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 In the rapidly developing field of smart cities, accurately predicting weather 

conditions plays a vital role in various sectors, including industry, tourism, 

agriculture, social planning, architecture, and economic development. 

Unfortunately, the instruments used (such as pyranometers, barometers, and 

thermometers) often suffer from low accuracy, high computational costs, and 

a lack of robustness. This limitation affects the reliability of weather 

predictions and their application across these critical areas. This study proposes 

artificial neural network-multilayer perceptrons (ANN-MLPs). A dataset of 

480 data points was used, with 80% allocated for the training phase, 10% for 

the validation phase, and 10% for the testing phase. The best results were 

obtained with the structure 6-17-1 (6 inputs, 17 hidden neurons, and 1 output 

neuron) to predict weather condition data in the Ghardaïa district. Weather 

conditions parameters include air temperature, relative humidity, wind speed, 

and cumulative precipitation. Results showed that the most relevant input 

factors are, in order of importance: earth-sun distance (DT-S) with a relative 

importance (RI) of 31.10%, factor conversion () with an RI of 26.05%, and 

solar radiation (SR) with an RI of 16.26%. The contribution of the elevation of 

the sun (HI) has an RI of 13.29%. The optimal configuration includes seventeen 

neurons in the hidden layer with a logistic sigmoid activation function and a 

Levenberg–Marquardt learning algorithm, resulting in a root mean square error 

(RMSE) of 3.3043% and a correlation coefficient (R) of 0.9683. The proposed 

model can predict both short- and long-term climate factors such as solar 

radiation, air temperature, and wind energy in areas with similar conditions. 
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1. Introduction  

Weather predicting involves the identification and prediction of climatic conditions with a certain 

degree of accuracy using various technologies. Many real-time systems rely on weather conditions to 

make necessary adjustments in their operations. Accurate predicting enables preventive measures to 

safeguard life and property from potential damage. Quantitative forecasts, such as temperature, 

humidity, and rainfall, are crucial in the agricultural sector and for traders in commodity markets. 

Utility companies use temperature forecasts to predict energy demand in the coming days. Since 

outdoor activities can be significantly impacted by heavy rain, snow, and cold weather, forecasts are 

essential for planning activities around these events and preparing in advance to manage and endure 

them [1], [2]. 

Many regions in Algeria face significant challenges in obtaining climate factors measurements 

due to the high costs of measurement equipment (such as pyranometers and solarimeters) and the 

complexities of maintenance and calibration. Although there are some meteorological stations 

throughout the country, measurements are often unavailable continuously due to power outages, 

especially during the summer, or due to limited recorded variables. Therefore, it is essential to develop 

effective methods for predicting climate factors using more readily available meteorological data. To 

achieve this, we utilize proven techniques for assessing climate factors components, such as empirical 

modeling and intelligent techniques, including artificial neural networks [3]. 

Nowadays, a variety of computing techniques are available to enhance predicting accuracy. 

These methods include the Linear Regression, Exponential Smoothing, Decision Trees, Moving 

Averages, Statistical Clustering, Time series methods, and Artificial intelligence-based techniques [4]. 

Weather predicting necessitates advanced computing techniques that can analyze nonlinear data 

and develop rules and patterns to derive insights from historical data for predicting future conditions 

[5]. Utilizing Artificial Neural Networks - Multilayer Perceptrons (ANN-MLPs) can yield more 

accurate results. Although the error may not be eliminated, accuracy is expected to improve compared 

to previous predictions [6]. 

Weather predicting is a dynamic process where model outputs may be required for daily, weekly, 

or monthly weather planning [7]. Therefore, accuracy is a critical component of this prediction. 

Various factors that can enhance accuracy are discussed.  

The main objective of this research is to develop a method for optimizing the hyperparameters 

of traditional machine learning models using multilayer perceptrons (ANN-MLPs), thereby increasing 

the reliability of monthly weather condition predictions. We used ANN-MLPs models to produce 

reliable one-month interval weather predictions for the Ghardaïa station in Algeria. To the best of our 

knowledge, no studies in the literature have simultaneously predicted the four weather conditions 

examined in this study: cumulative precipitation, wind speed, relative humidity, and average 

temperature. The following overview outlines the framework for this research: Section 2 presents 

some literature review, Section 3 discusses the materials and methods and covers the construction of 

the model, and Section 4 presents the results and discussion. The paper concludes with a summary of 

the findings as presented in Section 5. 

2. Literature Survey  

This section provides an overview of various weather predicting techniques that use neural 

networks. Pang et al. [8]  developed ANN and RNN models to assess the effectiveness of Deep 

Learning algorithms in predicting solar radiation using meteorological data from an Alabama station. 

The study found that the RNN model performed better than the ANN model. The accuracy of 

predictions can be further improved by increasing data granularity or applying a moving-window 

algorithm. Additionally, cloud cover was identified as a significant factor influencing prediction 

accuracy. Bailek et al. [9]  developed a new Angström-Prescott model for predicting global solar 

radiation on a horizontal surface in the southwest region of Algeria. This model is compared with 
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other existing models using sunshine duration data, with the aim of improving prediction accuracy for 

solar energy applications in the region. Amiri et al. [10] The study suggests using the "Weights" 

method to evaluate the significance of input features for predicting solar irradiation through Artificial 

Neural Networks (ANNs). Satellite data was used for training, while ground data from Bouzaréah 

station was used for testing. The method helped rank input variables by their importance, leading to 

better model performance by excluding less relevant parameters. Dahmani et al. [11] examine the 

development of AI models for predicting hourly global solar irradiation. The models were optimized 

using the BFGS quasi-Newton algorithm and statistica software, with data sourced from two Algerian 

stations in different climatic zones. Accuracy was evaluated using metrics like the correlation 

coefficient, mean absolute error, and RMSE. This research highlights the importance of accurate 

prediction models in improving renewable energy management and planning. Sharkawy et al. [12] 

used a multilayer feedforward neural network (MLFFNN) to predict the output power of a solar PV 

power station in Egypt, using module temperature and solar radiation as inputs. Data from five days 

was used for training, and a sixth day for validating the trained model. The results demonstrated the 

accuracy and efficiency of the model in predicting power, with the LM algorithm being slightly more 

effective than the EBP algorithm.   

Afzali et al. [13]  developed Artificial Neural Networks (ANNs) to predict daily and monthly 

ambient air temperatures in Kerman city, Iran. Historical data from 1961 to 2004, including mean, 

minimum, and maximum temperatures, were used as inputs in Feed Forward and Elman Networks. 

The analysis showed that the ANN approach is effective for temperature prediction, with the Elman 

network providing more accurate results for one-day-ahead mean temperature and one-month-ahead 

maximum temperature predictions. Trang et al. [14] detailed review of artificial neural network 

(ANN)  methods, such as recurrent neural networks (RNN) and long short-term memory (LSTM), for 

forecasting air temperature, covering research from 2005 to 2020. The review emphasizes that while 

ANN models are effective and popular for their speed and capability in managing complex problems, 

there is no agreed-upon best method. These approaches are particularly suited for short-term 

temperature predicting. Samer AlSadi   and Tamer Khatib [15] The study explores predicting relative 

humidity using a feedforward artificial neural network (FFNN). It utilizes weather data from Malaysia 

for training the FFNN, focusing on predicting relative humidity based on sunshine ratio and cloud 

cover. The evaluation of the neural network involves statistical. The proposed model demonstrates 

strong accuracy in hourly relative humidity prediction.  

Kuzugudenli [16]  focuses on predicting relative humidity, an important climate parameter, using 

annual total precipitation, average ambient temperature, and altitude. The study developed both 

regression and artificial intelligence models based on data from 177 meteorological stations across 

Turkey. It found that the artificial neural network model offered superior predictive accuracy 

compared to the multiple linear regression model. These models are suggested to be valuable for 

similar climate conditions. Muhammad et al. [17]  focused on using artificial neural networks (ANNs) 

to predict wind speed by optimizing network topology, specifically the number of hidden layers and 

neurons.  The topology was determined using principal component analysis (PCA) for hidden layers 

and K-means clustering for neuron selection. The chosen model outperformed other methods in wind 

speed prediction. Sharkawy et al. [18] applied Multi-input single-output neural network models were 

designed and evaluated for estimating output power in wind turbine farms. Three types of artificial 

neural networks (MLFFNN, CFNN, and RNN) were used to estimate the total power of wind turbines 

in Egypt, using wind speed, surface temperature, and pressure as inputs. The results showed that the 

RNN was the most accurate with the lowest mean square error (MSE) compared to the other methods. 

Zhenhao et al. [19] proposed a two-phase deep learning model for effective short-term wind direction 

forecasting. In the first phase, a hybrid data processing strategy involving data reconstruction, outlier 

deletion, dimension reduction, and sequence decomposition is employed to extract key information. 

In the second phase, an optimized echo state network is developed for accurate wind direction 

prediction, with hyper-parameters fine-tuned using an improved flower pollination algorithm (IFPA). 

The model’s effectiveness is validated through experiments using real wind farm data. Ahcene Bouach 

[20] presents a forecasting tool using artificial neural networks (ANNs) for predicting monthly 
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precipitation over a 12-month period. The study evaluates two normalization methods (ANN-SS and 

ANN-MM) and four approaches for selecting input variables (no selection, ANN-WO, ANN-CO, and 

ANN-VE) to enhance model performance, with a particular focus on medium-term forecasting, an 

area often overlooked in prior studies.  

Sharadqah et al. [21] used artificial neural networks for predicting rainfall in Jordan county, 

employing the training algorithm Levenberg-Marquardt. The network structural design included three 

layers (input, hidden, layer). The study reported that the model achieved highly satisfactory results 

with minimal errors. Ghamariadyan and Imteaz [22] developed a predicting model using a wavelet-

aided artificial neural network (WANN) for predicting rainfall in Australia. A comparative analysis 

with classical models like ANN, ARIMA, MLR, and the Australian Community Climate Earth-

System Simulator–Seasonal (ACCESS-S) showed that the WANN model offered superior accuracy. 

Abhishek  et al. [23] discuss weather forecasting using Artificial Neural Networks (ANNs), 

highlighting the growing importance of accurate predictions across various sectors. The authors 

present a model that employs ANN techniques to enhance forecasting accuracy. Their study 

demonstrates that neural networks, with their ability to recognize complex patterns in large datasets, 

can effectively predict weather conditions by learning from historical data. The findings suggest that 

ANN-based models have significant potential for improving the precision of weather forecasts.  

This paper aims to examine and analyze the weather patterns in Ghardaïa, Algeria, and propose 

predicting models that can accurately predict future weather data. The study seeks to develop models 

that assist decision-makers in taking appropriate measures to address environmental concerns and 

manage related demands effectively. 

3. Materials and Methods 

3.1. Study Region and Climatic Conditions 

This study focuses on the city of Ghardaïa, located in the south of Algeria, approximately 600 

km from the capital, Algiers. Ghardaïa covers an area of 19,729 km² and is situated at a latitude of 

+32.37°, a longitude of +3.77°, and an altitude of 450 meters above sea level. The region features a 

climate that is a mix of arid and semi-arid conditions, with mild winters and hot summers. Summer 

temperatures range from 14°C to 47°C, while winter temperatures vary from 2°C to 37°C. Daily solar 

energy in Ghardaïa fluctuates between a 607 Wh/m²/day and a 7,574 Wh/m²/day, with an annual 

average of approximately 5,656 Wh/m²/day [24]. The geographical location of the study area is 

illustrated on the map of Algeria (Fig. 1). 

 

Fig. 1. The map of Ghardaïa, Algeria, [25] 
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3.2. Description Database Collection and Pre-Processing 

The database used in this study includes average monthly data on air temperature, relative 

humidity, wind speed, global solar radiation, and cumulative precipitation, collected by the Applied 

Research Unit for Renewable Energies (URAER) in Ghardaïa. The data spans a 10-year period from 

January 2010 to December 2019. Instead of using the numbers 1 to 12 to represent the months, it is 

more effective to work with specific phenomenological parameters. These include the monthly earth-

sun distance, denoted as (DT-S)1, (DT-S)2, ..., (DT-S)12, (Fig. 2), and the elevation of the Sun at noon 

(solar) during the monthly solstices and equinoxes, denoted as H1, H2, H3, ..., H12, for each season 

(inputs 1 and 2). 

 

Fig. 2. Distance earth-sun for each month, [26] 

At the spring and autumn equinoxes (March 21 and September 21), solar radiation at noon is 

perpendicular to the equator (latitude 0°) [27], [28]. During these times, days and nights are of equal 

duration everywhere on the globe (Fig. 3 a). This makes it the easiest time to calculate the Sun's height 

at noon, as it is equal to the complementary angle of the latitude (L°). This can be calculated as follows: 

 𝐻 =  90° –  𝐿° (1) 

At the summer solstice (June 21), the Earth is tilted towards the Sun, and at noon, the Sun's rays 

are perpendicular to the Tropic of Cancer (latitude 23°27 N). In regions within the Arctic Circle 

(latitude 66°33'N), the Sun never sets. A person living at this latitude (23°27 below the North Pole). 

A person living at latitude 66°33 N (90°-23°27) would see the Sun move around the north, descend to 

touch the horizon at midnight, and then rise again in the eastern sky. The height of the Sun at noon 

during the summer solstice is 23°27' higher than at the equinoxes [29], [30] (Fig. 3 b). This can be 

calculated as follows: 

 𝐻 =  90° –  𝐿° +  23°27 =  90° –  𝐿° +  23.45 (2) 

At the winter solstice (December 22), the Earth's tilt is reversed, and the Tropic of Capricorn 

(latitude 23°27'S) receives perpendicular solar radiation [31], [32]. The height of the Sun at noon 

during the winter solstice is 23°27' lower than at the equinoxes (Fig. 3 c). This can be calculated as 

follows: 

 𝐻 =  90° –  𝐿° –  23°27′ =  90° −  𝐿° −  23.45 (3) 



184 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 5, No. 1, 2025, pp. 179-196 

 

 

Abdennasser Dahmani (Parametric Analysis of Climate Factors for Monthly Weather Prediction in Ghardaïa District 

Using Machine Learning-Based Approach: ANN-MLPs) 

 

For years: It is also advantageous to work with phenomenological parameters relative to the 

mechanisms of seasonal climatic variations (input 3 and 4): each year will be characterized by 4 pairs 

(J* and H*)i with {J* = Normalized days =Day/max (day) via month and H* = Normalized hours = 

Hour/24 hours} (J* and H*)March equinox, (J* and H*)June solstice, (J* and H*)September equinox, (J* and 

H*)December solstice. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. Elevation of sun earth: a) spring and autumn equinoxes, b), summer solstice c), winter solstice 

3.3. Database Normalization 

The database consists of 480 experimental data points used to predict variations in weather 

conditions. It includes six inputs: the distance between the Earth and the Sun for each month, the 

annual elevation, days, hours, global solar radiation, and the conversion factor. These inputs are 

normalized as follows: 

• The normalized distance between the Earth and the Sun = (distance between the Earth and the 

Sun / 152,000,000) = (distance between the Earth and the Sun / maximum distance between the 

Earth and the Sun). 
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• The normalized annual elevation of the sun = (annual evolution / 77.1858) = (annual elevation / 

maximum annual elevation). 

• The normalized month is characterized by two inputs: J* (normalized days) = number of days / 

maximum number of days in a month, and H* (normalized hours) = hour / 24 hours. 

• The normalized conversion factor (δ) = (conversion factor / 4) = (conversion factor / maximum 

conversion factor), with δ = 0.25 for average air temperature, δ = 0.5 for relative humidity, δ = 

0.75 for cumulative precipitation, and δ = 1 for wind speed. 

• The normalized weather variation = (weather variation for each parameter / maximum weather 

variation for each parameter). 

The statistical analysis of the total data includes the Domain, average (“mean”), and standard 

deviation (“SD”), as shown in Table 1. 

Table 1.  Statistical analysis of normalized inputs and output data 

Inputs and Outputs of NN Symbol Domain Mean SD 

Inputs 

Earth-Sun-Distance (DT-S) I 0.9666 - 1.0000 0.9851 0.0101 

elevation of the sun HI 0.3924 - 1.0000 0.6858 0.2066 

Day D* 0.6452 - 0.7666 0.6951 0.0365 

Hour H* 0.0792 - 0.9850 0.5283 0.2392 

Solar radiation SR 0.3820 - 1.0000 0.7284 0.1977 

Conversion factor  0.2500 - 1.0000 0.6250 0.2798 

Output Weather conditions WC 0.0000 - 1.0000 0.5820 0.3134 

3.4. Artificial Neural Networks (ANNs) Based Approach 

Artificial neural networks (ANNs) represent a  sophisticated paradigm inspired by the human 

brain's information processing capabilities. These networks excel in modeling complex, nonlinear 

systems that defy straightforward analytical representation. ANNs leverage their ability to adapt and 

learn from environmental inputs, making them invaluable for tasks where traditional mathematical 

models fall short [33]–[35]. Central to ANNs is their multilayer structure, typically comprising input, 

hidden, and output layers. Each layer houses neurons that process incoming signals through weighted 

connections, adjusted iteratively during training to minimize prediction errors. The transfer functions, 

such as tangent sigmoid (tansig), logarithmic sigmoid (logsig), sinusoidal (sin), and exponential, 

applied in hidden layers, enhance their capability to capture intricate relationships within data [36]–

[38]. 

Training ANNs involves optimizing parameters like learning algorithms and network topology, 

crucial for achieving accurate predictions. The process often includes fine-tuning the number of 

hidden neurons and selecting optimal division subsets for training and testing phases. This iterative 

refinement, guided by trial and error, culminates in an optimized ANN model capable of predicting 

outcomes with high precision. The Multilayer Perceptron (MLP) is the predominant architecture, 

featuring a straightforward structure comprising three layers: Firstly, the input layer receives and 

processes input data. Secondly, the hidden layer(s) undertakes information processing from the input 

layer. Lastly, the output layer generates the final model output [39], [40]. The modeling process 

entailed designing and fine-tuning the neural network architecture according to the steps illustrated in 

Fig. 4. 

This study used various error metrics to evaluate prediction model accuracy, including the 

Correlation Coefficient (R), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and 

Standard Error of Prediction (SEP). The Correlation Coefficient (R) assesses the linear relationship 

between predicted and actual values, while MAE measures the average absolute error. RMSE 

evaluates the average magnitude of errors, emphasizing larger discrepancies, and SEP indicates 

prediction precision around the regression line. These metrics together offer a comprehensive view of 

model performance [41]–[43]. 
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Fig. 4. Flow diagram for ANN-MLPs development 

 
R =

∑n
i=1 (Yi,exp − Yi,exp

̅̅ ̅̅ ̅̅ ̅)(Yi,cal − Yi,cal
̅̅ ̅̅ ̅̅ )

√∑n
i=1 (Yi,exp − Yi,exp

̅̅ ̅̅ ̅̅ ̅)
2

∑n
i=1 (Yi,cal − Yi,cal

̅̅ ̅̅ ̅̅ )
2

    
(4) 

 
MAE =

1

n
∑

n

i=1
|Yi,cal − Yi,exp| (5) 

 

RMSE(%) = √
∑n

i=1 (Yi,cal − Yi,exp)2

n
 (6) 

 
SEP(%) =

RMSE

Ye
× 100 (7) 

Where, n is the number of data points, 𝑌𝑖,𝑒𝑥𝑝  the experimental data points of weather conditions, 

𝑌𝑖,𝑐𝑎𝑙 the calculated data points of weather conditions, and 𝑌𝑖,𝑒𝑥𝑝
̅̅ ̅̅ ̅̅ ̅  the mean experimental data. 
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4. Results and Discussion 

4.1. Experimental Results 

A learning algorithm is a method used to adjust network coefficients (weights and biases) to 

minimize the error function between the neural network's output and the correct output for a given set 

of inputs, thus solving the problem. When nonlinearities are used, the gradient of the error function 

can be calculated by conventional procedures [11], [44]. To determine the best learning algorithm, a 

variety of algorithms were evaluated, including Levenberg–Marquardt, Fletcher–Reeves conjugate 

gradient, Powell–Beale conjugate gradient, Polak-Ribiére conjugate gradient, BFGS Quasi-Newton, 

Scaled conjugate gradient, Random order incremental training, One-step secant, Variable learning 

rate, and Gradient descent with adaptive learning rate. Different activation functions such as logistic 

sigmoid (logsig), tangent hyperbolic (tanh), triangular (tribas), and soft max (softmax) were also 

studied.  

Table 2.  Comparison various learning algorithms with different activation functions in the hidden layer 

Training Algorithm  
Transfer 

Function 

Number of 

epochs 
Testing phase "R" 

Levenberg–Marquardt Trainlm 

Tangsig 

1500 

0.8362 

Logsig 0.9683 

Tribas 0.7897 

Softmax 0.8550 

Bayesian regularization Trainbr 

Tangsig 

1500 

0.7525 

Logsig 0.8145 

Tribas 0.8309 

Softmax 0.9130 

Fletcher–Reeves conjugate 

gradient 
Traincgf 

Tangsig 

1500 

0.8478 

Logsig 0.9173 

Tribas 0.8398 

Softmax 0.6518 

Powell–Beale conjugate gradient Traincgb 

Tangsig 

1500 

0.8970 

Logsig 0.8143 

Tribas 0.8755 

Softmax 0.8255 

Polak-Ribiére conjugate gradient Traincgp 

Tangsig 

1500 

0.7764 

Logsig 0.8349 

Tribas 0.8498 

BFGS Quasi-Newton trainbfg 

Tangsig 

1500 

0.8831 

Logsig 0.9173 

Tribas 0.7923 

Softmax 0.8735 

Scaled conjugate gradient trainscg 

Tangsig 

1500 

0.8055 

Logsig 0.7681 

Tribas 0.8227 

Softmax 0.8502 

Random order incremental 

training 
trainr 

Tangsig 

1500 

0.8446 

Logsig 0.6633 

Tribas 0.7887 

Softmax 0.5550 

One step secant trainoss 

Tangsig 

1500 

0.7733 

Logsig 0.8556 

Tribas 0.7924 

Softmax 0.8434 

Variable learning rate traingdx 

Tangsig 

1500 

0.8565 

Logsig 0.4498 

Tribas 0.8080 

Softmax 0.5962 

Gradient descent with adaptive 

learning rate 
traingda 

Tangsig 

1500 

0.7482 

Logsig 0.5314 

Tribas 0.7925 

Softmax 0.5926 
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Additionally, the number of neurons in the hidden layer varied between 5 and 40 for each learning 

algorithm, with 1500 epochs. Table 2 provides a detailed comparison of the performance of different 

training algorithms and activation functions. In this study, the BFGS Quasi-Newton algorithm was 

selected as the learning algorithm because it achieved a higher correlation coefficient compared to the 

other learning algorithms. 

Hence, the configuration of the ANN-MLPs for the modeling of weather conditions is mentioned 

in Fig. 5. Its more detailed architecture is illustrated in Table 3. The weight matrices and bias vectors 

of the enhanced ANN-MLPs models are applied as follows:  

• wI : weight matrix for connections from the input layer to the hidden layer (17 rows x 6 columns). 

• wh : weight matrix for connections from the hidden layer to the output layer (17 rows x 1 column. 

• bh : bias vector for the hidden layer neurons (17 rows). 

• bo : bias vector for the output layer neuron (1 row). 

Fig. 5 illustrates the optimized ANN-MLP models, and the assimilation of weather conditions 

(WC) can be represented by a mathematical model incorporating all inputs Xi, as described by the 

following equations: 

The instance outputs Zj of the hidden layer are: 

 

Zj = fH [∑ wji
I xi + bj

H

06

i=1

] =
exp(∑ wji

I xi + bj
H06

i=1 ) − exp(− ∑ wji
I xi + bj

H06
i=1 )

exp(∑ wji
I xi + bj

H06
i=1 ) + exp(− ∑ wji

I xi + bj
H06

i=1 )
    (8) 

Where, j=1, 2, …, 17 

The output "weather conditions"  

 

Weather condition = f0 [∑ w1j
HZj + b1

o

17

j=1

] = ∑ w1j
HZj + b1

o

17

j=1

   (9) 

The combination of Equations (1) and (2) yields the following mathematical formula, which 

terms the weather conditions by incorporating all input variables. 

 
weather conditions  = ∑ w1j

H
exp(∑ wji

I xi + bj
H06

i=1 ) − exp(− ∑ wji
I xi + bj

H06
i=1 )

exp(∑ wji
I xi + bj

H06
i=1 ) + exp(− ∑ wji

I xi + bj
H06

i=1 )
+ b1

o

17

j=1

 (10) 

Table 3.  Structure of the optimized optimal (ANN-MLPs) model 

Training 

Algorithm 

Input layer Hidden layer Output layer 
Neurons 

number 

Neurons 

number 

Activation 

function 

Neurons 

number 

Activation 

function 

Levenberg–

Marquardt 
06 17 

logistic 

Sigmoid 
1 

Linear 

(purelin) 

 

The results from the optimal-neural networks model (ANN-MLPs) followed the Dames   

guideline [45], which suggests that different input profiles can be processed by each neuron. As the 

number of neurons increases, the network becomes better at fitting the presented data but at the cost 

of reduced generalizability. Dames [45] also outlined empirical rules for determining the number of 

hidden neurons, proposing: 

• Equal to that of the input layer. 
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• Equal to 75% of it.  

• Equal to the square root of the product of the number of neurons in the input and output layer. 

However, this rule contradicts our findings with this database. To prevent the neural model's 

complexity from exceeding the available data size, we adhere to the rule proposed by Roubehie Fissa 

et al. [46], which states: (Number of input neurons * Number of hidden neurons) + (Number of hidden 

neurons * Number of output neurons) ≤ Database size. This rule aligns with our study, as shown in 

the calculation: (6 ∗  17)  + (17 ∗  1)  =  119 ≤  480 (database size). 

 

Fig. 5. Artificial neural network for predicting weather conditions 

According to this analysis, the parameters and plot of the linear regression were conveniently 

generated using the MATLAB 2020b function "postreg" (Fig. 6 (a), (b), (c), and (d)). An artificial 

neural network-multilayer perceptrons (ANN-MLPs) model was developed to predict weather 

conditions in the Ghardaïa region of Algeria. Fig. 6 (a), (b), (c), and (d) present a comparison between 

the experimental and calculated values of weather conditions, showing vectors of agreement near the 

optimization of the FFNN-MLP profiles for the optimal model obtained (train Levenberg-Marquardt 

- Logsig). The correlation coefficients are as follows: R = 0.9888 for the training phase, R = 0.9793 

for the validation phase, R = 0.9683 for the test phase, and R = 0.9867 for the total phase. Generally, 

correlation coefficients are considered excellent when 0.9 ≤ R ≤ 1, demonstrating the robustness of 

the neural network models and their ability to predict weather conditions accurately. 

Table 4 displays the performance statistics and statistical parameters of the optimal ANN-MLPs 

model across the training, validation, and testing phases. The correlation coefficients (R) for the 

training and validation phases are remarkably high, at 0.9888 and 0.9773, respectively, demonstrating 

a strong alignment between the experimental and predicted results. The testing phase also shows a 

high correlation coefficient (R) of 0.9683, reflecting a strong match between the experimental and 

predicted weather conditions and demonstrating the model's robust interpolation capability. 

Table 4.  Statistical performance of the optimal ANN-MLPs model 

Phase R RMSE MAE SEP 
Training phase 0.9888 2.7077 1.8183 16.9764 

Validation phase 0.9773 3.2869 2.2895 18.6613 

Testing phase 0.9683 3.3043 2.0676 27.9413 
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(a) (b) 

  
(c) (d) 

Fig. 6. Comparison between experimental and predicted values: (a) training phase, (b) validation phase, (c) 

testing phase, and (d) total phase 

4.2. Sensitivity Analysis 

The contribution of various input variables—earth-sun distance (DT-S), elevation of the Sun (HI), 

normalized days (D*), normalized hours (H*), solar radiation (SR), and conversion factor () to the 

output (weather conditions) was evaluated using a sensitivity analysis via the "Weight" method. This 

method, initially proposed by Garson [47] and Goh [47], is based on the division of connection weights 

(between input and hidden layers, and between hidden and output layers). The contribution results are 

shown in Fig. 7. The most significant variables influencing the prediction of weather conditions are 

earth-sun distance (DT-S) with RI = 31.10%, factor conversion with RI = 26.05%, and solar radiation 

(SR) with RI = 16.26%. The contributions of the elevation of the Sun (HI) with RI = 13.29%, 

normalized hours (H*) with RI = 6.95%, and normalized days (D*) with RI = 6.35% also have a 

notable effect. The sensitivity analysis results indicate that all input parameters have a relative 

importance higher than 5%, underscoring the impact of the selected parameters on the output. 
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Fig. 7. Relative importance of input variables on the value of the calculated weather conditions 

4.3. Applicability Domain 

In this study, the Leverage mathematical technique was applied to detect outliers, utilizing 

residual values and a Hat matrix. The process for calculating the Hat values and the key steps involved 

are as follows  [48]–[50]:  

 H = X(XtX)−1Xt (11) 

In this context, 𝑋 represents the 𝑚 × 𝑛 matrix, where m denotes the quantity of samples and n 

corresponds to the model's factors (input variables). The Hat values are derived from the main diagonal 

of the H matrix. 

 Hat = diagonal(H) (12) 

The Williams diagram, which plots normalized residuals against leverage (Hat values), is a 

graphical tool used to identify outliers. In this diagram, the critical leverage value (H*), often 

considered the threshold, is typically determined using the following equation [51]: 

 
H∗ =

3(n + 1)

m
 (13) 

The normalized residuals are determined by comparing the experimental weather condition data 

with the values predicted by the model. 

 
(R_Norm)i =

(Weather conditionsi
exp

− Weather conditionsi
cal)

√Var(Weather conditionsexp − Weather conditionscal)
 i = 1, … m (14) 

Fig. 8 presents the Williams plot for the applicability domain in the testing phase. In this chart, 

47 out of 48 data points (98%) lie within the horizontal lines (±3 range), with only 1 point (2%) falling 

outside the suspected limit. 

H∗ =
3(n+1)

m
=

3(7+1)

48
= 0.5 , This suggests that the development of the optimal ANN-MLPs 

model and its predictions remain within acceptable limits, resulting in a statistically valid neural 

network. Consequently, it can be confirmed that there are "Good Haut Levier" points for the testing 

phase. 

Fig. 9 represents Williams range plot of ANN-MLPs optimal neural model for the total phase. 

This plot contains 472 out of 480 data points (98.33%) are within the ±3 range, and 8 points (1.66%) 

are outside the suspected limit.  
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H∗ =
3(n+1)

m
=

3(7+1)

480
= 0.05 , Due to its high predictive capability, the proposed model can be 

used to screen existing databases to identify weather conditions. The applicability domain can 

therefore serve as a valuable tool for filtering out dissimilar weather condition data points. 

 

Fig. 8. Williams range plot for optimal ANN-MLPs in testing phase 

 

Fig. 9. Williams range plot for optimal ANN-MLPs in total phase 

5. Conclusion and Future Work 

In this paper, we develop an artificial neural network-multilayer perceptrons (ANN-MLPs) 

model to predict weather conditions using various meteorological variables (wind speed, precipitation, 

humidity, average temperature, and precipitation). The dataset includes the Earth-Sun distance, 

elevation of the Sun, normalized days, normalized hours, solar radiation, and the conversion factor. 

Accurate weather condition predictions can be achieved using efficient multilayer perceptrons (MLPs) 

techniques. An optimal ANN-MLPs configuration features a structure with 6 neurons in the input 

layer, 17 neurons in the hidden layer, and 1 neuron in the output layer. The network was trained using 
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the Levenberg-Marquardt algorithm ("train-LM") with a "logsig" activation function in the hidden 

layer and a "Purelin" activation function in the output layer. The optimal ANN-MLPs model exhibited 

a high level of consistency between the predicted and experimental data points during the testing 

phase, with a correlation coefficient of R=0.9683 and a root mean square error (RMSE) of 3.3043%. 

The sensitivity analysis using the weight method effectively identified the true significance of 

each variable in predicting the impact of weather conditions, with the Earth-Sun distance (DT-S) 

emerging as particularly influential (RI = 31.10%). This confirms the relevance of the variables chosen 

for this study. The applicability domain and outlier diagnostics for the optimized ANN-MLPs neural 

model demonstrated that its development and predictions lie within the valid application domain. This 

supports the model's statistical validity and highlights the presence of "Good High Leverage" points 

during the validation and testing phases. As a result, the developed model is both reliable and capable 

of delivering accurate weather predictions. Future works will consider other different types of neural 

networks and machine learning approaches.  
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