Article

Chemical Analysis of *Euphorbia denticulata* Lam. and Study of extracted oil on Cytotoxicity and anti-tumor potential on AMGM-5 and HBL 100 cell lines

Amal Ali Yaseen AlHassan

Basrah university ,College of Education for Pure Sciences Department of biology

amal.yaseen@uobasrah.edu.iq

Salma Saeed Abbas

Basrah university ,College of Education for Pure Sciences Department of biology

salma.abbas@uobasrah.edu.iq

Zainab K. Shaheen

Basrah University College of Science and Technology.

Zshaheenjisab@gmail.com

Ali Abdullateef Al Ali

Basrah university ,College of Education for Pure Sciences Department of biology

ali.abdalhassan@uobasrah.edu.iq

Abstract

Study have been conducted on the cytotoxicity of *Euphorbia denticulate* oil. In The normal human breast cell line HBL 100 and human brain cancer cell line AMGM-5 Depending on the MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay method Following the application of various oil concentrations (0.01, 0.05, 0.1, 0.5, 1, 5) μ g \ml to the cells, the current study was able to determine the The Half maximal inhibitory concentration(IC50) value in AMGM-5 to be 0.21505%, while the normal cell line HBL100 revealed an IC₅₀ value of 0.18688%). the MTT assay test findings suggested a suppression of the proliferation of cancer cells. The AMGM-5cell lines changed cellularly as a result of the oil Following a 48-hour course of therapy, the degeneration showed varying degrees of atrophy, swelling, and breakdown. Ultimately, the cells completely disintegrated, resulting in the formation of necrotic regions devoid of cells. Cultures of cells: When the cells were exposed to high oil concentrations, these alterations worsened.

1. Introduction

Essential oils are defined as complex volatile secondary metabolites that are isolated from any part of plants .The French chemist Dumas (1833) performed the first systematic description of the constituents of essential oils and explained that the main characteristics of essential oils are volatile, aromatic, fluid, lipophilic, colored or colorless, generally of a density less than water, in addition to being rich in life-active components. They can be easily separated from other components of plants. Essential oils and their constituents are now gaining global attention due to their multi-purpose functional use [1]. Despite numerous plant oils have demonstrated efficacy in treating the most severe diseases, independent of the pathogens associated, many plants around the world are still being researched for their active components and potential role in disease prevention[2]. The literature has addressed the various pharmacological characteristics of Essential oil (Eos), including their antioxidant, antibacterial, anti-diabetic, and cardiovascular preventative properties. [3]. However, there hasn't been much effort put into compiling an extensive study of the in vivo/in vitro anticancer applications of EOs, including drug transport methods and cell target selectivity. Furthermore, current data on the anticancer, antitumor, and anti-proliferative properties of essential oils (EOs), as well as their benefits for effective target-specific drug delivery (via nanoencapsulation or nanoemulsions) and combination use with traditional chemotherapy drugs, are not easily accessible in a single article. [4]. The challenge for researchers is also to develop safe therapeutic approaches that can distinguish between cancerous and healthy cells .The pharmaceutical industry has contributed to saving humanity from the scourge of diseases, especially the intractable ones, but it has become an obsession that haunts humanity, due to the disadvantages of these treatments, side effects and complications due to the cumulative action, in addition to the high cost of treatment. In this context, the goal of scientific experiments at the present time is to find alternative compounds to treat such diseases [5]. To achieve promising outcomes in the treatment of cancer, more thorough research is needed, including studies on target-oriented anticancer medication delivery. To further establish a commercial medication approach, it is important to clarify the molecular mechanisms behind the anticancer activities of EOs and their constituents. Thus, the goal of the current study was to determine whether the oil's constituents may inhibit cancer cells and advance them toward the stages of programmed death.

2. Materials and Methods

2.1 Chemical analysis of Euphorbia denticulata oil

The plant's dried leaves (20g)and 150ml of hexane as a solvent at 38 °C for eight hours were used to extract the oil using a sexolite Oil fractions were obtained by evaporating hexane at 68°C using a rotary evaporator. in the Marine Science Center's laboratories at Basrah University. The main compounds of *Euphorbia denticulata* oil 'were determined using a gas chromatography- mass spectrometer (GC-MS) (7890B) and a mass spectrometer (GC-MS) detector (5977A). Using helium gas, then the percentages of the different chemical compounds of oils were calculated [6] [7]

2.2 Maintenance of cell lines

The cell line was obtained from The IRAQ Biotech Cell Bank Unit in Basrah provided the human brain cancer (AMGM) and Normal human cancer (HBL-100) cell lines Ahmed Majeed Glioblastoma Multiform cancer cell line (AMGM-5)

The process of maintaining the cells was carried out in culture dishes of 25 ^{cm2} using the culture medium RPMI1640. Contains 10% fetal bovine serum (FBS) and 100 IU \ ml of penicillin and 100 μ g \ ml of streptomycin It was placed in an incubator at 37°C and 5% CO₂ When the cells grew and formed a monolayer by 80-90%, secondary cultures were done ,One of them is by using trypsinfersin, where the culture medium is first poured and then the cells are washed twice with 1ml of buffer solution (phosphate buffer saline PBS) for each subsequent time , Add 1 ml of trypsin-fersin. The dishes are incubated in the incubator at a temperature of 37 and 5%. CO₂ The cells are examined. Then, using an inverted microscope, to ensure that the majority of the cells have separated from the dish, Pellet a small cell mass using centrifugation, then suspend it in 10% complete culture medium and divide it into Two plates and incubated in the incubator at a temperature of 37 °C and 5% CO₂ [8]

2.3 Cytotoxicity

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, often known as the MTT reagent, The MTT test was used to study the Euphorbia denticulata oil cytotoxicity on the vitality of cells by culturing AMGM cancer and Normal human cancer (HBL-100) cell lines line and are in the 96-hole planting dishes with a ratio of (1 * 10 4) A cell for each hole and incubated in the incubator at 37 °C and 5% CO₂ [9] After 24 hours, the cells were exposed to a series of concentrations of oil(0.01, 0.05, 0.1, 0.5, 1, 5) $\mu g \setminus ml$ of serum-free culture medium, at a rate of Four technical replicates for each concentration, and incubated in the incubator for 72 hours at a temperature of 37 °C and 5% CO₂ After the end of the incubation period, cell vitality was measured using MTT dye. This is after pouring the medium containing the concentrations oil and adding 100 μ L of culture medium containing 10 μ L of MTT dye solution (2 mg \ μ L of PBS buffer solution) The dishes are incubated in the incubator for two hours at a Temperature 37°C and 5% CO₂ The dye solution is then poured out, and a crystalline substance remains in the dish pits, which is tetrazolium tetrazolium is dissolved by adding 100 µL of Dimethyl Sulphoxide (DMSO) and incubating at room temperature in dark conditions for 20 minutes)[10] Then the absorbance of the dissolved substance, which is formazan, is read at a wavelength 620 nm using a thermo dish reader device. The test was conducted in three replicates for each cell line .Four technical replicates for each concentration[11]

The cell Inhibition rate was calculated According to the equation below:

Cell vitality rate = treatment absorbance rate / control absorbance rate * 100 Inhibition % = (A control – A sample)/ A control

2.4 Detection of programmed cell death using the dye Acridine Orange/Ethidium Bromide (AO/EB)

The cells were separated from the surface of the culture vial by the trypsinization process and suspended in 10 ml of the culture medium containing the serum. Then the cells were planted on a cover glass slide and placed in a sterile dish measuring 3 cm, and incubated in a CO_2 incubator for 24 hours. After making sure that one cell layer was formed, the cells were treated. Cultivated with the concentration of IC50 for the study materials and incubated in the incubator for 48 hours Then it was stained with AO/EB [12] To determine the percentage of dead cells in cancer and normal cell lines treated with oil compared to untreated cells stained with AO/EB dye, use GraphPad Prism software to conduct a One Way Anova test.

3. Results and discussion

Naturally occurring chemicals with great pharmacological potential against a variety of tumor types make up the chemical components in essential oils.

The results of the chemical analysis of Euphorbia dentculata oil using the GC-mass device showed the presence of 93 chemical compounds within its composition, Shown in the table(1), the percentage of the compounds ranged between (0.138098-13.47946%,). This chemical compound mostly belongs to fatty acids, Triterpenoids and Monoterpenes Its effectiveness against cancer was tested and showed high efficiency in inhibiting cancer cells, which has been documented by many studies[13][14]Research is of particular importance to clarify the mechanism of action carried out by these chemical compounds to penetrate cancer cells and inhibit or destroy them.[15][16] The significance of fatty acid production for cancer cell proliferation and survival has been demonstrated by multiple research. Because the maintenance of cellular physiology depends on the regulation of lipid synthesis, the corresponding metabolism, as well as their uptake and degradation, disruption of these processes can have an impact on the development of cancer. Therefore, the presence of fatty acids outside the cancer cell causes confusion in the metabolism of fatty acids in it and thus inhibits it.[17] Triterpenoids were long believed to be physiologically inert; nevertheless, growing evidence on their broad spectrum of pharmacological activity and low toxicity profile has piqued interest once again with regard to human health and disease.[19][20][21][22]The table also shows some of the compounds that are included in Monoterpenes, Monoterpenes, a class of secondary metabolites that makes up the majority in plants, contain hydrocarbons and are commonly found in essential oils. The synthesis of new physiologically active compounds often involves the use of monoterpenes and their derivatives .Certain monoterpenes have been shown in experimental research to have anticarcinogenic qualities, working at various cellular and molecular levels, utilizing animal cancer models as models of study. These findings suggest that monoterpenes may be a promising new class of anticancer medications. They are also effective and nontoxic dietary antitumorigenic agents.[23][24] While the quality of oil used medically is determined by the proportion of

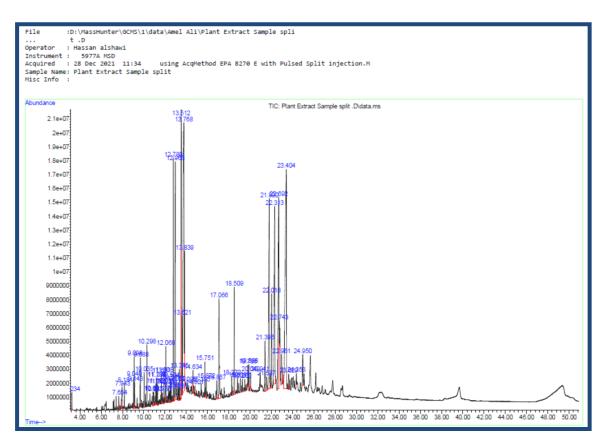
monoterpenes with the required biological activity .The majority of chemotherapy treatments used in the treatment of cancer inhibit the reproduction of both healthy and cancerous cells, while essential oils and their natural components have multiple pharmacological activities to inhibit tumors without harming the body [25].

Then there is an indication of the chemical compound Thiophene, whose effectiveness against tumors has been discussed in many scientific studies, Thiophene is a heterocyclic scaffold that contains sulfur and has been extensively studied for its potential to generate a library of chemicals with anticancer characteristics. Reports state that thiophene analogs have been demonstrated to bind with a range of protein targets specific to cancer, depending on the kind and location of substitutions. Therefore, it has been proposed that the biological effects of thiophene analogs are caused by the blocking of numerous signaling pathways relevant to cancer. For different anticancer targets to work effectively, different structural attributes are required.[26] Research [27] demonstrate the potency of thiophene-2-acetic acid in inhibiting cancer cells by highlighting its involvement in the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1), The thiophene moiety is used in cancer therapy to combat different types of cancer cells. Information from the several studies revealed the crucial function played by the thiophene moiety and its derivatives in the creation of the essential lead molecule. It has been discovered that tyrosine kinase, topoisomerase, and other essential anticancer processes [28] As mentioned [29] [30] [31] the derived cyclobutane compounds Which is found in low percentages in oil considered among the cancer inhibitors with anti-oxidative activity The results of this study are in line with others that have shown how Euphorbia species, and particularly Euphorbia denticulate with active compounds and oils, can combat various cancer types.[32][33][34][35][36]

Name	Formula	Retention Time (RT)	Area	Score (Lib)	%
Toluene	C7H8	3.231	3569165	92.61	0.3913 92
Hexanoic acid	C6H12O2	6.459	2611672	89.12	0.2863 94
p-Cresol	C7H8O	7.654	1284682	90.35	0.1408 77
Nonane	С9Н20	7.943	1867072	88.71	0.2047 42
Butanedioic acid, monomethyl ester	C5H8O4	7.966	3216667	86.87	0.3527 38
Dimethyl dl-malate	C6H10O5	8.178	1882469	92.13	0.2064 3
Dimethyl 3-hydroxy-3-methylpentane-1,5-	C8H14O5	9.039	1991151	92.2	0.2183

Table (1) Chemical compounds of *Euphorbia denticulate* oil using GC-mass technology.

dioate					48
5-Hydroxymethylfurfural	С6Н6О3	9.099	4981480	94.29	0.5462 66
Pivalic acid vinyl ester	C7H12O2	9.143	2722309	86.23	0.2985 27
Dimethyl 3-hydroxy-3-methylpentane-1,5- dioate	C8H14O5	9.685	7634208	69.15	0.8371 62
Benzaldehyde, 4-hydroxy-	C7H6O2	10.038	3204770	95.77	0.3514 33
Benzaldehyde, 3-hydroxy-4-methoxy-	C8H8O3	10.297	3957704	94.23	0.4339 99
Benzoic acid, 4-hydroxy-	С7Н6О3	10.884	1992111	88.62	0.2184 54
Dodecanoic acid	C12H24O2	11.114	1948501	93.03	0.2136 71
3-Hydroxy-4-methoxybenzoic acid	C8H8O4	11.182	3118946	91.91	0.3420 21
Nonanedioic acid, monomethyl ester	C10H18O4	11.235	2094542	86.59	0.2296 86
Benzaldehyde, 4-hydroxy-3,5-dimethoxy-	C9H10O4	11.65	1943818	92.05	0.2131 58
Tridecanoic acid, 12-methyl-, methyl ester	C15H30O2	11.907	2378718	71.24	0.2608 49
Coniferyl aldehyde	C10H10O3	12.034	1340699	89.51	0.1470 2
Tetradecanoic acid	C14H28O2	12.067	3835688	90.33	0.4206 19
Benzoic acid, 4-hydroxy-3,5-dimethoxy-	C9H10O5	12.33	1584302	80.15	0.1737 33
Pentadecanoic acid	C15H30O2	12.502	1636727	90.16	0.1794 82
Propionic acid, 3-(3-methyl-5-oxo-4,5- dihydro-1H-pyrazol-4-yl)-	C7H10N2O3	12.581	1494178	74.79	0.1638 51
Hexadecanoic acid, methyl ester	C17H34O2	12.782	1687605 3	94.1	1.8506 16
Hexadecenoic acid, Z-11-	C16H30O2	12.853	1732910	82.14	0.1900 3
n-Hexadecanoic acid	C16H32O2	12.966	4420357 2	92.5	4.8473 34
Isopimara-9(11),15-diene	С20Н32	13.052	1375249	81.43	0.1508 09
Heptadecanoic acid	C17H34O2	13.345	2536001	84.59	0.2780 96
9,15-Octadecadienoic acid, methyl ester, (Z,Z)-	С19Н34О2	13.51	3445729 5	83.75	3.7785 63
13-Octadecenoic acid, methyl ester	С19Н36О2	13.534	1680880 7	66.92	1.8432 42


1,8,11,14-Heptadecatetraene, (Z,Z,Z)-	C17H28	13.541	1053725 7	72.18	1.1555 08
Methyl stearate	C19H38O2	13.623	5482754	87.83	0.6012 35
1,1'-Bicyclobutyl	C8H14	13.756	5252620 7	59.42	5.7599 88
1-Heptanol, 2,4-diethyl-	C11H24O	13.784	3581171 6	65.43	3.9270 88
1,5-Cyclooctadiene, 3-(1-methyl-2- propenyl)-	C12H18	13.794	2499977 5	61.46	2.7414 58
Octadecanoic acid	C18H36O2	13.839	1067650 0	92.33	1.1707 78
Bicyclo[4.1.0]heptane, 7-pentyl-	C12H22	13.925	1359957	72.4	0.1491 32
13-Tetradecenal	C14H26O	14.632	2763723	84.26	0.3030 68
9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)-	C19H32O2	15.386	1704190	83.53	0.1868 8
Hexadecanoic acid, 2-hydroxy-1- (hydroxymethyl)ethyl ester	C19H38O4	15.748	3982537	88.85	0.4367 22
13-Oxabicyclo[10.1.0]tridecane	C12H22O	16.858	1722908	70.15	0.1889 33
Cyclohexene, 4-(4-ethylcyclohexyl)-1- pentyl-	C19H34	17.065	1879011 8	82.73	2.0605 12
Undecane, 3,8-dimethyl-	C13H28	17.076	3759881	68.63	0.4123 06
Bitolylene diisocyanate	C16H12N2O 2	17.09	1467781	53.66	0.1609 56
Albene	C12H18	17.125	2177234	69.21	0.2387 54
Hexadecanoic acid, 2-hydroxy-, methyl ester	C17H34O3	17.557	1259334	78.22	0.1380 98
Hexadecanoic acid, 2-hydroxy-, methyl ester	C17H34O3	18.271	2230829	77.62	0.2446 31
1-Hexadecanol	C16H34O	18.51	1116531 7	88.86	1.2243 81
1-Docosene	C22H44	18.808	1283830	93.28	0.1407 84
2(3H)-Benzofuranone,6-ethenylhexahydro-6-methyl-3-methylene-7-(1-methylethenyl)-,[3aS-(3a.alpha.,6.alpha.,7.beta.,7a.beta.)]-	C15H20O2	19.09	1837071	70.13	0.2014 52
7-Oxabicyclo[4.1.0]heptane, 2,2,6- trimethyl-1-(3-methyl-1,3-butadienyl)-5- methylene-	C15H22O	19.263	1476603	69.42	0.1619 23
Nonadecane	C19H40	19.787	3266792	82.84	0.3582 34

1-Hexadecanol	C16H34O	19.829	1915387	90.58	0.2100 4
Stigmasta-3,5-diene	C29H48	19.891	3541716	90.06	0.3883 82
dlalphaTocopherol	C29H50O2	20.052	2337582	90.32	0.2563 38
Ergost-5-en-3-ol, (3.beta.)-	C28H48O	20.944	3476669	85.45	0.3812 49
Lanosterol	C30H50O	21.394	8250224	75.19	0.9047 14
4.alpha.,14-Dimethyl-5.alphaergosta- 8,24(28)-dien-3.betaol	C30H50O	21.537	2806726	83.7	0.3077 84
.gammaSitosterol	С29Н50О	21.799	5793974 9	93.89	6.3536 33
Lanosta-8,24-dien-3-one	C30H48O	21.872	1519690	43.3	0.1666 48
Stigmastanol	C29H52O	21.888	1897027	63.75	0.2080 27
Lanosterol	C30H50O	22.016	1849436 9	80.05	2.0280 8
Obtusifoliol	C30H50O	22.315	6191760 0	77.41	6.7898 42
Caparratriene	C15H26	22.395	1286097	52.07	0.1410 33
Lup-20(29)-en-3-one	C30H48O	22.451	1417153	48.66	0.1554 04
9,19-Cyclolanost-24-en-3-ol, (3.beta.)-	C30H50O	22.692	6726898 6	93.74	7.3766 71
17-(1,5-Dimethyl-3-phenylthiohex-4- enyl)-4,4,10,13,14-pentamethyl- 2,3,4,5,6,7,10,11,12,13,14,15,16,17- tetradecahydro-1H- cyclopent(a)phenanthren-3-ol	C36H54OS	22.741	9384764	64.65	1.0291 27
Lupeol	C30H50O	22.796	1381446 7	86.18	1.5148 85
1,3,6,10-Cyclotetradecatetraene, trimethyl-14-(1-methylethyl)-,3,7,11- [S- [S- (E,Z,E,E)]-	C20H32	22.96	8459279	75.92	0.9276 39
24-Methylenecycloartan-3-one	C31H50O	23.025	4357936	64.87	0.4778 88
Silane,dimethyl(4-(2-phenylprop-2- yl)phenoxy)tridecyloxy-	C30H48O2Si	23.251	2091869	49.26	0.2293 93
9,19-Cyclolanostan-3-ol, 24-methylene-, (3.beta.)-	C31H52O	23.402	1229212 64	89.73	13.479 46
9,19-Cyclolanost-24-en-3-ol, (3.beta.)-	C30H50O	23.625	2608342	69.87	0.2860 29
9,19-Cycloergost-24(28)-en-3-ol, 4,14-	C32H52O2	23.745	1860926	64.83	0.2040

dimethyl-, acetate, (3.beta.,4.alpha.,5.alpha.)-					68
17-(1,5-Dimethyl-3-phenylthiohex-4- enyl)-4,4,10,13,14-pentamethyl- 2,3,4,5,6,7,10,11,12,13,14,15,16,17- tetradecahydro-1H- cyclopent(a)phenanthren-3-ol	C36H54OS	23.889	1606340	38.44	0.1761 5
Eremophila ketone	C15H24O	23.939	2297588	56.19	0.2519 52
9,19-Cyclolanost-25-en-3-ol, 24-methyl-, (3.beta.,24S)-	C31H52O	24.049	2694793	64.59	0.2955 09
9,19-Cyclolanostan-3-ol, 24-methylene-, (3.beta.)-	C31H52O	24.352	4413141	85.14	0.4839 42
9,19-Cyclolanostan-3-ol, acetate, (3.beta.)-	C32H54O2	24.722	1609923	50.85	0.1765 43
9,19-Cycloergost-24(28)-en-3-ol, 4,14- dimethyl-, acetate, (3.beta.,4.alpha.,5.alpha.)-	C32H52O2	24.95	1057498 7	71.89	1.1596 46
9,19-Cyclo-27-norlanostan-25-one, 3- (acetyloxy)-24-methyl-, (3.beta.,24R)-	C32H52O3	25.067	4340793	73.64	0.4760 08
1,3,6,10-Cyclotetradecatetraene, trimethyl-14-(1-methylethyl)-,3,7,11- [S- [S- (E,Z,E,E)]-	C20H32	25.664	1153597 7	70.39	1.2650 27
9,19-Cycloergost-24(28)-en-3-ol, 4,14- dimethyl-, acetate, (3.beta.,4.alpha.,5.alpha.)-	C32H52O2	26.176	5805732	68.63	0.6366 53
Rhodium, [(1,2,5,6eta.)-1,5- cyclooctadiene](1,1,1,5,5,5-hexafluoro- 2,4-pentanedionato-O,O')-	C13H13F6O2 Rh	26.356	1477930	45.87	0.1620 69
9,19-Cyclolanostan-3-ol, acetate, (3.beta.)-	C32H54O2	26.777	2258535	69.66	0.2476 69
9,19-Cyclolanostan-3-ol, 24-methylene-, (3.beta.)-	C31H52O	27.062	1237124	63.52	0.1356 62
Dihydrotachysterol	C28H46O	27.761	4410481	56.62	0.4836 5
5-Azulenemethanol, 1,2,3,3a,4,5,6,7- octahydroalpha.,.alpha.,3,8-tetramethyl-, [3S-(3.alpha.,3a.beta.,5.alpha.)]-	C15H26O	28.558	2166866	52.45	0.2376 17
Docosa-8,14-diyn-1,22-diol, (Z)-, 2TMS derivative	C28H54O2Si 2	28.685	3428940	53.71	0.3760 15
Pentyl linoleate	C23H42O2	32.346	5996927	52.08	0.6576 19
1,3-Dimethoxypropan-2-yl palmitate	C21H42O4	39.663	7740837	49.26	0.8488 55
Cyclobutaneacetonitrile, 1-methyl-2-(1- methylethylidene)-	C10H15N	49.335	3405291 5	43.13	3.7342 19
Thiophene-2-acetic acid, 6-chlorohexyl	C12H17ClO2	49.365	2413378	40.62	2.6464

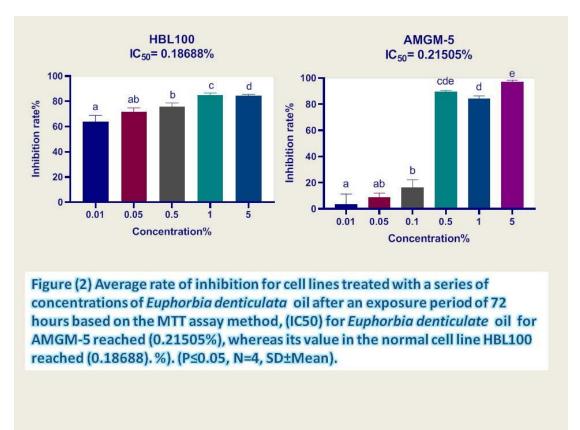
|--|

ester	S	1	94

Figer(1) It shows the peaks of 66 compounds in the oil. The compounds were identified by matching the mass spectrum with the library prepared in the device.

The highest peaks were represented by the chemical compound 9,19-Cyclolanost-24- en-3-ol, (3.beta.) with RT 22.692 and the lowest by the compound Hexanoic acid with RT 6.459 t_m Both have proven effectiveness against cancer cells

3.2 Cytotoxicity of Euphorbia denticulata oil in cell lines


Based on MTT technology, The current study's findings demonstrated that the cancer cell line was suppressed by the *Euphorbia denticulate* oil. (AMGM-5) after being treated for 72 hours at various doses (0.01, 0.05, 0.1, 0.5, 1, 5%), with the rate of inhibition increasing with As the concentration was increased, cell cultures treated with concentrations of 0.5, 1, and 5 showed the highest rates of inhibition, reaching more than 80%. As shown in Figure (2), the lowest rates of inhibition, however, were at concentrations of 0.01, 0.05, and 0.1 since they did not surpass 20%. At the probability level of P≤0.05, the statistical analysis employing one way anova revealed that there were significant differences between the various concentrations. When the extracted oil was applied to the normal cell

line (HBL-100) at various doses (0.01, 0.05, 0.1, 0.5, 1, 5%) over the course of 72 hours, it also demonstrated an inhibitory impact on the cell line. As concentration increased, correspondingly the rate of inhibition increased. The treated cell cultures showed the highest rates of inhibition. With all concentrations, over 60% beginning with the low dose of 0.5. At the probability level of P \leq 0.05,

statistical analysis utilizing one way anova revealed significant differences between the various concentrations.

The Half maximal inhibitory concentration (IC_{50}) for *Euphorbia denticulate* oil was determined by processing the inhibition percentage data collected in the Graphpad Prism program. Its value in the malignant cell line AMGM-5 reached (0.21505%), whereas its value in the normal cell line HBL100 reached (0.18688). %). Figure (2)

The effect of programmed cell death-inducing oil on cell proliferation and density was studied and differences in cell vitality were studied using Crystal Violet dye. Cells treated with oils for cell lines (AMGM-5, HBL-100) separated from the surface of tissue culture dishes as a result of their death. Therefore, the violet dye appears in a light color due to the lack of live pigmented cells, and this was more evident in the treated cancer cells than in normal cells, compared to the color of the control group, which appeared in a dark violet color, which indicates the vitality of the cells,

3-4 Detection of programmed cell death using the dye Acridine Orange/Ethidium Bromide (AO/EB)

The results of fluorescent microscope examination of normal and cancerous cell lines HBL100 and AMGM-5 showed stained for 48 hours using AO/EB. AO dye gave untreated cells a green stain, signifying their safety and lack of damage. Unaffected Certain cells treated with IC_{50} oil were colored yellow, signifying their early stage of programmed cell death. On the other hand, other cells treated with EB dye were colored red, showing their advanced level of programmed cell death. The results of the statistical analysis of dead cells in normal and cancerous cell lines showed that there were significant differences between the cells treated with the oil compared to the control group at a probability level of P \leq 0.05.

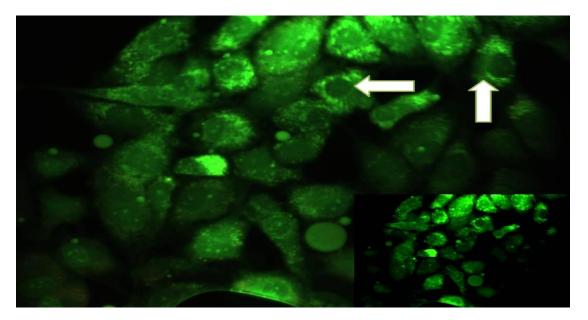
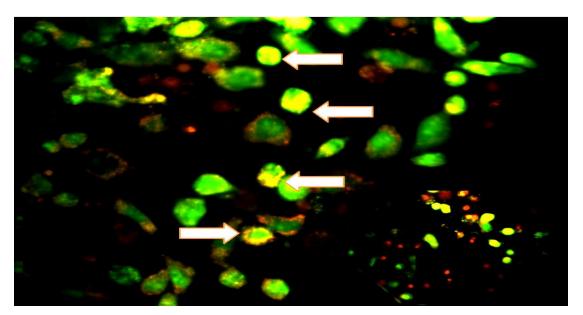
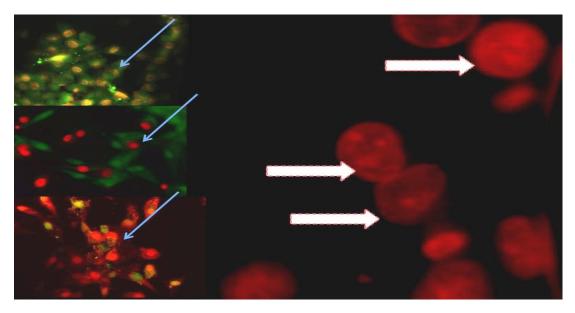




Image (1) HBL-100 cell line after staining with AO/EB(The green arrow indicates Which shows clear nuclei in the cells) (control) (400X magnification power.)

Image(2) AMGM-5 Cells treated with IC_{50} concentration of *Euphorbia denticulate* oil and The arrow indicates cells suffering from Early apoptosis signifying their stage of programmed cell death(400X magnification).

Image(3) Cells treated with IC_{50} concentration of oil are colored red The arrow indicates cells suffering from late apoptosis, The blue arrows are the stages through which treated cancer cells undergo programmed death(400X magnification).

The use of plant products has recently witnessed a remarkable growth in various fields of life and their applications, which has prompted researchers to pay attention to studying their effectiveness in life [37] Exposing cells to toxic compounds causes various effects on them called Cytotoxicity, and this term has an important role in the discovery and development of pharmaceutical industries [38] It appears that one of the causes that stimulate programmed cell death in cancer cells treated with oil is the depletion of energy due to the oil, which leads to mitochondrial dysfunction and changes in pH [39] Energy depletion can lead to many other disorders, including a decrease in the sodium pump, thus releasing the calcium ion Ca+2 into the cytoplasm and increasing its level, leading to the activation of proteins and hydrolytic enzymes in the cell [40][41] The inhibitory effectiveness of the oil on cancer cells greatly exceeded its effectiveness on normal cells, with a clear significant difference The probable cause of this could be attributed to the essential characteristics of cancer cells, which require a significantly higher quantity of energy than normal cells [42] Moreover, cancer cells have a weak oxygen sensor, so they primarily get their energy from the breakdown of glucose, which produces lactate even in the presence of oxygen [43] Certain cellular signaling pathways, such as the Ras-ERK and AKT-PI3K pathways, are known to have mutations in cancer cells that lead to cell proliferation [44] In contrast to normal cells, cancer cells exhibit pronounced metabolic alterations as a result of these pathways being active Because the oil induces dysfunction in the mitochondria, it lowers the amounts of glucose-dependent energy production in cancer cells, which explains why the pace of inhibition between cancerous and normal cells differs. [45][46] One of the various methods for assessing cytotoxicity was the MTT assay, which was used in the current investigation to assess the cytotoxicity of the oil in malignant and normal cell lines (AMGM-5 and HBL-100). Which depends on reducing the yellow substance Tetrazolium bromide to purple Formazan crystals in living cells [47] The results of the study showed a clear decrease in cell vitality depending on the concentration This indicates that the oil has a cell-inhibitory activity and has cytotoxicity on treated cancer cell lines when compared to untreated cells. Through necrosis, halting the cell cycle, programmed cell death, and interference with organelle functioning, the oil can induce the death of cancer cells. This is accomplished by making the cell membrane more permeable. Reducing the production of Adenosine Triphosphate (ATP), changing the pH gradient, and losing the ability of mitochondria, and these are the main causes of cell death [48][49][50]

Conclusion study that the oil is one of the most promising oils in combating and reducing cancer cells. We hope to conduct subsequent studies on other types of cancer. It is also possible to isolate the active ingredients in this oil and invest it as a medicinal drug against cancer. Conducting a complementary study that clarifies the pathways and mechanisms by which oil attacks cancer cells, whether through the cell membrane or their metabolic pathways.

References

[1] Fahmy, M. A., Farghaly, A. A., Hassan, E. E., Hassan, E. M., Hassan, Z M., Mahmoud, K., & Omara, E. A. [2022]: Evaluation of the Anti Cancer/Anti-Mutagenic Efficiency of Lavandula officinalis Essential Oil Asian Pacific Journal of Cancer Prevention, 23(4), 1215-1222.

[2] Chen X, Martin C, Chen W. [2022]: Medicinal Plant Biology : A new era for medicinal plant research. Medicinal Plant Biology 1:1

[3] Parham, S, Kharazi A.Z., Bakhsheshi-Rad H.R., Nur H., Ismail A.F., Sharif S., RamaKrishna S.,

& Berto F.[2020] : Antioxidant, antimicrobial and antiviral properties of herbal materials . Antioxidants, 9

[4] Siahbalaei R., Kavoosi G, Shakeri R. [2020] : In vitro antioxidant and antidiabetic activity of essential oils encapsulated in gelatin-pectin particles against sugar, lipid and protein oxidation and amylase and glucosidase activity Food Sci. Nutr., 8, pp. 6457-6466

[5] Ng, J. Y., Bhatt, H. A., & Raja, M. [2023]: Complementary and alternative medicine mention and recommendations in pancreatic cancer clinical practice guidelines: A systematic review and quality assessment. Integrative medicine research, 12(1), 100921.

[6] Fahmy, M. A., Farghaly, A. A., Hassan, E. E., Hassan, E. M., Hassan, Z. M., Mahmoud, K., & Omara, E. A. [2022]: Evaluation of the Anti-Cancer/Anti-Mutagenic Efficiency of Lavandula officinalis Essential Oil. Asian Pacific Journal of Cancer Prevention, 23(4), 1215-1222.

[7]Wu, Z. L., Du, Y. H., Guo, Z. F., Lei, K. J., Jia, Y. M., Xie, M., ... & Yuan, S. [2016]: Essential oil and its major compounds from oil camphor inhibit human lung and breast cancer cell growth by cell-cycle arresting. International Journal of Clinical and Experimental Medicine, 9(7), 12852-12862

[8] Al-Ali, A.A., Alsalami, K.A.S. and Athbi, A. M. [2022] : Cytotoxic effects of CeO2 NPs and β carotine and thier ability to induce apoptosis in human breast normal and cancer cell lines. Iraqi Journal of Science, (63): 3.

[9] Falih. S M., Al-saray S. T, Alfaris A. A. and Al-Ali A.A. [2022] : The synergistic effect of eucalyptus oil and retinoic acid on human esophagus cancer cell line SK-GT-4. Egyptian journal of medical human genetics, 23:70

[10] Al-Shammari, A.M.;Al-Esmaeel, W.N.; Al-Ali, A.A.; Hassan, A.A. and Ahmed, A.A[2019]: Enhancement of Oncolytic Activity of Newcastle Disease virus Through Combination with Retinoic Acid Against Digestive System Malignancies. Molecular Therapy 27(4S1):126-127.

[11] Sangour, M.H.; Ali, I.M.: Atwan, Z.W. and Al-Ali, A.A. [2021] : Effect of Ag nanoparticles on viability of MCF-& and Vero cell lines and gene expression of apoptotic genes. Egyptian Journal of Medical Human Genetics, 22:9

[12] Liu, K., Liu, P. C., Liu, R., & Wu, X. [2015] : Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Medical science monitor basic research, 21, 15.

[13] Jóźwiak, M., Filipowska, A., Fiorino, F., & Struga, M. [2020] : Anticancer activities of fatty acids and their heterocyclic derivatives. European journal of pharmacology, 871, 172937.

[14] Westheim AJF, Stoffels LM, Dubois LJ, van Bergenhenegouwen J, van Helvoort A, Langen RCJ, Shiri-Sverdlov R, &Theys J. [2023] :The Modulatory Effects of Fatty Acids on Cancer Progression. Biomedicines. 11(2):280.

[15] Hoxha, M., & Zappacosta, B. [2022] : A review on the role of fatty acids in colorectal cancer progression. Frontiers in pharmacology, 13, 1032806.

[16] Mowat, C., Dhatt, J., Bhatti, I., Hamie, A., & Baker, K. (2023). Short chain fatty acids prime colorectal cancer cells to activate antitumor immunity. *Frontiers in immunology*, *14*, 1190810.

[17] Koundouros, N.,& Poulogiannis, G. [2020] Reprogramming of fatty acid metabolism in cancer. *Br J Cancer* 122, 4–22

[18] Prendeville, H & Lynch, L.[2022] Diet, lipids, and antitumor immunity. Cell Mol Immunol 19, pp.432–444

[19] Petronelli, A., Pannitteri, G., & Testa, U. [2009] : Triterpenoids as new promising anticancer drugs. *Anti-cancer drugs*, 20(10), pp.880–892.

[20] Bishayee, A., Ahmed, S., Brankov, N., & Perloff, M. [2011]: Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. *Frontiers in bioscience (Landmark edition)*, *16*(3), pp. 980–996.

[21] Nistor, M., Rugina, D., Diaconeasa, Z., Socaciu, C., & Socaciu, M. A. [2023] : Pentacyclic Triterpenoid Phytochemicals with Anticancer Activity: Updated Studies on Mechanisms and Targeted Delivery. *International journal of molecular sciences*, *24*(16), 12923.

[22] Peng, X, Wang, C, Hou, Y, Tian, J, Fan, X, Li, D, Hua, H.[2023] : Triterpene Derivatives from *Garcinia oligantha* and Their Anti-Cancer Activity. Plants, 12, 192.

[23] Barras BJ, Ling T& Rivas F. [2024] Recent Advances in Chemistry and Antioxidant/Anticancer Biology of Monoterpene and Meroterpenoid Natural Product. Molecules. 2024; 29(1):279.

[24]Nagy, V., Mounir, R., Szebeni, G. J., Szakonyi, Z., Gémes, N., Minorics, R., Germán, P., & Zupkó, I. [2023] : Investigation of Anticancer Properties of Monoterpene-Aminopyrimidine Hybrids on A2780 Ovarian Cancer Cells. International journal of molecular sciences, 24(13), 10581

[25] Twilley D.& Lall N[2018] : Chapter 7 - The Role of Natural Products From Plants in the Development of Anticancer Agents, Editor(s): Subhash C. Mandal, Vivekananda Mandal, Tetsuya Konishi, Natural Products and Drug Discovery, Elsevier, pp. 139-178,

[26] Archna L., Pathania, S., & Chawla, P. A. [2020] : Thiophene-based derivatives as anticancer agents: An overview on decade's work. Bioorganic chemistry, 101, 104026.

[27] Di Micco, S., Terracciano, S., Ruggiero, D., Potenza, M., Vaccaro, M. C., Fischer, K., Werz, O., Bruno, I., & Bifulco, G. [2021]: Identification of 2-(thiophen-2-yl)acetic Acid-Based Lead Compound for mPGES-1 Inhibition. Frontiers in chemistry, 9, 676631.

[28] Mishra R, Kumar N, Mishra I, & Sachan N. A [2020]: Review on Anticancer Activities of Thiophene and Its Analogs. Mini Rev Med Chem. 2020;20(19):1944-1965.

[29] Koparir, P. (2019). Synthesis, antioxidant and antitumor activities of some of new cyclobutane containing triazoles derivatives. Phosphorus Sulfur Silicon Related Elements, 194 (2019), pp. 1028-1034.

[30] Guler A, Karatepe A , Koparir P, Pekdemir S , Karatepe M. [2022] :Investigation of the Antioxidant and Antitumour Properties of Some Cyclobutane Ring Containing 2,5-Thiophene Diacyl Compounds Biointerface Research in Applied Chemistry 12, (2) pp. 2450 – 2461

[31] Sutherland, M., Gordon, A., Al-Shammari, F. O., Throup, A., Cilia La Corte, A., Philippou, H., & Sheldrake, H. M. [2023] : Synthesis and Biological Evaluation of Cyclobutane-Based β3 Integrin Antagonists: A Novel Approach to Targeting Integrins for Cancer Therapy. Cancers, 15(16), 4023
[32] Shamsabadipour, S., Ghanadian, M., Saeedi, H., Rahimnejad, M. R., Mohammadi-Kamalabadi, M., Ayatollahi, S. M., & Salimzadeh, L. [2013] . Triterpenes and Steroids from *Euphorbia denticulata* Lam. With Anti-Herpes Symplex Virus Activity. Iranian journal of pharmaceutical research : *IJPR*, *12*(4), 759–767.

[33] Shamsabadipour, S., Zarei, S. M., Ghanadian, M., Ayatollahi, S. A., Rahimnejad, M. R., Saeedi, H., & Aghaei, M. [2018] : A New Taraxastane Triterpene from *Euphorbia Denticulata* with Cytotoxic Activity Against Prostate Cancer Cells. *Iranian journal of pharmaceutical research : IJPR*, *17*(1), 336–342.

[34] Ghannadian, M., Akhavan, A., Abdalla, O. M., Ayatollahi, A. M., Mohammadi-Kamalabadi, M., & Ghazanfari, H. [2013] : Triterpenes from *Euphorbia spinidens* with immunomodulatory activity. *Research in pharmaceutical sciences*, 8(3), 205–210.

[35] Zengin, G., Uysal, A., Aktumsek, A., Mocan, A., Mollica, A., Locatelli, M., Custodio, L., Neng, N. R., Nogueira, J. M. F., Aumeeruddy-Elalfi, Z., & Mahomoodally, M. F. [2017]: *Euphorbia denticulata* Lam.: A promising source of phyto-pharmaceuticals for the development of novel functional formulations. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 87, 27–36.

[36] Magozwi, D. K., Peter, X., Langat, M. K., Mhlanga, R., Vukea, N., de la Mare, J. A., & Tembu,V. J. [2021] : In vitro cytotoxic effects of chemical constituents of *Euphorbia grandicornis* Blanc against breast cancer cells. Scientific African, 14, e01002.

[37] Najmi, A., Javed, S. A., Al Bratty, M., & Alhazmi, H. A. [2022] : Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules, 27(2), 349.

[38] Istifli,S E., Tahir H, M., & Basri L, H. [2019] : Cell Division, Cytotoxicity, and the Assays Used in the Detection of Cytotoxicity. IntechOpen.

doi: 10.5772/intechopen.88368

[39] Sharifi-Rad, J., Sureda, A., Tenore, G. C., Daglia, M., Sharifi-Rad, M., Valussi, M., Tundis R., Rad M. S., Loizzo M. R., Ademiluyi A. O., Rad R. S., Ayatollahi S. A., & Iriti, M. [2017] Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules, 22(1), 70.

[40] Eid, A. M., Jaradat, N., Issa, L., Abu-Hasan, A., Salah, N., Dalal, M., Mousa A., & Zarour, A.
[2022] : Evaluation of anticancer, antimicrobial, and antioxidant activities of rosemary (*Rosmarinus Officinalis*) essential oil and its Nanoemulgel. European Journal of Integrative Medicine, 55, 102175.

[41] Lefranc, F., Xu, Z., Burth, P., Mathieu, V., Revelant, G., de Castro Faria, M. V., Noyon C., Garcia D. G., Dufour D., Bruyere C., de-Albuquerque C. F. G., Antwerpen P. V., Rogister B., Hesse S., Kirsch G., & Kiss, R. [2013] : 4-Bromo-2-(piperidin-1-yl) thiazol-5-yl-phenyl methanone (12b) inhibits Na+/K+-ATPase and Ras oncogene activity in cancer cells. European journal of medicinal chemistry, 63,pp. 213-223.

[42] Kalyanaraman, B. [2017] : Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox biology, 12, pp.833-842.

[43] Fadaka, A., Ajiboye, B., Ojo, O., Adewale, O., Olayide, I., & Emuowhochere, R. [2017].Biology of glucose metabolization in cancer cells. Journal of Oncological Sciences, 3(2), 45-51.

[44] Sever, R., & Brugge, J. S. [2015] : Signal transduction in cancer. Cold Spring Harbor perspectives in medicine, 5(4), a006098.

[45] Tahir, A. A., Sani, N. F. A., Murad, N. A., Makpol, S., Ngah, W. Z. W., & Yusof, Y. A. M. (2015). Combined ginger extract & Gelam honey modulate Ras/ERK and PI3K/AKT pathway genes in colon cancer HT29 cells. Nutrition journal, 14(1), 1-10.

[46] Zhu, S., Xu, Y., Wang, L., Liao, S., Wang, Y., Shi, M., & Wei, W. [2021] : Ceramide kinase mediates intrinsic resistance and inferior response to chemotherapy in triple-negative breast cancer by upregulating Ras/ERK and PI3K/Akt pathways. Cancer cell international, 21, 1-11.

[47] Requena, R., Vargas, M., & Chiralt, A. [2019] : Study of the potential synergistic antibacterial activity of essential oil components using the thiazolyl blue tetrazolium bromide (MTT) assay. Lwt, 101, pp.183-190.

[48] Halma MTJ, Tuszynski JA, & Marik PE. [2023] Cancer Metabolism as a Therapeutic Target and Review of Interventions. Nutrients.; 15(19):4245. <u>https://doi.org/10.3390/nu15194245</u>

[49] Farhadi, P., Yarani, R., Dokaneheifard, S., & Mansouri, K. (2020). The emerging role of targeting cancer metabolism for cancer therapy. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, 42(10), 1010428320965284. https://doi.org/10.1177/1010428320965284

[50] Farhadi, P., Irani, S., Gholami, M., & Mansouri, K. (2023). A metabolism targeting threepronged attack significantly attenuates breast cancer stem cell related markers toward therapeutic application. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 161, 114496. <u>https://doi.org/10.1016/j.biopha.2023.114496</u>