, 873558. [CrossRef] [PubMed]

Hassan, A.; Abomoharam, M. Modeling and design optimization of a robot gripper mechanism. Robot. Comput.-Integr. Manuf.
2017, 46, 94-103. [CrossRef]

Ferretti, G.; Magnani, G.; Rocco, P.; Vigano, L. Modelling and simulation of a gripper with Dymola. Math. Comput. Model. Dyn.
Syst. 2006, 12, 89-102. [CrossRef]

Rawashdeh, N.; Abu-Alrub, N. Gripper control design and simulation for openrov submarine robot. Actuators 2021, 10, 252.
[CrossRef]

Datta, R.; Pradhan, S.; Bhattacharya, B. Analysis and Design Optimization of a Robotic Gripper Using Multiobjective Genetic
Algorithm. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 16-26. [CrossRef]

Aslam, M.S.; Tiwari, P; Pandey, HM.; Band, S.S.; El Sayed, H. A delayed Takagi-Sugeno fuzzy control approach with uncertain
measurements using an extended sliding mode observer. Inf. Sci. 2023, 643, 119204. [CrossRef]

Aslam, M.S,; Tiwari, P; Pandey, H.M.; Band, S.S. Robust stability analysis for class of Takagi-Sugeno (TS) fuzzy with stochastic
process for sustainable hypersonic vehicles. Inf. Sci. 2023, 641, 119044. [CrossRef]

Aslam, M.S,; Bilal, H.; Band, S.S.; Ghasemi, P. Modeling of nonlinear supply chain management with lead-times based on
Takagi-Sugeno fuzzy control model. Eng. Appl. Artif. Intell. 2024, 133, 108131. [CrossRef]

Tran, N.T.,; Dang, M.P.; Dao, T.P. A new optimal design synthesis method for flexure-based mechanism: Recent advance of
metaheuristic-based artificial intelligence for precision micropositioning system. Microsyst. Technol. 2024, 30, 1-31. [CrossRef]
Karsaz, A. Chattering-free hybrid adaptive neuro-fuzzy inference system-particle swarm optimisation data fusion-based BG-level
control. IET Syst. Biol. 2020, 14, 31-38. [CrossRef]

Hussain, W.; Merig6, ].M.; Raza, M.R.; Gao, H. A new QoS prediction model using hybrid IOWA-ANFIS with fuzzy C-means,
subtractive clustering and grid partitioning. Inf. Sci. 2022, 584, 280-300. [CrossRef]

Abdullahi, S.B.; Muangchoo, K.; Abubakar, A.B.; Ibrahim, A.H.; Aremu, K.O. Data-Driven Al-Based Parameters Tuning Using
Grid Partition Algorithm for Predicting Climatic Effect on Epidemic Diseases. IEEE Access 2021, 9, 55388-55412. [CrossRef]
Zanganeh, M. Improvement of the ANFIS-based wave predictor models by the Particle Swarm Optimization. J. Ocean. Eng. Sci.
2020, 5, 84-99. [CrossRef]

Ghobadiha, Y.; Motieyan, H. Urban growth modelling in Qazvin, Iran: An investigation into the performance of three ANFIS
methods. J. Spat. Sci. 2023, 68, 523-542. [CrossRef]

Ramadan, A.; Kamel, S.; Hamdan, I.; Agwa, A.M. A Novel Intelligent ANFIS for the Dynamic Model of Photovoltaic Systems.
Mathematics 2022, 10, 1286. [CrossRef]

Al-Gathe, A.A.; Baarimah, S.0.; Al-Khudafi, A.M. Modelling gas compressibility factor using different fuzzy methods. AIP Conf.
Proc. 2022, 2443, 030031. [CrossRef]

Bobyr, M.V.; Emelyanov, S.G. A nonlinear method of learning neuro-fuzzy models for dynamic control systems. Appl. Soft Comput.
J. 2020, 88, 106030. [CrossRef]

Jawad, Q.A.; Mohammed, R.J.; Hadi, A.K.; Kheioon, I.A. Liquid Level Controlling Using the Intelligent Techniques. In Proceedings
of the 2023 7th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkiye,
26-28 October 2023. [CrossRef]

Rojas-Garcia, L.N.; Chavez-Olivares, C.A.; Bonilla-Gutiérrez, I.; Mendoza-Gutiérrez, M.O.; Ramirez-Cardona, F. Force/position
control with bounded actions on a dexterous robotic hand with two-degree-of-freedom fingers. Biocybern. Biomed. Eng. 2022, 42,
233-246. [CrossRef]

Cortinovis, S.; Vitrani, G.; Maggiali, M.; Romeo, R.A. Control Methodologies for Robotic Grippers: A Review. Actuators 2023,
12,332. [CrossRef]


https://doi.org/10.1186/s43067-019-0009-9
https://doi.org/10.1007/978-3-319-61276-8_64
https://doi.org/10.1007/978-3-031-62238-0_39
https://doi.org/10.3389/frobt.2022.873558
https://www.ncbi.nlm.nih.gov/pubmed/35712551
https://doi.org/10.1016/j.rcim.2016.12.012
https://doi.org/10.1080/13873950500071405
https://doi.org/10.3390/act10100252
https://doi.org/10.1109/TSMC.2015.2437847
https://doi.org/10.1016/j.ins.2023.119204
https://doi.org/10.1016/j.ins.2023.119044
https://doi.org/10.1016/j.engappai.2024.108131
https://doi.org/10.1007/s00542-023-05572-0
https://doi.org/10.1049/iet-syb.2018.5019
https://doi.org/10.1016/j.ins.2021.10.054
https://doi.org/10.1109/ACCESS.2021.3068215
https://doi.org/10.1016/j.joes.2019.09.002
https://doi.org/10.1080/14498596.2022.2066579
https://doi.org/10.3390/math10081286
https://doi.org/10.1063/5.0092029
https://doi.org/10.1016/j.asoc.2019.106030
https://doi.org/10.1109/ISMSIT58785.2023.10304974
https://doi.org/10.1016/j.bbe.2021.12.006
https://doi.org/10.3390/act12080332

Automation 2025, 6, 4 35 of 35

64. Sadun, A.S; Jalani, J.; Sukor, J.A.; Jamil, F. Force control for a 3-Finger Adaptive Robot Gripper by using PID controller. In
Proceedings of the 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), Ipoh, Malaysia,
25-27 September 2016; pp. 1-6. [CrossRef]

65. Vitrani, G.; Cortinovis, S.; Fiorio, L.; Maggiali, M.; Romeo, R.A. Improving the Grasping Force Behavior of a Robotic Gripper:
Model, Simulations, and Experiments. Robotics 2023, 12, 148. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1109/ROMA.2016.7847807
https://doi.org/10.3390/robotics12060148

	Introduction 
	Materials and Methods 
	Neuro-Fuzzy Technique 
	The Proposed Gripper Design 
	The Simulink Modeling 

	Gripper Position Control: Results and Discussion 
	Comparative Analysis of FIS Generation Methods in ANFIS 
	Grid Partitioning Method: Analysis of genfis1  Results 
	Subtractive Clustering Method: Evaluation of genfis2 Outcomes 
	Fuzzy C-Means Clustering Approach: Results from genfis3 

	Effects of External Disturbances 
	Effects of Displacement Variation on ANFIS Model 

	Gripper Force Control Simulations and Results 
	Scenario 1: The Ability to Achieve a Required Force of 30 N to Hold an Object 
	Scenario 2: Changes in the Required Force from 30 N to 60 N During the Holding an Object 
	Scenario 3: The Force Is Dropped to 0 N (The Gripper Is Returning to the Original Position) 
	Effects of Internal and External Disturbances 

	Conclusions and Future Work 
	Appendix A
	Appendix B
	Appendix C
	References

