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This paper presents a fractional mathematical model for analyzing the dynamics of Ebola virus diseases. The
model consists of five categories: individuals with low susceptibility to the virus §,(7), individuals with high
susceptibility .S,(¢), infected individuals I(¢), exposed individuals E(¢), and recovered R(r) individuals. In this
study, we have proven the positive bounded solutions for the model under consideration. Additionally, it
assesses the durability of a state without disease by utilizing the fundamental reproduction number. Moreover,

an examination is conducted to assess the stability of the model. In order to validate and exemplify the research,
a computational model is employed, and its results correspond with the analysis outlined in the paper.

1. Introduction

Ebola virus disease, which derives its name from the Ebola River
in the Democratic Republic of the Congo, is recognized as an ex-
tremely contagious illness characterized by a high fatality rate. The
virus encompasses various strains that were previously identified as
Ebola hemorrhagic Fever. Some individuals infected with Ebola did
not exhibit bleeding symptoms, leading to the adoption of the term
Ebola virus disease.!~® Cases of this disease have been reported since its
emergence in Zaire in 1976, with a fatality rate of approximately 79%
until 2008.'° The ongoing outbreak of Ebola virus disease is impacting
countries in Central and Western Africa. The initial occurrence of the
Ebola virus was recorded in 1976 in northern Zaire, which is now
known as the Democratic Republic of Congo.'-1°

The epidemic caused numerous cases, with approximately 350 in-
dividuals affected, and tragically, over two-thirds of them succumbed
to the infection.!? Unfortunately, healthcare workers who cared for
the patients were eventually exposed to the virus, resulting in fa-
talities. Over the last four decades, Africa has experienced periodic
outbreaks of the Ebola virus. Out of the 20 outbreaks, excluding the
one in 2014, the highest fatality rate recorded was 66.3%, although
this can vary depending on the specific outbreak.'”-2° The primary
mode of transmission among humans is through direct contact with
bodily fluids.?'~2> Health workers and family members of infected
individuals are particularly susceptible to the infection because they
often lack adequate personal protective equipment.!%15:26-31 The cus-
tomary funeral practices observed in Africa, encompassing rituals such
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as body cleansing, physical contact, and affectionate gestures, have
played a role in exacerbating the issue. The precise origin of the
virus remains uncertain; however, it is widely hypothesized that fruit
bats of the Pteropodidae family serve as the primary reservoir for the
Ebola virus. Furthermore, it is widely believed that transmission can
occur through direct contact with primates such as monkeys, gorillas,
and chimpanzees. Nevertheless, the predominant method of human-to-
human transmission occurs via direct contact with the bodily fluids of
an infected individual. In contrast to influenza, Ebola does not possess
an airborne transmission mechanism, nor does it propagate through
ingestion of contaminated food or water, as observed in other diseases
like cholera, dysentery, or typhoid.

Furthermore, it is crucial to acknowledge that the transmission of
the Ebola virus does not occur during the incubation period, denoting
the interval between the primary infection and the manifestation of
symptoms. The duration of this period for the Ebola virus typically
ranges from 2 to 21 days. Therefore, in the event that an individual
has been in close proximity to an Ebola patient or an individual
suspected of being infected with Ebola, and subsequently experiences
the onset of fever, it is imperative that immediate actions, including
isolation, provision of medical treatment, and appropriate management
by healthcare facilities, are undertaken in order to effectively halt the
spread of the outbreak. Nevertheless, even following the individual’s
recuperation from the ailment, the presence of the virus in bodily
fluids may persist for a prolonged duration. A study revealed the
detection of the Ebola virus in the seminal fluid of a patient even after
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a period of three months following their convalescence. Therefore, it is
imperative to verify the absence of the Ebola virus prior to discharging
the patient from isolation. Although there is currently a lack of widely
acknowledged treatments or vaccines for Ebola, effective management
of symptoms and the implementation of rigorous quarantine measures
are deemed adequate in preventing the transmission of the virus.

Based on empirical investigations, the duration of the incubation
period for Ebola virus disease spans a range of 2 to 21 days. During
this temporal interval, the virus infiltrates cellular entities, undergoes
replication, and subsequently exits the infected cells. The aforemen-
tioned procedure leads to the synthesis of EBOV glycoproteins, which
subsequently bind to the endothelial lining of blood vessels, thereby in-
creasing their permeability. Consequently, the blood vessels commence
to exhibit blood leakage. Furthermore, the viral pathogen selectively
infects the host’s immune cells, exploiting them as a conduit for dis-
semination to various anatomical sites, such as the liver, kidney, and
brain. The infection precipitates organ failure, ultimately culminating
in the mortality of the afflicted individual.

Mathematical models have helped study infectious disease transmis-
sion dynamics like Ebola. The academic study proposes a mathematical
framework to estimate the fundamental reproduction number of the
Ebola virus without active control measures. The researchers also use
education, contact tracing, and quarantine to improve disease contain-
ment. A mathematical model was proposed by Baize'!' to understand
the Ebola virus. According to the model, the population being studied
can be divided into two groups: community residents and hospital
patients. The model considers key disease transmission factors. Factors
affecting Ebola transmission include community-provider interactions,
deceased individuals’ influence, and traditional beliefs and customs.!»32

Fractional differential equations (FDEs) provide a precise represen-
tation of the dynamics observed in epidemiological models by incor-
porating factors such as population memory and learning mechanisms,
which play a critical role in influencing the transmission of diseases.
The locality of the integer derivative is a widely recognized charac-
teristic, whereas the non-locality of the fractional order differential
operator has been established in previous studies. This implies that
the future state of the fractional order system is influenced by both
its present state and all past states. The proposed approach exhibits a
higher degree of realism, and the outcomes obtained from the fractional
systems possess a broader scope and applicability. The inclusion of
fractional derivatives within the systems introduces additional com-
plexity, rendering analytical solutions challenging to obtain. As a result,
numerical methods are employed to solve these problems. For further
elaboration, please refer to the sources cited as Refs. 7, 11. On the
contrary, ordinary differential equations are devoid of this capability,
thus rendering them incapable of achieving this objective. Moreover,
FDEs exhibit a greater extent of stability in comparison to ordinary
differential equations (ODEs). In addition, it is worth noting that the
fractional derivative, in contrast to the classical derivative, is char-
acterized as a non-local operator. This implies that in the context of
describing epidemic models utilizing FDEs, the incorporation of all
historical and current states is considered, leading to a more accurate
and inclusive depiction. Multiple definitions of fractional derivatives
exist, but the Caputo derivative is commonly favored by researchers
when dealing with mathematical models that incorporate FDEs. The
reason behind this preference can be attributed to the inclusion of
integer order derivatives in the initial conditions of FDEs with Caputo
derivatives. These derivatives possess physical interpretations, such as
distance, speed, and acceleration. Consequently, FDEs utilizing Caputo
derivatives are extensively employed in various practical situations.
The subsequent sections of the essay are organized in the following
manner: Section 2 provides the definitions and properties of basic con-
cepts related to fractional calculus. Section 3 includes the formulation
of the Ebola virus fractional model. Section 4: Sensitivity Analysis
In Section 5, we study Hyers-Ulam stability. Section 6 provides a
numerical simulation of the Ebola virus fractional model. The last
section culminates with a concise collection of concluding reflections.
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2. Basic concepts

This section aims to present pertinent information regarding FDEs.
It encompasses the Riemann-Liouville fractional integral, the definition
of the Caputo fractional derivative, the existence and uniqueness of
solutions to FDEs, and significant properties and theorems pertaining
to stability analysis.

Definition 2.1 (Ref. 33). The right and left Caputo fractional deriva-
tive, denoted by DY, where m — 1 < a < m and m € N, is defined as
follows:

« =nm st -
[ Dyx(0)= m/ m=1""" x" @ dn, 2.1
! —
o Difx (= ﬁ / =" X" oy dn, (2.2)
respectively.

Lemma 2.1 (Ref. 34). Consider the Caputo fractional differential equation
given by:
C pa —
{a DIx(1) = f(t, x(1)) 2.3)
x(ty) = Xq
with 0 < a < 1. The system (2.3) has equilibrium point x* if f(t,x*) = 0.

Theorem 2.1 (Ref. 35). The system denoted by Eq. (2.3) exhibits lo-
cal asymptotic stability. If all the eigenvalues A of the Jacobian matrix
of Eq. (2.3) satisfy the following condition:

larg(1)] > “7” 2.4)

Definition 2.2 (Ref. 33). The Laplace transform G(s) of the Caputo
derivative applied to a given function G(¢) can be defined as follows:

m—1

L{S DI G@), s} = s"G(s) = ) s*77'GD0), ae@m—1,m), meN
i=0

(2.5)

Definition 2.3 (Ref. 33). The function E, ,(r) for t € R is defined by

[

ti
E (t)= _, . 0 2.6
(D) ,25 Toism ron> (2.6)

The function E, ,(t) is commonly referred to as the generalized Mittag-
Leffler function and it fulfills the following condition:

1

E,,@t) = T +tE, ..,(0), nr>0 2.7)

LU E, (21} = 2 (2.8)
o s +ﬂ

Where L is the Laplace transform of E, ().
3. Formulation of the Ebola virus fractional model

The proposed fractional model for Ebola involves the partitioning
of the total human population, represented as N(¢), into five sepa-
rate compartments that are mutually exclusive. The population that
is susceptible to a particular condition is divided into two subclasses:
individuals with a low risk of susceptibility, represented as ,(r), and
individuals with a high risk of susceptibility, represented as S,(r). In
addition, the model takes into account individuals who have been ex-
posed (E(1)), individuals who have been infected (I(r)), and individuals
who have recovered (R(?)). In fact, the sum of these component satisfy
the following equation:

N@® =80+ S+ E@®)+ 1(t) + R(1) (3.1)
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People who have a high risk of catching the .5, (¢) virus from infected
people make up the first susceptible population.?®3® These categories
include those involved in the burial process, healthcare workers, and
infected individuals’ relatives. The remaining portion of the popula-
tion, S;(), is regarded as having a minimal chance of contracting the
virus. Susceptible individuals are continuously added to the population
through birth and immigration at a steady rate z. It is assumed that the
parameter (r) represents the proportion of recruited individuals who
are considered to be at a high risk of contracting the infection. On the
other hand, the complementary fraction of individuals, represented as
(1-7), is classified as having a low likelihood of contracting the disease.
The infection rate for the low-risk vulnerable population is denoted as
A, while the infection rate for the high-risk population is denoted as €4,
where e represents the class modification parameter. The mortality rate
u is decreased by natural death in all five classes, with the exception
of the infected class, which experiences an additional mortality rate &
attributed to infection.

The population of the group of individuals who have been exposed
to the disease exhibits growth when two susceptible populations, de-
noted as S1 and S2, become infected as a result of interacting with
individuals who are already infected. The observed increase takes place
at rates denoted by ¢ and ¢4, respectively. The level of exposure within
a population declines as individuals begin to exhibit symptoms of the
disease, with a rate denoted as p. The size of the infected class increases
when individuals who have been exposed to the infection start showing
symptoms, and this growth occurs at a rate denoted by the symbol p.
The decline in the total population is attributed to both natural deaths,
denoted by the rate u, and deaths resulting from the disease, denoted
by the rate 5. Moreover, the size of the infected population decreases
due to either mortality or recovery from the infection, which happens
at a rate represented by the symbol ¢. The formulation of the system of
fractional differential equations is derived from the assumptions given
and the schematic diagram provided. The aforementioned formulation
is expressed through the following equations:

SD*S) = z%(1 —7) = A°S\ I — " S,

DS, = zr — A" Syl — y*S;,

SDYE = 1"S)1 +€eA"S)I — y"E — p"E, (3.2)
§DIT = p"E — pI - 6°1 — "1,

C -

o D{R = ¢"I — u"R.

In fact, Eq. (3.2), which models human populations, must incorporate
the constraint that population sizes are always non-negative. Hence, it
is crucial to take into account Eq. (3.2) within a viable interval where
the non-negativity characteristic is preserved. This section will examine

the concept of the invariant region, which ensures that the overall
population size remains greater than or equal to zero.

Theorem 3.1. The solution set (S,,.S,, E, I, R), where S|, S,,E,I,R are
real numbers, is a subset of the feasible region ¥.

Proof. From Eq. (3.2) the total population satisfies
SDEN (1) = DSy + 5 DES, + § DYE +§ DET +§ DY R (3.3)

EDIN (1) = 2%(1 = 1) = A%, I = p*S, + 77 — €A" Sy ] — p*S, + A°S| 1 + A" S, 1

—UE —p*E+ p"E — u*I — 6°1 — @*I + @“I — u*R,

SDIN (1) =7 — u*(S; + Sy + E+ I+ R) = 6°1
=x%—u*N(@) - 6%1,

DY N (1) <% = p*N(). (3.4
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The equation presented in Eq. (2.5) yields the following subsequent
equation:

STL{N@) — s N(©O) < ”T — W L{N@®)} (3.5)

(" + uL{N(D)} < ”T + 51N () 3.6)
-1 o S:x—l

L{N(t)}s mﬂ' +s0’+l,{" N(O) (3.7)

Then from Egs. (2.7) and (2.8) we get
N@) < L Ea,aJrl(_:uatn) + Ea,l(_ﬂata)N(O)

[Mata Ea,a+1 (_”ata) + E(t,l (_.“ata)]

1
U Ey gyt (=ut" ) = p* 1 Ey gy (—p%t% ) + m .

(3.8)

;;‘li kﬁlh‘a Elns:

Thus, the set of possible solutions for Eq. (3.2) lies within the following
region:

a
¥ ={(S,.S,,E,I,R)ERY : 0<N®) < Z_“}' (3.9)

In this scenario, for all values of ¢ greater than zero, if the quantity
N(¢) is less than or equal to the ratio of z* to u®, then any solution
with an initial condition in the positive real numbers raised to the
power of five will remain within that specific region. Consequently, it
can be observed that region ¥ remains positively invariant in relation
to Eq. (3.2), thereby establishing the epidemiological significance of
the model within the domain ¥. Consequently, an adequate approach
involves examining the dynamics of the model in ¥.

3.1. Disease free equilibrium point

In order to ascertain the disease-free equilibrium point of the system
(3.2), it is necessary to equate the right-hand side of the system to
zero. This leads to the attainment of a state of equilibrium in which
the absence of disease is observed.

%1 —1) = A%S; 1 — u*S, =0,
7%t —eA*S, I — pu*S, =0,

A58\ T + eA*SyT — u"E — p"E =0, (3.10)
PYE — u*I —6%1 — %I =0,
@*I — u*R =0.
The point of equilibrium without disease is determined as:
a 1 — a
£y = (U= 2 4 6.0) (3.11)

w7 o’
3.2. The basic reproduction number

The basic reproduction number, commonly denoted as R,, quanti-
fies the number of new infections produced by a solitary case within a
population comprising entirely of susceptible individuals.>” According
to Eq. (3.2), the compartments that are affected by the infection are

SDYE = 2*S\1 +¢A"SyI — u*E — p"E,

c _

o DT = p"E — p*I = 6°1 — 9.

Then the system above can be written as gD;’x = F(x) - V(x).

OCD;"E AT +earsy I _ U*E + p*E 3.12)
Sper 0 —pE + u®I + 61 + ¢°1 '

298, T + €A S, I

Where F(x) = [ 0

]and, 7o = [ U'E + p°E ]

—p"E + u*I +6%1 + ¢o*1
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The Jacobian matrices of functions F(x) and V(x) at point E, are
provided as follows:

A r%(1-1) + Men®t :|

F(x) = ue ue
[O 0
And
V= ue+p” 0
_pa ”a + 6% + (pa

The inverse of V is given by,

0
1
UT+EY %

A2 7%(1—1+et) :|

1
HC+p
g

vl= [
(W +p* ) +6%+p%)
Then

p* A% % (1—7+€7)
G = FV7 = | u G +p)(u+67+0%)
0

HE (6% +9%)

(3.13)

The matrix (3.13) yields the following eigenvalues

p* A% % (1—1+€7)
A= | HEUE+p®)(u*+6%+9%)

(3.149)
Hence, the fundamental reproductive number R, can be expressed

through the following equation:
P A*7*(1 — 7 +e1)
R, = (3.15)
HE(U® + p*)(u* + 6% + ¢%)

Theorem 3.2. If the basic reproduction number is R, < 1, the disease-
free equilibrium point is locally stable. However, if the basic reproduction
number R, > 1, the disease-free equilibrium point becomes unstable.

Proof. The Jacobian matrix of system (3.2) at is given by

—u? 0 0 _% 0
0 —u° 0 ——‘";’;"’ 0
J=| o 0 —(ut+pv) Lzd-o Mefr (3.16)
u n*
0 0 Vi —(u" + 6% + ¢%) 0
0 0 0 0 —ue
Eigenvalues of the matrix (3.16) are 4, = —u* < 0, 4, = —p* < 0,
Ay =—-u" <0,
L= —5%u® _Z(Ma)z — UpT — Y% p”
\=
2u”
VAT g8 (1 = 7 4 €x)+ () (5 =257 pi+ 268 0+ =2 7 + (7))
+ o
and
52, _ a2 _ aa _ ,a a
/15214:6 2(p")" = pp" — p g

2u“

VAR (L~ et r (60 —26% 4 25+ —2p 4 ()
+
2u%

Note that 4;, 4, and A; have a real negative part. Now, we will proof
the 4, and 45 have a real negative part.
Sincel, = 45, then supposed, < 0, we get
— 2(”a)2 — U P — pp”
2u®

—57

+

\/ 4am e pi(1 = 7+ e1) + (o) (5% = 28%p™ + 259" + (p°) = 2p%0" + (°)°) 0
<
2u«

\/ 4ammepe (1 = 7+ e1) + (o) (5% = 28%p% + 259" + (p°) = 2p%0" + (9°)°)

<8 u” +2(”11)2 + 1P+ p "

42 p" (1 — 7+ €1) + (WY ((6") — 26%p" +26%9" + (p°) — 290" + (%))

<@ 24" + 5"+ ¢
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427%p*(1 — 7+ €71)
"

(8% + 467" + 267" + 269" + A(U"Y + A" + 40" + 200" + (0" + (")

+(5a)2_25npa+2§a(pa+(pa)2_2pa¢a+((pa)2

Ax%p*(l — 7+ €1)
ue
Ax%p*(1 — 7+ €1)
ue

<Saﬂa+5upa+(ﬂa)2+llapa+#a(pa+pa(pa

<"+ pM)(u" + 8% + ¢")

A7%p*(1 — 7+ €1)
HE(U® + p*)(u* + 6% + @)

Since R, = —L20"U-t+¢) _ hap from (3.16) we have R, < 1.
[ Mﬂ(”ﬂ+pﬂ)(ﬂﬂ+§a+¢ﬂ [

Then infection-free balance, E,, is locally asymptotically stable.

<1 (3.17)

4. Sensitivity analysis

Understanding the sensitivity of R, is crucial for pandemic control.
The biological measure R, is crucial for understanding the transmission
dynamics of the disease. Therefore, studying the sensitivity of R, is
crucial for disease elimination and control. The sensitivity of R, to
changes in parameter © is measured by this index. To calculate changes
in all parameters in the formula of R, use partial derivatives as follows:

R, _ ama Q
Fo’ = < %) <m> @D

A parameter O describes the basic reproductive number R,. According
to ’, a negative (positive) index indicates that increasing O results in
a decrease (increase) in R,. Table 2 displays the sensitivity indices for
parameters: p, A, «, , €, u, 5, and ¢, based on the reproductive number
in Eq. (3.15) (see Table 1).

5. Hyers-Ulam stability

In order to analyze the global stability of the fractional model (3.2),
we employ the Ulam-Hyers criterion. To achieve this objective, we
establish the subsequent inequality:

SD*Y() - KtY(0)| <e, VrE[0,T], (5.1)

where K(z, Y (1)) is the right hand side of (3.2).
Now, the value of ¥ belonging to the set ¥ is a solution of Eq. (3.2)
if and only if there exists a value 4 belonging to the set ¥ such that:

i |ho) <e.
ii
§DEY (1) = K@, Y(0) + h(t), Vi € [0,TI. (5.2)

When the fractional R-LF integral is applied to both sides of
Eq. (5.2), one can obtain the following:

P =70+ =— [ =Ko 7 _L
Y(t)—Y(0)+m /0 (t =m* K, Y(m)dn + T@

t
X / (t = )* Y h(p)dn, vt € [0, T].
0
As a result of taking condition (i), we obtain
- - 1 ! B -
YO -Y(0) - — / (t ="K, Y ()dn|
I'(a) Jo

€

<
T I(a)

1
/ (t—n)*'dn,vt €0,T].
0
Therefore, we get

eT*

—, Vte][0,T].
T(a+1)

1¥(t) - Y(0) - ﬁ /O (t = )" KGn, V()] <

(5.3)
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Table 1
Sensitivity index table.
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Parameters Determine the sensitivity index of R, to parameters The sensitivity index
ap®
P v +ve
A a +ve
k3 a +ve
. (e=yr —ve
T+(e—D)r
€ — +ve
T+(e=Dr
. 3 (W0 HC/30742/3 5423 4 +1/3 " 44" ) ve
k N (H+p") (o +6+¢7)
5
6 T e —ve
Q@ s —ve

e+ 9"

Definition 5.1. If there exists a positive constant =, such that for any
€ > 0, and any Y () that satisfies (5.1)and the model (3.2) has a solution

Y (¢) that satisfies
YO -Y®, <eZ,. Vi€l[0,Tl,

then the model (3.2) exhibits Hyers—Ulam stability on the interval [0, T]
Theorem 5.1. Let the assumptions (i) and (ii) holds for the model (3.2),

and if I'(a + 1) > T*h hold. Then the model (3.2) is Hyers—Ulam stability
on [0,T],

Proof.

Consider Y (¢) be a unique solution of model (3.2), and let ¥ (¢) fulfill
(5.1). By utilizing the fractional R-LF integral on both sides of Eq. (3.2),
we obtain

t
Y@ =Y(0)+ L / (t = m)* "' K(n, Y (m))dn, Vi € [0, T]. (CX)
I'(@) Jo

Now, utilizing (5.3) and (5.4), we calculate | ¥ (1) — Y ()|, as follows:

v _ I 1 ! a—1
[Fo-vol, =|7o-Y0 - 5 /0 (t = )*"K(n, Y(m)dn

1

By incorporating the term —) /0 (t —n)* 'K, Y(n))dn through addi-
tion and subtraction, and subsequently utilizing the triangle inequality,
we obtain

Y(t)-Y(0) —

170 - Y0, < / (t = )™ 'K(r, ¥ ()
0

1
() 1

0 Y Ay
@ /O @ —m* K, Y(m) — K, Y(m)dn

1
By utilizing (5.3) and the properties of the norm, it is possible to obtain

eT*

ro-yol, < 757575

U e K T
+F(a)/) (= m* " ||(K(n, Y () = K, Y()))|| , dn

So, we obtain

_er  _Th

I'e+1) I ( + 1)
Therefore, the inequality ||Y(1)-Y(@®)|, < B
% By applying Definition 5.1, we can conclude that the model
(3.2) exhibits Hyers-Ulam stability over the interval [0, T].

70 - v, < 170 - v,

E,¢ holds, where =, =

6. Numerical simulation of the Ebola virus fractional model

In this section of the article, our goal is to find a numerical solu-
tion for the fractional Ebola virus model. Fractional-order differential
equations have attracted the attention of many scientists®° due to
their relevance in studying memory and hereditary aspects of various
biological components. These equations are also closely connected to
fractal theory. By expanding the scope of classical mathematical models
to encompass fractional-order versions, researchers are able to intro-
duce additional degrees of freedom and integrate the memory effect

Table 2
Parameter values in the fractional Ebola virus model.

Parameter Value Reference
z 400 39

T 0.30450 39

0.00004 39

A 0.20000 Assumed
€ 0.21000 40

P 0.52390 39

5 0.51100 39

@ 0.53660 40

inherent in conventional models. The aforementioned benefits render
fractional-order derivatives more closely akin to real-world phenomena
in comparison to ordinary derivatives. In order to obtain a numerical
solution for the model, we will employ the fractional Euler method
(FEM) as described in the work by Ameen et al. (2020).3® This method-
ology will yield a more comprehensive comprehension of the stability
analysis elucidated in the preceding section. We will investigate the
influence of varying fractional order values, specifically « = 1, 0.9, 0.8,
and 0.7, on stability characteristics. This inquiry will establish a robust
groundwork for the analysis presented in this research.

In order to solve the fractional model (3.2) using the FEM, we divide
the interval [0, T] into »n subintervals [(k — 1)h, hk], Yk =1,2,3, ..., n
with h = %, employing a particular methodology. Therefore, the
equations that have been discretized are presented below.

§1t) =850+ —— Z){k,[ﬂ“(l—f) A8 I ) — u S (@],

T(a +1)
k

N iln T = eA S, — 1 S,(t)),
=0

$1) =50+ —— T +1)1

k
h* a a — _
E@t)=E0) + Tatl) ;:0 K4S UL () + €2 S, ()1 () — u* E(1) — p* E(1))],

k

1t =10+ —— Zxk,[P E(@t) = p*1(1) = 6°1(1) — 9" I(1))],

I +1)

R@t) =RO) + ———— Zlk il I(t) = u*R(t)).

r ( +1) &
where Xi.i = (k— N*—(k=1-0H%, Vi=0,1,2,...,k,and Vk = 1,2, ... ,n

Accurate numerical solutions can be obtained for a significant pe-
riod of time through the utilization of the FEM. To initiate the analysis,
we employed the initial conditions outlined in Table 3, along with the
estimated values for the parameters specified in Table 2.

Figs. 1 and 2 demonstrate a decrease in the number of individuals at
high risk and those low-risk susceptible over time. Likewise, Figs. 3 and
4 show a decline in the population of individuals who are exposed and
infected. Additionally, Fig. 5 illustrates an increase in the number of
individuals who have recovered as a result of the decreasing population
of infected individuals over time.
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Fig. 1. The low-risk susceptible individuals .S, (7).
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Fig. 3. The exposed individuals E(z).
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Fig. 5. The recovered individuals R(r).

Table 3
The initial values in the fractional Ebola virus model.
Parameter Value Reference
S1(0) S(0) = 2000000 4
S, (1) S,(0) = 15000 4
E(1) EW0)=0 41
I(1) 1(0)=0 41
R(t) R0)=0 4

7. Conclusion

This research aimed to examine the fractional model of the Ebola
virus and establish several theorems concerning the existence, unique-
ness, and positive stability of the solution. We extensively calculated
the basic reproductive number, R, utilizing the next-generation matrix
method. Additionally, we investigated the local asymptotic stability
of the disease-free equilibrium. Lastly, we validated our analysis by
providing a descriptive numerical simulation of the model’s dynamics
across different fractional order values.
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