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Vehicular Ad-hoc Networks (VANETs) are growing into more desirable targets for malicious individuals 
due to the quick rise in the number of automated vehicles around the roadside. Secure data transfer is 
necessary for VANETs to preserve the integrity of the entire network. Federated learning (FL) is often 
suggested as a safe technique for exchanging data among VANETs, however, its capacity to protect 
private information is constrained. This research proposes an extra level of security to Federated 
Q-learning by merging Blockchain technology with VANETs. Initially, traffic data is encrypted utilizing 
the Extended Elliptic Curve Cryptography (EX-ECC) technique to enhance the security of data. Then, 
the Federated Q-learning model trains the data and ensures higher privacy protection. Moreover, 
interplanetary file system (IPFS) technology allows Blockchain storage to improve the security of 
VANETs information. Additionally, the validation process of the proposed Blockchain framework is 
performed by utilizing a Delegated Practical Byzantine Fault Tolerance (DPBFT) based consensus 
algorithm. The proposed approach to federated Q-learning offered by Blockchain technology has the 
potential to develop VANET safety and performance. Comprehensive simulation tests are performed 
with several assessment criteria considered for number of vehicles 100, Throughput (102465.8 KB/s), 
Communication overhead (360.57 Mb), Average Latency (864.425 ms), Communication Time (19.51 s), 
Encryption time (0.98 ms), Decryption time (1.97 ms), Consensus delay (50 ms) and Validation delay 
(1.68 ms), respectively. As a result, the proposed approach performs significantly better than the 
existing approaches.

Keywords  Vehicular Ad-hoc networks (VANETs), Blockchain system, Federated Q-learning, Extended 
elliptic curve cryptography (EX-ECC), Interplanetary file system (IPFS), Delegated practical byzantine fault 
tolerance (DPBFT).

Vehicle ad hoc networks (VANETs) are a kind of mobile ad hoc network that facilitates communication between 
automobiles and roadside equipment1. Drivers can benefit from the speed and safety that VANETs offer through 
their convenience and security applications2. An ambulance, for instance, may use communication with all 
other vehicles in the immediate area to establish the fastest path during an emergency, which would speed up 
the arrival time3. Additionally, in a weather-related situation, automobiles might provide real-time information 
regarding road conditions, assisting drivers in making decisions and possibly lowering the chance of collisions4. 
Applications involving collision avoidance, vehicle-to-vehicle communication, and traffic data in real-time are 
examples of such applications5. Big Data advancements have made it possible for VANETs to collect enormous 
volumes of unique traffic data, process it with Machine learning (ML)/Deep Learning techniques (DL), and 
deliver precise, low-latency operations6. However, VANETs require improved network safety and increased 
communication effectiveness7.

A massive system consisting of many nodes associated with a network including smart vehicles either 
driven by individuals or their own, infrastructure that has been integrated with V2X communication, mobile 
computing, and cloud-based computing systems. In an attempt to deliver complex intelligent usage, it depends 
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on a variety of fields including networking, communication, and cyber security. A vehicular system is essentially 
a flexible portable communication system that allows all required devices to communicate and share data by 
connecting vehicles and linked gadgets using vehicle-to-everything (V2X) transmission. The communication 
between a vehicle-to-vehicle (V2V), vehicle-to-pedestrian (V2P), vehicle-to-road (V2R), vehicle-to-cloud, and 
vehicle-to-infrastructure (V2I) is scenario shown in Fig. 1.

Data processing and secure communication of VANETs are the topic of many recent research efforts on 
privacy, integrity of data, node verification, and anti-reply assaults8. The majority of research has focused on 
centralized systems where hackers may easily carry out several types of network assaults like identity theft, 
manipulation of data, or network incapacity9. Federated Learning (FL) is vulnerable to inference of membership 
and network injection assaults, despite having been used to address some of these problems by sequential data 
storage10. Additionally, a number of ML/DL approaches have been applied to data analysis in order to extract 
significant data from extensive VANET systems11. However, many approaches were depend on a centralized 
server are not scalable, which causes latency and processing overhead to rise as the system expands12.

The aim is to propose a broader solution, as these shortcomings highlight the necessity for Blockchain is 
regarded as one of the well-known methods for ensuring security in decentralized systems like VANETs13. 
Specifically, Blockchain-based VANET systems offer enhanced sequential network safety, high data accessibility, 
high trustworthiness, enhanced traceability, and permanence14. Conversely, FL has focused attention on 
addressing the limitations of data centralization in vital networks like VANETs. In FL, every user trains the local 
algorithm independently from local information after a centralized server sends an initialized global system 
to the end individuals15. In order to supply the local information the users send their learned model locally to 
the centralized server16. Until the training phase of model efficiency meets the needs of the cloud server, these 
three phases are repeated numerous times17. A deep neural network is utilized in the reinforcement learning 
technique termed Deep Q-learning to estimate the ideal action value ratio18. Federated deep Q-Learning to train 
an advanced Q-network cooperatively across several devices while protecting data privacy19. Hence, Blockchain 
and FL are two technologies that can assist VANETs in different ways, enhancement in safety, flexibility, and 
efficiency can be achieved by VANETs through the integration of both systems20.

Motivation
VANETs offer enormous potential for improving traffic flow, roadway security, and comfort for passengers in the 
context of future autonomous vehicles. In traffic data, federated learning techniques often rely on a centralized 
server to spread and collect model variables throughout the training phase. A significant danger arises from 
the centralized strategy’s vulnerability to a single point of entry for assaults. Furthermore, if standard federated 
learning approaches are unable to sufficiently secure data, then there exists a problem with privacy and data 
integrity. Blockchain and federated learning strategy integration provide an effective solution to these constraints 
by enabling total separation and highlighting security, transparency, and confidentiality in information exchange 
across multiple sets of data. Hence, by combining the components of federated learning with the use of Blockchain, 

Fig. 1.  VANET communication.
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the proposed approach aims to provide a more efficient and secure system. By employing efficient consensus 
systems and extended encryption techniques, which provide data confidentiality, system security, and stability 
are significantly increased. Therefore, the proposed study enables the creation of a federated Q-Learning model 
for the VANET system utilizing Blockchain technology. The following is a summary of the major contributions 
produced by the suggested method:

•	 To present a Federated Q-learning with secured Blockchain-aided Elliptic Cryptography to prevent assaults 
in traffic data.

•	 To propose Extended Elliptic Curve Cryptography (Ex-ECC), an efficient encryption method for increased 
input data security.

•	 To develop Federated Q-learning is a novel learning model that is designed to analyze assaults and effective 
privacy protection.

•	 To evaluate higher storage and safety is attained by utilizing a Blockchain system, which is verified by a strong 
consensus algorithm.

•	 To provide an effective Delegated Practical Byzantine Fault Tolerance (DPBFT) consensus method for Block-
chain technology validation.

•	 To validate the performance of the proposed study by evaluating varied metrics and comparing the results 
with other existing methods.

The remainder of this study is arranged as follows: Section “Related work” offers a comprehensive literature 
review, highlighting their limitations and performance metrics. Section  “Proposed methodology” considers 
the proposed methodology discussion with a secure and efficient Blockchain-assisted Federated Q-learning 
approach. In Section  “Result and discussion”, the simulation results and brief discussion are presented. 
Conclusion and future work are described in Section “Conclusion and future work”.

Related work
VANETs are a new class of wireless networks that make a world of security and comfort applications for vehicles. 
It uses Intrusion detection system (TDS) components at several layers to guarantee dependable and secure node-
to-node communication. Nevertheless, IDS needs a large volume of information to process in order to detect 
intrusive network security. Consequently, there was an increase in the amount of traffic, which led to network 
difficulty. Additionally, Kumar et al.21 suggested to unique IDS design that combines a random forest (RF) 
classifier with a local erroneous factor to reduce IDS-generated network activity. The suggested study produced 
high false negative and positive rates with a low degree of precision.

Vehicular Edge Computing (VEC) was a viable model for placing computing power closer to vehicles, hence 
enabling low-latency vehicle-to-everything (V2X) applications. Nevertheless, creating the best possible strategy 
for providing V2X services while guaranteeing security and prompt service delivery was extremely difficult due 
to the highly dynamic situation of vehicle networks. Fardad et al.22 introduced to Blockchain-enabled vehicular 
Edge computing (BEVEC) system to address these issues. BEVEC utilizes a Blockchain with permissions to fuel 
a dual-layer verification mechanism that guarantees information security and correctness. The effectiveness of 
BEVEC was measured through a revolutionary system utility function that forms the framework of Blockchain’s 
role within the consensus process. A deep reinforcement Learning (DRL) approach was suggested to maximize 
utility and allow efficient execution of services in BEVEC. The limits of this study have increased energy use and 
high delay.

The edge of the automotive network poses significant concerns about service consistency, handling of 
resources, and adaptability across dynamic vehicular settings. Gharehchopogh et al.23 presented double Deep 
Q-networks (DDQN) as a multiple-goals technique. By combining the best features of DL and Deep neural 
networks (DNNs), this technique allows for dynamic managerial decisions that are adaptive to changing 
circumstances. The DDQN algorithm’s ability to consider numerous objectives enables a comprehensive trade-
off analysis, effectively balancing the various objectives to maximize system efficiency. The concept enhances 
data integrity by utilizing Blockchain technology, which was recognized for safe, decentralized design. This 
research has a time-consuming and computational cost.

In addition to accurately predicting congestion VANET reliability and quality of service (QoS), Shukla et al.24 
introduced the reliable, enduring, and blockchain congestion reduction system utilizing a variety of deep neural 
network (DNN), Q-learning and software Define network (SDN) algorithms to produce a precise outcome, fixed 
infrastructure. In order to create smart cities and connected vehicles, research was mostly focused on global 
SDN and blockchain technologies. This research has an expensive blockchain system with significant latency.

Multi-Objectives Reinforcement Federated Learning Blockchain (MORFLB) for transport networks was 
presented by Mohammed et al.25. MORFLB detects known and unexpected assaults on data from remote 
sensing in-vehicle systems with the goal of transmission delays and minimizing processes while optimizing 
the long-term benefits. MORFLB combines distributed deep neural system formation, proof-of-work mining, 
and multi-agent protocols. It consists of code nodes, distributed fog, and automotive devices built on lock chain 
reinforcement federated learning that simplifies benefits through experimentation. For automotive, the research 
establishes sequential issues that optimize and minimize a variety of parameters.

Single control of access, simple tampering, and simplicity of disclosure are issues with information kept on 
the Internet of Vehicles (IoV). Li et al.26 suggested the Blockchain Trust and Weighted Attribute-based Access 
Control Strategy (BTWACS), a security strategy for the IoV that leverages trust values, blockchain technology, 
and weighting attribute-related security to address this issue. Firstly, the use of both global and local blockchains 
to cooperatively manage the formation, verification, and storage of blocks, in order to attain distributed storage 
of data and guarantee that data can’t be tampered with randomly. Second, to create Blockchain-based Trust 
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Evaluation (BBTE), a Blockchain-related system for evaluating trust. This suggested approach can satisfy the 
access needs of different groups and functions within the IoV while also significantly lowering the computation 
and transmission expenses of automobiles.

VANET was attacked through the self-centered On-Board-Unit (OBU) utilizing a variety of approaches in 
order to make revenue. However, a lot of current techniques rely on the concept of direct cooperation, resulting 
in simple for massive networks to collapse in the event of an assault. Zhang et al.27 suggested an indirect 
reciprocate incentives system based on character to inspire OBUs within the VANET to assist each other, hence 
reducing the total amount of assaults. In order to guard against information manipulation attempts, which also 
use Blockchain-based technology to record OBU’s actions. Every OBU in VANET has an indirect exchange 
mechanism that can be thought of as a Markov Decision procedure (MDP). An approach based on Deep 
reinforcement learning (DRL) was presented to block assault energy to enable OBU training in an evolving 
environment to produce intelligent choices and communicate properly without recognizing the assault system.

In order to mitigate the privacy preservation problems while analyzing false data injection attack (FDIA) 
in smart grids, Li et al.28 have designed a secured federated deep learning is presented. This existing study 
integrates transformer, federated learning and pailleir cryptosystem for detecting the attacks in secured manner. 
In this, the transformer is placed in edge nodes which are connected among electrical quantities through multi-
head self-attention mechanism. With the aid of federated learning, this study used the data from each node 
for collaboratively train the deep learning model while securing the data by maintaining it locally. Further, for 
enhancing the security of federated learning, a novel federated learning scheme is developing by integrating 
federated learning concept. The simulation results prove the efficacy of utilized federated learning in several 
scenarios.

Li et al.29 have presented a novel federated deep reinforcement learning model for forecasting wind power 
with increased data privacy. This existing study integrates federated learning concept with deep reinforcement 
learning for maintaining the data privacy and openness while forecasting ultra-short term wind power. Initially, 
this study introduces deep deterministic policy gradient (DDPG) for enhancing the detection accuracy. After, 
the DDPG algorithm is integrated with the federated learning framework for attaining precise detection process 
in decentralized manner by distributing model parameters rather than the private data. The experimental results 
show that the developed mechanism outperforms other conventional prediction approaches. Comparisons of 
existing approaches are shown in Table 1.

Many methods are currently been developed to address the security issues with VANET systems. They were 
unable to provide better outcomes because of their limitations. While many encryption techniques have been 
employed in several studies to protect data privacy security remained the primary concern. The issues that occur 
within the area in avoiding harmful attacks and ensuring safety are the main focus of this research. A feasible 
approach of this study introduces a Blockchain innovation with federated deep Q-learning, which increases 
the security and effectiveness of the VANET network. Furthermore, research has been done on the efficient 
technique to prevent assaults, maintain consensus, and prevent specific areas of weakness. Hence, the proposed 
approach has provided the potential benefits and implementing Blockchain-based federated deep Q-learning in 
the VANET system. The ultimate goal of enhancing the VANET system’s privacy and data security.

Proposed methodology
The transport system, which aims to increase road safety, traffic efficiency, and passenger comfort will mostly 
be built around VANET Networks. Because, vehicular systems are decentralized, highly mobility, significant 
security, operates in a hostile environment and communication problems arise for VANET applications. 

Authors Techniques used Performance metrics Limitations

Kumar et al.21 RF Accuracy
Detection time High false negative and positive rates with low degree of precision

Fardad et al.22 BEVEC Latency
Energy consumption Increased energy use and high delay

Gharehchopogh et al.23 DDQN
Latency
Energy consumption
Computational cost

Time-consuming and computational cost

Shukla et al.24 DNN Throughput
Energy consumption Expensive blockchain system with significant latency

Mohammed et al.25 MORFLB Delay Less privacy system.

Li et al.26 BTWACS Accuracy
Encryption time High computational cost and less security system.

Zhang et al.27 DRL
Latency
Accuracy
Energy consumption

Enhanced network congestion

Li et al.28 Transformer based FDIA
Accuracy
Precision
Recall
F1-score

Failed to handle DoS attacks and replay attacks

Li et al.29 DDPG with federated learning NMAE
NRMSE Failed to consider the effects of communication delay and packet loss

Table 1.  Comparison of existing approaches.
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Blockchain has recently been proposed as a solution to a number of VANET problems such as the distribution 
of reliable, potentially fatal information. Nevertheless, current safety message transmission strategies are 
ineffective, susceptible to illegal nodes, and predicated on the vast majority of accurate premises. Attackers can 
join together in the VANET environment to share misleading information that poses a major risk to public 
safety. This study proposes combining Blockchain with a Federated Q-Learning (FdQLChain) to provide an 
additional layer of security for VANETs. Specifically, to suggest an effective and secure Blockchain-based FL 
method to guarantee data privacy while ensuring efficient communications in VANETs. Using the FL model for 
VANETs has effectively reduced the congestion delay and communication overhead. A dependable and secure 
data communication method between automobiles, roadside equipment, and a cloud server is created viable 
by combining Blockchain with the FL framework. The block diagram of the proposed methodology is given in 
Fig. 2.

Initially, generated traffic data is encrypted using the Extended Elliptic Curve Cryptography (EX-ECC) 
technique to efficiently maintain the integrity and security of vehicles. By utilizing the sequential FL model, the 
proposed model minimizes the long delay and protects from possible threats and attacks that could use EX-
ECC. Here, the Federated Q-learning model trains the inputs and evaluates the attacks to provide greater privacy 
preservation. After, the data is securely stored in Blockchain technology. Finally, Blockchain storage is enabled to 
enhance the security of VANET information through Interplanetary File System (IPFS) technology. A consensus 
technique based on Delegated Practical Byzantine Fault Tolerance (DPBFT) is used to validate the suggested 
Blockchain system. The proposed Blockchain-enabled security mechanism protects the data privacy of users.

Extended elliptic curve cryptography (EX-ECC)
The proposed extended ECC encryption method is utilized to encrypt the data. The ECC method is also more 
complex and difficult to implement, which raises the possibility of execution errors and lowers the security of 
the system30. This, enhanced ECC is suggested in order to improve security. Normal ECC only generates two 
types of keys: private and public. Extended ECC generates a secret key in addition to the public and private keys 
employed in the encryption algorithm and deducted from the decryption ratio. This increases the complexity 
of the two stages. It becomes extremely difficult to identify the original data if the encryption and decryption 
complexity is increased. It immediately raises the data’s level of security. The extended ECC is represented 
mathematically by Eqs. (1)–(7),

	 x2 == y3 + ay + b� (1)

Hence, a and bdenotes integers. The technique utilized to generate keys in a cryptographic operation determines 
secure encryption appears.

In the proposed method, three different kinds of keys must be generated. For data encryption, the public key is 
first generated. A private key is then created in order to decrypt the data. Ultimately, the secret key is constructed 
using the data points within the elliptic curve, private and public keys. Assume that the point Bs represents 
the curve baseline. Create a private key Prk  by selecting a random number from 0 and n-1. Equations (2)–(3) 
demonstrate the public key was generated.

	
P uk = Pr

k
∗ Bs� (2)

Fig. 2.  Block diagram of the proposed method.
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P uk =

∏
(Prk, Bs)� (3)

Where pukrepresents a public key, Prkindicates a private key, and Bsdenotes an elliptic curve point. Then,puk , 
Prkand Bs are combined to create the secret key, which is expressed as Eqs. (4),

	
Sk =

∑
(puk, Prk, Bs)� (4)

Thus, Skrepresents a secret key. The data points generated from traffic data are encrypted following key 
generation. Equations (5)–(6) denotes the two cipher texts that are included in the encrypted data.

	 C1 = (S1 ∗ Bs) + Sk � (5)

	 C2 = M + (S1 ∗ P uk) + Sk � (6)

Through the decryption process, the original data can be stored. Since decryption was the opposite of encryption 
as Eq. (7) illustrates the secret key created during the decryption stage is eliminated from the standard equation 
for decryption.

	 M = ((C2 − Prk) ∗ C1) − Sk � (7)

Where, M denotes original message, S1denotes random number in the range from 1 and n-1, C1 and C2
represents cipher text 1 and 2.

Federated Q-learning model
In the proposed VANET systems, where traffic data privacy is particularly essential, identifying and reducing 
threats through the use of new technologies31. Its include Blockchain and federated learning has emerged as a 
possible method. In the beginning, sensitive data is encrypted to guarantee privacy. The most recent Blockchain-
assisted federated learning framework, which integrates the performance of Blockchain with the interactive and 
secure privacy features of federated learning, receives the encrypted information as input within the proposed 
approach. The model continuously improves the ability of common data patterns and may identify deviations 
that can indicate potential attacks by utilizing reinforcement learning methods such as Q-learning.

The adaptability of the system to dynamically alter detection capabilities via adaptive learning strengthens the 
ability to evolve threats in the traffic sector. Moreover, the Blockchain component is necessary to maintain the 
federated learning technique’s integrity and accessibility. Blockchain technology increases the entire transparency 
and dependability of the system by maintaining a distributed tamper-proof ledger of system modifications and 
learning data inputs from multiple users. As a result, federated learning with Blockchain technology facilitates 
enhanced privacy protection and effectively detects and reduces assaults within the field.

	(a)	� Reinforcement learning (RL).

Reinforcement learning is defined as a type of data mining that enhances benefits for environmental vehicle 
activities by integrating user communication. The Markov Decision Process (MDP) in machine learning uses 
dynamic computing approaches to determine the most effective plan of action for maximizing rewards with 
time. RL’s key actions are as follows: In order to perform activities and collect data, an individual essentially 
acts in direct interactions with environments for each of the stages. Second, the surroundings interact with 
the activity by providing either beneficial or harmful benefits. Third, by detecting alterations in the immediate 
surroundings, the system maximizes the benefits that are presently acquired. Fourth, in order to raise the 
probable reward quantity, the RL technique has been applied, beginning with current conditions. With the aid 
of RL, the researchers created an adaptive neural system for assault detection that is capable of independently 
identifying new threats.

	(b)	� Q-learning (QL).

QL is a reinforcement learning technique in which the system estimates the value performed and updates each 
of the locations and behaviors for each iteration in order to decide which action N delivers the highest reward 
R. The approach is non-adaptive and doesn’t depend on models to handle stochastic rewards. The simplest type 
of system state S, operates an action N, data reward R, and the subsequent stateŜ, and uses Eq. (8) to estimate 
the Q value.

	 Q (Ni, Si) ← (1 − β) Q (Ni, Si) + β (Ri + γmaxQ (NiSi))� (8)

Here, Ri , Siand Ni denotes reward, state, and action at a time i, 0 < γ < 1indicates the relative range for 
rewards, and 0 < β < 1represents learning rate, respectively. Furthermore, a non-adaptive method of stochastic 
incentives can be taken with Q-learning. Additionally, Q-learning can currently learn by constantly following 
the rules. The future reward is Kλ (S) determined as Eqs. (9),
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Kλ (S) =
∑

N

λ (N, S)

∑
S+

BSS+ (N) R
(
S, S+, N

)
+ wKλ

(
S+)� (9)

Where R
(
S, S+, N

)
 represents reward evaluated as state transition, BSS (N) indicates the possibility of state 

transition, w denotes weight reduction for present and future rewards. Equation (10), Kλ
j

(
S+)

 represents the 
estimated value R at S+ within the original iteration j.

	
Kλ

j+1 (S) = maxN

∑
S+

BSS+ (N) R
(
S, S+, N

)
+ wKλ

(
S+)

� (10)

Hence Kλ
j+1

(
S+)

 represents the computed value of R  the modified iterationj + 1. Also, each iteration can be 
finished and the number of iterations in reinforcement learning may increase effectively.

	(c)	� Federated learning.

The proposed federated learning provides a method for machine learning that permits cooperative approach 
training by numerous vehicles without requiring users to share their raw data32. Rather, clients use their own 
data to train local methods, only sending upgrades to a central server. These changes are combined through the 
server to produce a global method, which is subsequently sent back to clients. Figure 3 depicts the procedure of 
federated learning.

The proposed FL framework assumes that a cloud server Y, Road side unit (RSU) (R), a collection of vehicles 
V = {1, 2, 3, 4, ?N}, trusted regulating authority, and license authority are connected. For taking part in the FL 
training, every vehicle participating V uses local data for size s. A set of vectors containing features from a sample 
of data comprises the input and output pair which forms the training data and every input matrix identified is 
the output. With each participant vehicle V, Y the server distributed a global method ωt using R communication 
rounds. The V use distributed stochastic gradient descent (DSGD) to train local methods. Following local 
training, an autonomous communication approach is used to upload and create a local method ωk

t  to the server 
Y. Where the cloud server creates an entirely new global method ωt+1 for further communication round. The 
required level of convergence is reached then the process is repeated. VANETs’ federated Q-learning approach 
uses node-specific learning updates and adaptive synchronization to adjust to evolving topologies. To minimize 
disruption to the global model, the model utilizes incremental learning to preserve local updates when nodes 
join or leave the network. Vehicles can upload their changes after being reconnected due to buffered data storage, 
which handles temporary disconnections. By applying consensus techniques like DPBFT, which approve 
transactions even when node involvement varies, the Blockchain ledger maintains the consistency and integrity 
of the decentralized network while ensuring continuity.

Blockchain-based storage using interplanetary file system (IPFS)
The proposed Blockchain is utilized to facilitate federated learning, ensuring the authenticity of the gathered 
local data and learned models33. The proposed IPFS communication with Blockchain is required to solve the 
problem of storing huge amounts of VANET information. A distributed, peer-to-peer network for data storage 
is made possible by a novel protocol known as IPFS. Furthermore, IPFS offers the ability to store large files in a 
dependable and allocated manner. Figure 4 shows how IPFS allows many peers to share files.

Figure  4a shows the content identifier (CID), also known as the file hyperlink or address, which is an 
encrypted hashing technique and value for every file uploaded to the IPFS network. Additionally, as shown in 
Fig. 4b, the file may be accessed and received by other CID persons. In IPFS, each peer serves as a file server, 
facilitating the quick sharing and storing of enormous volumes of files. A peer may be able to get a record from 
many data sources, as shown in Fig. 4c.

Because of the distributed strategy, the principal operator cannot alter data. Because the contents of the 
file have been altered in Fig. 4d, the CID further provides proof for the file’s validity. Because of its enormous 
capability for dealing with the problem of redundant, large data storage in Blockchain, IPFS is regarded as a 
responsive Blockchain component. Peers have the option to add CIDs to Blockchain activities and save layout 
files and records into IPFS for the purpose of protecting authenticity and dependability.

Validation using delegated practical byzantine fault tolerance (DPBFT)
The proposed model is validated utilizing the DPBFT consensus procedure. The option of a consensus method 
for a Blockchain system is critical since it immediately affects features like safety, capacity, centralization, 
and energy consumption. Due to a number of reasons, the DPBFT consensus method is distinct from other 
consensus processes including Proof of Work (PoW), Proof of Stake (PoS), and Delegated Proof of Stake (DPoS). 
Initially, PoW, PoS, and DPoS offer a more scalable, which requires a large amount of processing power. The 
proposed DPBFT uses a small number of selected delegates to reach consensus, greatly reducing the amount of 
energy needed and the computational load.

The proposed DPBFT technique is a distributed consensus algorithm defined by phase machine replication34. 
Nodes cannot change messages transmitted by other nodes, and all conversations must be signed by all nodes. 
Once a client request is issued, it won’t be executed again until the previous request has been completed through 
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a network-wide connection. In the DPBFT method, every node operates identically, consisting of a single main 
node and replica nodes for every other node. The master node is in charge of handling client requests and 
sending data to the replica nodes in the proper sequence as shown in Fig. 5.

The DPBFT algorithm consists of three basic stages: prepare, commit, and pre-prepare. First, a client sends 
a request to the main node. The primary NO will then send a Pre-prepare communication to the other nodes 
after transmitting the client request. After receiving the Pre-prepare data, other nodes initiate the fundamental 
tri-phase consensus process. The details are as follows:

•	 Pre-prepare stage: The Pre-Prepare signal is sent to the node, which then determines whether to accept the 
request according to the message items or the number of the request order.

•	 Prepare phase: The node notifies other nodes to get ready after accepting the request. The Prepare stage is fin-
ished if, within a predetermined time frame, more than 2f represents the maximum amount of fault-tolerant 
malicious nodes distinct nodes obtain a train message.

•	 Commit phase: Broadcast commit information to different nodes. The majority of nodes are entering the 
Commit stage and consensus is established when a 2f + 1 commit message is received. At this point, the node 
performs the request and transfers the data. The node notifies the client, once the operation has been com-
pleted.

Fig. 3.  Process of federated learning.
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DPBFT is a strong option for systems that need efficiency and security, such as intelligent VANET systems, 
because it ensures byzantine fault tolerance while maintaining effective transaction authority and block 
processing.

Result and discussion
In this section, the performance estimation and result analysis of the proposed model are explained. The 
Intel(R) Core (TM) i7-3770 CPU @ 3.40 GHz with 16 GB of installed memory and a 64-bit operating system 
is implemented utilizing the MATLAB platform, and no pen or touch input is required. Metrics including 
communication time, communication rounds, average latency, communication overhead, average accuracy, 
computational cost, Execution time, consensus delay, Encryption time, decryption time, and throughput 
are used to assess performance. Additionally, the proposed study was compared to the most recent baseline 
methodologies.

Performance metrics evaluation
The following computations are performed for the assessment parameters in order to assess the effectiveness of 
the proposed schemes. To improve transportation systems, increase road safety, and comprehend traffic patterns, 
transport vehicle details are essential. Initially, traffic vehicle data are created at random and transmitted to 

Fig. 4.  IPFS system: (a) Uploading files to IPFS and generate the Content identifier, (b) Downloading the files 
from other peers using Content identifier (CID), (c) Accessing files from multiple sources, and (d) Verifying 
file integrity using CID.
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various locations. These programs gather information regarding network dimensions, number of vehicles, speed 
of vehicle, etc. Efficient and secure transportation systems can be constructed through efficient data collection, 
processing, and analysis of traffic vehicle information. Table 2 shows the simulation parameters and values.

The evaluation matrix can be used to establish the performance of the suggested strategy in the following 
ways:

•	 Communication overhead (MB): The extra information needed for a process of communication in addition 
to the actual data transmitted is referred to as communication overhead. It includes a range of elements that 
lower communication effectiveness.

	
Communication overhead = (T otal data transfered − Actual data)

100%
� (11)

•	 Throughput (KB/s): The quantity of data units a device can handle in a specific length of time is known as 
throughput. It is widely used in a wide range of components, from associations and networks to different parts 
of gadgets. It can be stated as follows:

	
T hroughput = T otal packet received

T ime
� (12)

•	 Average Latency (ms): The average amount of time that a data packet takes for it to move between sources to 
destination is called average latency.

Parameters Measurement

Simulation time 1000 s

Network dimensions 3000 m × 3000 m

Number of vehicles 100

Speed of vehicle 60 km/h

Vehicle length 5 m

Vehicle width 3.5 m

RSUs 10

Range of vehicle-to-vehicle transmission 0–350 m

Maximum network bandwidth 3 MB/s

Table 2.  Simulation parameters and values.

 

Fig. 5.  Structure of DPBFT algorithm.
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Average latency = Sum of all latency measurements

T otal measurements time
� (13)

•	 Encryption time (ms): The term encryption time refers to the amount of time it takes a suggested vehicle sector 
to protect an area of data using a certain encryption process.

	
Encryption time =

∑
(Tei)/Np� (14)

•	 Decryption time (ms): The duration required by data to convert an acquired Cipher text data back into plain-
text is termed as the decryption time.

	
Decryption time = Np/

∑
(Tdi)� (15)

Where Tei denotes the duration of data encryption, Np indicates the total amount of data, and Tdi represents 
the time required for each data to be decrypted.

Performance evaluation of various methods
This section provides the result analysis and comparison of the proposed model with existing methods in terms 
of advanced encryption system (AES)35, Elliptic Curve Cryptography (ECC), Data encryption system (DES), 
Rivest cipher4 (RC4), and blowfish36.

In Fig. 6a, the encryption time of proposed EX-ECC is compared with other encryption methods for proving 
the ability of proposed work. The analysis shows that the proposed method has attained lower encryption time 
than other existing methods. The proposed method attains 0.98 ms for encryption time. The existing ECC 
consumes the encryption time of 2.34 ms and the existing blowfish has a higher encryption time than RC4, AES, 
and DES. The AES approach achieves a value of 4.47 ms, it has taken less encryption time. The DES, RC4, and 
Blowfish attain values of 8.48, 12.87, and 14.1 ms. Hence, the existing encryption approaches are computationally 
intensive and impacting performance. So, the proposed encryption offers a secure link for information exchange 
between vehicle systems. In Fig. 6b, the proposed approach obtains a value of 1.97ms and the existing ECC 
consumes 2.45 ms for decrypting the data. However, the other existing approaches like AES, DES, RC4 and 
Blowfish obtains increased decryption time as 3.25, 7.76, 10.56, and 12.78 ms respectively. Existing approaches 
utilizes more energy that reduces the lifespan of batteries in vehicles. Effective group handling of key methods 
has the potential to decrease the overhead associated with sharing keys and updates within VANETs, hence 
improving encryption/decryption times effectively. Also, as compared with conventional ECC, the proposed 
EX-ECC has attained better outcomes in terms of encryption time and decryption time. The ability of EX-ECC 
is enhanced by creating additional secret key. This secret key helps to maintain the data integrity and mitigates 
the complexity problem. Also, the efficiency in EX-ECC speed ups the operation with reduced computational 
resources than conventional ECC which is proved in Table 3. Table 3 depicts the values of the encryption and 
decryption algorithm.

A number of assessment criteria highlight the effectiveness of the proposed approach such as FedAvg, 
Fair, and privacy-preserving deep learning (FPPDL)37, and Distributed resource allocation method based on 
Blockchain federated learning approach38.

The communication time of proposed and existing approaches for varying the number of vehicles are shown 
in Fig. 7. A total amount of 100 vehicles are considered for the proposed approach. For vehicle data 10, the 
proposed approach attains a value of 6.32 s, whereas existing approaches are DRAM-BFL, FPPDL, and FedAvg 
achieving values of 5.53, 4.21, and 2.29 s. For vehicle data 40, the proposed approach attains a value of 10.85 s, 
the existing approaches are 8.10, 6.78, and 4.66 s. For vehicle data 80, the proposed approach attains a value of 
17.62 s, the existing approaches are 11.69, 11.78, and 8.20 s. For vehicle data 100, the proposed approach attains 

Fig. 6.  a, b Comparison of encryption and decryption time for the proposed model.
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a value of 19.51 s, the existing approaches are 9.95, 14.80, and 16.03 s. So, the existing approaches are privacy 
concerns arise when comprehensive communication data is gathered, particularly in critical settings. Thus, the 
proposed approach has a faster communication time than compared to existing approaches are mentioned value 
in Table 4.

Figure 8 depicts the comparison of proposed and existing approaches by varying communication rounds. 
For 100 rounds, the proposed approach attains a value of 926.35 s, than existing Fedavg, FPPDL, and DRAM-
BFL approaches are 1620.86, 1255.22, and 1046.66 s. For 200 rounds, the proposed approach attains a value of 
2009.53 s, and the existing approaches are 2699.25, 2365.88, and 2189 s. For 300 rounds, the proposed approach 
attains a value of 3009.43 s, the existing approaches are 3710.11, 3569.84, and 3278.32 s. For 400 rounds, the 
proposed approach attains a value of 4001.98 s, the existing approaches are 4702.25, 4540.67, and 4173.87 s. For 
500 rounds, the proposed approach attains a value of 5019.13 s, the existing approaches are 5493.43, 5525.76, 
and 5123.13  s. Thus, the existing approaches are communication time can be impacted by variations in the 
quantity of data delivered every round. The proposed approach has communication efficiency and enhances 
model performance.

Fig. 7.  Analysis of communication time.

 

Encryption time (ms)

Proposed AES DES ECC RC4 Blowfish

0.98 4.47 8.48 2.34 12.87 14.1

Decryption time (ms)

Proposed AES DES ECC RC4 Blowfish

1.97 3.25 7.76 2.45 10.56 12.78

Table 3.  Encryption and decryption algorithm.
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A comparison of the average latency of proposed and existing approaches is illustrated in Fig. 9. The proposed 
approach has lower latency than existing approaches. For vehicle data 10, the proposed approach attains a value 
of 79.95ms, whereas existing approaches are FedAvg, FPPDL, and DRAM-BFL achieve values of 406.80, 261.54, 
and 145.32ms. For vehicle data 30, the proposed approach attains a value of 177.59ms, the existing approaches 
are 911.21, 584.37, and 308.31ms. For vehicle data 60, the proposed approach attains a value of 371.27, the 
existing approaches are 1765.98, 1402.74, and 676.40ms. For vehicle data 80, the proposed approach attains 
a value of 628.769ms, the existing approaches are 2328.56, 2030.69, and 1073.42 s. For vehicle data 100, the 
proposed approach attains a value of 864.42ms, the existing approaches are 2920.02, 2426.15, and 1213.04ms. 

Fig. 8.  Analysis of execution time by varying communication rounds.

 

Communication time (s)

Number of vehicles FedAvg FPPDL DRAM-BFL Proposed

10 2.296 4.215 5.538 6.323

20 2.919 5.233 6.36 8.077

30 4.23 5.81 7.625 9.342

40 4.661 6.782 8.107 10.85

50 5.29 7.75 9.174 12.656

60 5.82 9.01 9.754 14.266

70 7.083 10.373 10.968 15.726

80 8.203 11.784 11.695 17.627

90 8.93 13.146 14.085 18.696

100 9.951 14.804 16.03 19.51

Table 4.  Values for proposed and existing communication time.
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Hence, the existing approaches have low responses and increased latency, than proposed method has less latency 
and an effective model. Table 5 illustrates the value of average latency.

Figure 10 shows the communication overhead of proposed and existing approaches by varying numbers of 
vehicles. The communication overhead of existing approaches is higher than the proposed approach. For vehicle 
data 10, the proposed approach attains a value of 100.962 Mb, than existing approaches are FedAvg, FPPDL, and 
DRAM-BFL achieve values of 1024.03, 519.23, and 230.76 Mb. For vehicle data 30, the proposed approach attains 
a value of 201.923 Mb than existing approaches are 1658.65, 706.73, and 346.15 Mb. For vehicle data 60, the 
proposed approach attains a value of 331.73 Mb, than existing approaches are 2682.69, 1182.69, and 764.42 Mb. 
For vehicle data 80, the proposed approach attains a value of 375 Mb, than existing approaches are 3302.88, 
1788.46, and 1009.61 Mb. For vehicle data 100, the proposed approach attains a value of 360.57 Mb, than existing 
approaches are 41.25, 2639.42, and 1557.69 Mb. Therefore, the existing approaches have higher communication 
overhead and large amounts of data. So, the proposed approach minimizes overhead and improves performance. 
Table 6 depicts the proposed and existing communication overhead values.

Figure 11 depicts the comparison of average accuracy with proposed and existing approaches by varying 
communication rounds. The model attains a greater training accuracy rating concerning communication rounds. 
The proposed model includes the use of encryption techniques, which raises the training model’s security and 
helps resist processing efforts. So, the existing models have inaccurate outcomes and fewer privacy concerns. For 
proposed approach has efficient data training and transmission on the VANETs system.

The performance analysis of proposed and existing approaches for throughput by varying data size is shown 
in Fig.  12. For data size 20, the proposed approach attains a value of 20,547 KB/s whereas existing FedAvg, 
FPPDL, and DRAM-BFL approaches obtain values of 16,712, 17,808, and 19,726 KB/s. For data size 40, the 
proposed approach achieves a value of 41095KB/s than the existing approaches are 35,890, 2904, and 38,356 
KB/s. For data size 60, the proposed approach attains a value of 60,273 KB/s than existing approaches are 50,684, 
41,917, and 57,260 KB/s. For data size 100, the proposed approach has 102,465 than existing approaches are 
79,178, 66,027, and 93,972 KB/s. So, the existing methods throughput measures can be impacted by mistakes, 

Fig. 9.  Analysis of average latency.
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discrepancies, or missing data. Thus, the proposed approach has evaluated various data sizes and analyzed the 
efficiency of the proposed model. Throughput by varying data size values is mentioned in Table 7.

Blockchain protocols and new consensus algorithms can be developed by contrasting verification and 
consensus delay. To maximize privacy and performance, it is essential to recognize the fine distinctions between 
consensus latency and verification. Selecting the most effective consensus method for a particular use case can 
be determined by comparing the proposed and several existing algorithms. In order to evaluate the efficacy of 

Fig. 10.  Analysis of communication overhead.

 

Average latency (ms)

Number of vehicles FedAvg FPPDL DRAM-BFL Proposed

10 406.801 261.549 145.327 79.953

20 633.662 350.346 226.836 125.117

30 911.219 584.371 308.319 177.595

40 1203.38 818.42 411.669 222.758

50 1524.671 1066.997 522.258 318.82

60 1765.984 1402.741 676.405 371.272

70 2036.303 1723.982 794.207 510.867

80 2328.563 2030.695 941.141 628.769

90 2635.176 2330.094 1073.421 732.019

100 2920.022 2426.155 1213.04 864.425

Table 5.  Comparison values for average latency.
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proposed DPBFT, consensus and validation delay is calculated and compared with other the existing consensus 
algorithm like proof of trustworthiness (PoT), Proof of stack (PoS), Proof of elapsed time (PoET), and Proof of 
quality factor (PoQF)39.

Figure 13 illustrates the consensus delay and validation delay comparison of proposed and existing methods. 
Through this comparison, the trade-offs between network latency and scalability is revealed because of varying 
the input traffics and calculating the latency achieved. In Fig. 13a, the time required for confirming that the 
event message is accurate has been included within the consensus delay. The proposed approach has decreased 
consensus delay, it has attained a value of 50ms. But, the existing approaches have attained higher consensus 
delay as PoT (80 ms), PoS (120 ms), PoET (180 ms), and PoQF (230 ms). In Fig. 13b, the validation delay of 
existing approaches is higher delay than existing approaches. The PoQF has a higher delay than the PoT and PoS 
methods. In comparison to existing approaches are attained PoT (3.47 ms), PoS (6.48 ms), PoET (10.87 ms) and 
PoQF (14.8 ms). The consensus and validation delay has a direct impact on the average latency. In the meantime, 
the proposed approach achieves a validation delay of 1.68 ms, respectively. The graphical representation of Fig. 13 

Fig. 11.  Analysis of average accuracy by varying communication rounds.

 

Communication overhead (MB)

Number of vehicles FedAvg FPPDL DRAM-BFL Proposed

10 1024.038 519.231 230.769 100.962

20 1370.192 634.615 274.038 144.231

30 1658.654 706.731 346.154 201.923

40 1918.269 865.385 519.231 201.923

50 2423.077 1024.038 576.923 375

60 2682.692 1182.692 764.423 331.731

70 3028.846 1514.423 865.385 389.423

80 3302.885 1788.462 1009.615 375

90 3591.346 2206.731 1456.731 375

100 4125 2639.423 1557.692 360.577

Table 6.  Values for communication overhead.
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clearly shows that the proposed DPBFT have attained reduced consensus delay and validation delay as compared 
with other existing consensus algorithms. This is because, the utilized DPBFT can reduce the demand for energy 
intensive computations which leads to minimum power and computational resources. Also, by assuring the 
consensus, DPBFT can handle byzantine faults so that the reliability in dynamic VANET environment is getting 

Throughput (KB/s)

Data size FedAvg FPPDL DRAM-BFL Proposed

10 16712.33 17808.22 19726.03 20547.95

20 22739.73 21917.81 26027.4 25753.42

30 30410.96 26301.37 32054.79 32876.71

40 35890.41 29041.1 38356.16 41095.89

50 43013.7 35616.44 48767.12 50410.96

60 50684.93 41917.81 57260.27 60273.97

70 57534.25 48767.12 66027.4 71232.88

80 65753.42 55890.41 76438.36 81095.89

90 72876.71 62465.75 85205.48 92602.74

100 79178.08 66027.4 93972.6 102465.8

Table 7.  Values for throughput by varying data size.

 

Fig. 12.  Analysis of throughput by varying data size.
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improved. Moreover, the small amount of trusted delegated nodes in DPBFT is elected by stakeholders. By 
processing with limited stakeholders, DPBFT provides a faster consensus process. This can helps to minimize 
the overall network latency computational overhead as compared with other consensus algorithms like PoT, 
PoS, PoET and PoQF. Figure 14 shows the security percentage comparison of proposed and existing methods.

The comparison analysis in Fig.  14 proves the ability of proposed EX-ECC approach. As compared with 
other encryption algorithms like ECC, AES, DES, RC4 and Blowfish, the security of input traffic information 
are enhanced in the proposed EX-ECC approach. Here, the security is analysed under dynamic network 
environments in which 500 vehicular nodes are considered by real-time. By varying the traffic rates from 100 
to 500, the security is analysed against Sybil attacks and Denial of Service (DoS) attacks. The proposed study 
prevents Sybil attacks and DoS attacks because of the great efficiency of EX-ECC and blockchain framework. 
Through the specific cryptographic keys, each participating nodes are assigned and securely recorded on the 
decentralized ledger (blockchain). The utilized EX-ECC performs secure key exchange process which ensures 
only authenticated nodes. This can helps to prevent malicious Sybil and DoS attacks from generating various 
false identities to impact the learning process.

Analysis of proposed technique for real-time scenarios
The real-time data were considered to determine the scalability of proposed technique. This data was considered 
based on various parameters of vehicles and RSU which includes the number of vehicles as 1000, number of RSU, 
location of each vehicle data, signal strength, and so on. The ratio of training and testing is 80:20, and the size of 
training and testing data are 1056 and 264. Here, 80% of the data was utilized to train the model, and 20% of the 
data was used for testing. The proposed uses adaptive learning rates and weighted aggregation in the federated 
Q-learning framework to handle bias and data skew in VANETs. To ensure that nodes with bigger or more 
diversified datasets contribute adequately to the global model, a weight is applied to each vehicle’s local model 
update based on the volume and quality of its data. Additionally, bias from prevalent data sources is reduced by 
methods like data regularization and normalization. The method ensures balanced learning, encourages equitable 
representation from a variety of vehicular data sources, and enhances overall model adaptability by routinely 
assessing model performance across various vehicle types (such as urban vs. highway). The convergence analysis 

Fig. 14.  a, b Security percentage comparison of proposed and existing methods.

 

Fig. 13.  Comparison of consensus delay and validation delay.
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is conducted for real-time data to determine the efficiency of federated learning techniques for varying numbers 
of vehicles which is represented in Fig. 15.

The proposed technique attained 55.4% accuracy for 100 vehicles by analysis of non-independent and 
identically distributed (IID) data. Similarly, the performance of the proposed technique was analyzed for varying 
numbers of vehicles to determine its convergence. The proposed technique attained 66.8% accuracy for 200 
vehicles, 68.98% accuracy for 300 vehicles, 73.93% accuracy for 400 vehicles and 85.77% accuracy for 1000 
vehicles. Several strategies are required to ensure convergence in federated learning among highly mobile and 
intermittently related vehicles in VANETs. To secure the data, adaptive synchronization systems allow vehicles to 
transmit non-IID data when it’s reconnected. Weighted aggregation ensures that updates from various nodes are 
suitably balanced depending on data quality and relevance while handling non-IID data. Moreover, local models 
can improve on different data patterns while increasing to the global model due to strategies like personalized 
federated learning. These methods enable high convergence despite data mobility and heterogeneity when 
combined with dynamic model averaging and recurrent global validation. The comparison of latency for varying 
numbers of vehicles is represented in Fig. 16.

The latency of proposed technique for real-time data is analyzed for varying numbers of vehicles to determine 
its efficiency. The proposed technique attains 506.80 ms for 100 vehicles, 733.66 ms for 200 vehicles, 911.21 ms 
for 300 vehicles, 2203.380 ms for 400 vehicles, and 4920.02 ms for 1000 vehicles. The proposed method combines 
priority-based transaction processing and dynamic consensus adjustment to reduce the effect of Blockchain 
overhead on latency and real-time responsiveness in VANETs, especially during emergencies or periods of high 
traffic. To improve the validation, critical messages (such as emergency alerts) are given preference over less 
urgent transactions. By employing pre-selected nodes for rapid decision-making and minimizing the number 
of validation stages, the DPBFT consensus method is tuned for low latency. Finally, IPFS off-chain data storage 
reduces on-chain transaction burden by making sure that only necessary data is handled on the Blockchain, 
ensuring real-time performance even in situations with high traffic. The proposed Blockchain and federated 
learning method is utilized for handling thousands of vehicles highly scalable due to a few essential techniques. 
To reduce communication overhead and ensure effective model aggregation, hierarchical federated learning 
divides vehicles into clusters. By dividing the ledger into smaller, more manageable sections, sharding is used on 
the Blockchain side to improve throughput and allow transactions to be performed in parallel.

Discussions
The use of artificial intelligence in safety-sensitive scenarios such as self-driving vehicles, smart medical care 
IoT, etc. The existing methods have significant issues regarding the need for trustworthy artificial intelligence 
methods to ensure safety and privacy through logical reasoning. FL was considered a promising secure privacy 
system to train local and global model devices and a more reliable system.

Nevertheless, there are security issues with the FL framework such as hostile servers and system tampering 
assaults from malevolent devices. Which can reduce or completely eliminate the reliability of the trained model. 
Certain ECC patents may restrict application, which could impact installation expenses and adaptability. 

Fig. 15.  Convergence analysis of proposed technique for varying number of vehicles.
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This study presents a safe global aggregation-based Blockchain FL-Q learning framework. An approach that 
combines low computational complexity with higher system efficiency is based on deep reinforcement learning. 
The vehicle data can be securely protected with the help of the Ex-ECC algorithm. The validation of the low-
power, highly effective function of the consensus algorithm is used. The suggested Blockchain enables security 
methods to safeguard user privacy concerning the data. In this study, the performance of the proposed method 
is evaluated and compared with existing models as demonstrated in Table 8. Based on the performance metrics 
values, the proposed model is compared with various metrics such as accuracy, detection time, Latency, Energy 
consumption, Computational cost, and throughput. Then, the existing RF achieved Accuracy (1.16%), because 
the model had high false negative and positive rates with a low degree of precision21. The performance of another 
existing model was BEVEC, this model has increased energy use and high delay22.

The DDQN23 model has a more time-consuming and computational cost. Then, DNN24 and MORFLB25 
are Expensive blockchain systems with significant latency and fewer privacy systems. The performance of 
BTWACS26 and DRL27 models is High computational cost, less security system, and Enhanced network 
congestion. Compared to the other existing models, the proposed model attained a higher value and improved 

Authors Techniques used Performance metrics

Kumar et al.21 RF Accuracy (1.16%), detection time (1.18 s)

Fardad et al.22 BEVEC Latency (18%), energy consumption (65%)

Gharehchopogh et al.23 DDQN
Latency (6.87%)
Energy consumption (26.4%)
Computational cost (7.41%)

Shukla et al.24 DNN Throughput (70%)
Energy consumption (40.32%)

Mohammed et al.25 MORFLB Delay (72%)

Li et al.26 BTWACS Accuracy (80%), encryption time (78%)

Zhang et al.27 DRL
Latency (7.5%)
Accuracy (73.2%)
Energy consumption (42.51%)

Proposed EX-ECC, federated Q-learning model, IPFS, DPBFT

The number of vehicles 100, throughput 
(102465.8 KB/s), communication overhead 
(360.57 Mb), average latency (864.425 ms), 
communication time (19.51 s), encryption 
time (0.98 ms), decryption time (1.97 ms), 
consensus delay (50 ms) and validation 
delay (1.68 ms)

Table 8.  Detailed evaluation of existing and proposed approach.

 

Fig. 16.  Comparison of average latency of proposed technique for varying number of vehicles.
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model performance. Hence, the proposed model is capable of efficiently managing an enormous quantity of 
data interactions and vehicles. Table 8 illustrates a detailed evaluation of the existing and proposed approaches.

Conclusion and future work
This paper aims to analyze a robust and secure Blockchain-based federated Q-learning system for VANETs. In 
order to protect the input traffic data, the extended elliptic curve cryptography (Ex-ECC) technique is used. This 
technique has stronger security and a faster decryption and encryption process. To guarantee improved privacy, 
the federated Q-learning network evaluated the data and examined the assaults. Utilize the FL framework of 
distributing VANETs, while computation work is transferred to specific vehicles that lower communication 
overhead and congestion delay. Then, the IPFS technology is used to improve the security and storage of the 
VANET system. IPFS can accelerate data access by distributing content. To preserve the privacy of all individuals, 
we have designed a safe communication approach among vehicle-to-vehicle and vehicle-to-RSU that utilizes 
Blockchain technology. The Delegated Practical Byzantine Fault Tolerance approach is employed to verify the 
proposed model. Hence, Blockchain technology allows for data flow between many platforms straightforward 
and secure. A Blockchain-based federated Q-learning has permitted a security measure system that can greatly 
improve user safety and data privacy in the VANETs network. The following outcomes are obtained by the 
proposed approach for a number of vehicles 100, throughput (102465.8 KB/s), communication overhead 
(360.57  Mb), Average Latency (864.425 ms), Communication Time (19.51  s), Encryption time (0.98 ms), 
Decryption time(1.97 ms), Consensus delay (50 ms) and Validation delay (1.68 ms), respectively. Future work 
will require extending potential effort to implement the suggested structure, which would involve interacting 
with device, user, and cloud layers. An instance of this interaction will be gathering data from wearable sensors 
and analyzing it in real time. To train the suggested algorithm, this research should add greater complexity and 
more relevant datasets in the future. Also, investigate more security improvements in addition to compressing 
computing capacity, enhancing scalability, and resolving model staleness. FL is utilized to produce autonomous 
driving systems that gather information from various vehicles in order to operate better. By combining data from 
cameras, sensors, and other sources autonomous vehicles to forecast traffic trends in real time.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.

Received: 21 August 2024; Accepted: 6 December 2024

References
	 1.	 Mohammed, B. et al. Alayba. Service based VEINS framework for vehicular Ad-hoc network (VANET): a systematic review of 

state-of-the-art. Peer-to-Peer Netw. Appl. : 1–23. (2024).
	 2.	 Al-Ani, R., Baker, T. & Qi Shi. Privacy and safety improvement of VANET data via a safety-related privacy scheme. Int. J. Inf. Secur. 

22(4), 763–783 (2023).
	 3.	 Abbas, G., Ullah, S. & Waqas, M. Ziaul Haq Abbas, and Muhammad Bilal. A position-based reliable emergency message routing 

scheme for road safety in VANETs. Comput. Netw. 213, 109097 (2022).
	 4.	 Wei, X. Enhancing road safety in internet of vehicles using deep learning approach for real-time accident prediction and prevention. 

Int. J. Intell. Netw. 5, 212–223 (2024).
	 5.	 Dudhe, A. S., Salim, Y., Amdani & Suresh, S. Asole. Real time communication model for vehicular communication in VANET. Int. 

J. Sci. Res. Comput. Sci. Eng. Inform. Technol. 8(2), 115–120 (2022).
	 6.	 Natarajan, R. et al. Optimizing radio access in 5G vehicle networks using novel machine learning-driven resource management. 

Opt. Quant. Electron. 55(14), 1270 (2023).
	 7.	 Moridi, E. Increasing efficiency and reliability in multicasting geographical routing based on fuzzy logic in VANETs. J. Soft Comput. 

Inform. Technol. 12 (1), 11–19 (2023).
	 8.	 Sajini, S., Mary Anita, E. A. & Janet, J. Improved security of the data communication in VANET environment using ASCII-ECC 

algorithm. Wirel. Pers. Commun. 128(2), 759–776 (2023).
	 9.	 Nova, Kannan, A. et al. Floyd–Warshalls algorithm and modified advanced encryption standard for secured communication in 

VANET. Measurement: Sens. 27, 100796 (2023).
	10.	 Tsetseruk, D. Federated learning for privacy-preserving autonomous vehicle data analysis. J. Artif. Intell. Res. Appl. 3(2), 293–320 

(2023).
	11.	 Peixoto, M. L. M., Edson Mota, Adriano, H. O., Maia, W., Lobato, M. A. & Salahuddin Raouf Boutaba, and Leandro A. Villas. 

FogJam: a fog service for detecting traffic congestion in a continuous data stream VANET. Ad Hoc Netw. 140, 103046 (2023).
	12.	 Wei, Y. et al. The eternal tussle: exploring the role of centralization in {IPFS}. In 21st USENIX Symposium on Networked Systems 

Design and Implementation (NSDI 24), pp. 441–454. (2024).
	13.	 Fernandes, C. et al. Wangham. A blockchain-based reputation system for trusted VANET nodes. Ad Hoc Netw. 140, 103071 (2023).
	14.	 Ma, Z. Secured scalable blockchain networks for trustworthy distributed deep learning in VANETs. PhD diss (Carleton University, 

2023).
	15.	 Dhasaratha, C. et al. Ahmed Ibrahim Alzahrani, Nasser Alalwan, Nguyen Vo, and Md Akhtaruzzaman. Data privacy model using 

blockchain reinforcement federated learning approach for scalable internet of medical things. CAAI Trans. Intell. Technol. (2024).
	16.	 Nikolaidis, F., Symeonides, M. & Demetris Trihinas. Towards efficient resource allocation for federated learning in virtualized 

managed environments. Future Internet. 15(8), 261 (2023).
	17.	 Arya, M., Sastry, H., Dewangan, B. K., Rahmani, M. K. I. & Bhatia, S. Abdul Wahab Muzaffar, and Mariyam Aysha Bivi. Intruder 

detection in VANET data streams using federated learning for smart city environments. Electronics 12(4), 894. (2023).
	18.	 Haris, M., Shah, M. A. & Carsten Maple. Internet of intelligent vehicles (IoIV): an intelligent VANET based computing via 

predictive modeling. IEEE Access. 11, 49665–49674 (2023).
	19.	 Gholizadeh, N., Kazemi, N. & Musilek, P. A comparative study of reinforcement learning algorithms for distribution network 

reconfiguration with deep Q-learning-based action sampling. IEEE Access. 11, 13714–13723 (2023).
	20.	 Kim, M., Oh, I., Yim, K. & Sahlabadi, M. and Zarina Shukur. Security of 6G enabled vehicle-to-everything communication in 

emerging federated learning and blockchain technologies. IEEE Access. (2023).

Scientific Reports |        (2024) 14:31235 21| https://doi.org/10.1038/s41598-024-82585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	21.	 Kumar, Y., Kumar, V. & Subba, B. Optimization techniques for IDS-Generated traffic congestion control in VANET. Internet 
Technol. Lett. : e518 .

	22.	 Fardad, M., Muntean, G. M. & Tal, I. A blockchain-enabled vehicular edge computing framework for secure performance-oriented 
V2X service delivery. IEEE Trans. Veh. Technol. (2024).

	23.	 Gharehchopogh, F. S. Multi-objective secure task offloading strategy for blockchain-enabled IoV-MEC systems: a double deep 
Q-network approach. (2024).

	24.	 Shukla, P., Patel, R. & Varma, S. A novel of congestion control architecture using edge computing and trustworthy blockchain 
system. J. Intell. Fuzzy Syst. 44(4), 6303–6326 (2023).

	25.	 Mohammed, M., Abed, A., Lakhan, K. H. & Abdulkareem Mohd Khanapi Abd Ghani, Haydar Abdulameer Marhoon, Jan Nedoma, 
and Radek Martinek. Multi-objectives reinforcement federated learning blockchain enabled Internet of things and Fog-Cloud 
infrastructure for transport data. Heliyon 9(11) (2023).

	26.	 Li, L., Wan, J. & Liu, C. Access control strategy for the internet of vehicles based on blockchain and edge computing. Electronics 
12(19), 4057. (2023).

	27.	 Zhang, B. et al. A reputation mechanism based deep reinforcement learning and blockchain to suppress selfish node attack 
motivation in Vehicular Ad-Hoc Network. Future Generation Comput. Syst. 139, 17–28 (2023).

	28.	 Li, Y., Wei, X., Li, Y., Dong, Z. & Mohammad Shahidehpour. Detection of false data injection attacks in smart grid: a secure 
federated deep learning approach. IEEE Trans. Smart Grid. 13(6), 4862–4872 (2022).

	29.	 Li, Y., Wang, R., Li, Y., Zhang, M. & Chao Long. Wind power forecasting considering data privacy protection: a federated deep 
reinforcement learning approach. Appl. Energy. 329, 120291 (2023).

	30.	 Lahraoui, Y., Lazaar, S., Amal, Y. & Abderrahmane Nitaj. and. Securing data exchange with elliptic curve cryptography: a novel 
hash-based method for message mapping and integrity assurance. Cryptography 8(2), 23. (2024).

	31.	 Zheng, Z., Zhang, H. & Xue, L. Federated Q-learning with reference-advantage decomposition: almost optimal regret and 
logarithmic communication cost. arXiv preprint arXiv:2405.18795 (2024).

	32.	 Chen, X., Qiu, W., Chen, L., Ma, Y. & Ma, J. Fast and practical intrusion detection system based on federated learning for VANET. 
Computers Secur. 142, 103881 (2024).

	33.	 Saif, B., Muhammad, S., Migliorini & Spoto, F. Efficient and secure distributed data storage and retrieval using interplanetary file 
system and blockchain. Future Internet. 16(3), 98 (2024).

	34.	 Li, C., Qiu, W., Li, X., Liu, C. & Zheng, Z. A dynamic adaptive framework for practical byzantine fault tolerance consensus protocol 
in the internet of things. IEEE Trans. Comput. (2024).

	35.	 Walle, Y. Hybrid RSA–AES-based software-defined network to improve the security of MANET. Open. Inform. Sci. 8(1), 20240001 
(2024).

	36.	 Rathnayake, R. G. G. A. and D. V. D. S. Abeysinghe. A deep investigation to enhance secure communication of satellite images 
through encryption techniques.

	37.	 Liu, J., Li, Y., Zhao, M., Liu, L. & Kumar, N. EPFFL: enhancing privacy and fairness in federated learning for distributed e-healthcare 
data sharing services. IEEE Trans. Dependable Secur. Comput. (2024).

	38.	 Zhi, H. & Wang, Y. Network resource allocation method based on blockchain and federated learning in IoT. J. Commun. Netw. 
26(2), 225–238 (2024).

	39.	 Ghaleb, F. A., Ali, W., Al-Rimy, B. A. S. & Sharaf, J. Malebary. Intelligent proof-of-trustworthiness-based secure safety message 
dissemination scheme for vehicular ad hoc networks using blockchain and deep learning techniques. Mathematics 11(7), 1704. 
(2023).

Author contributions
All authors contributed to the study, conception, and design. all authors commented on the manuscript. All 
authors read and approved the final manuscript.

Funding
The authors did not receive support from any organization for the submitted work.

Declarations

Competing interests
The authors declare no competing interests.

Ethical approval
This paper does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate
Not applicable.

Additional information
Correspondence and requests for materials should be addressed to H.A.A.A.-A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |        (2024) 14:31235 22| https://doi.org/10.1038/s41598-024-82585-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2024 

Scientific Reports |        (2024) 14:31235 23| https://doi.org/10.1038/s41598-024-82585-3

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿A secure and efficient blockchain enabled federated Q-learning model for vehicular Ad-hoc networks
	﻿Motivation
	﻿﻿Related work
	﻿﻿Proposed methodology
	﻿Extended elliptic curve cryptography (EX-ECC)
	﻿Federated Q-learning model
	﻿Blockchain-based storage using interplanetary file system (IPFS)
	﻿Validation using delegated practical byzantine fault tolerance (DPBFT)

	﻿﻿Result and discussion
	﻿Performance metrics evaluation
	﻿Performance evaluation of various methods
	﻿Analysis of proposed technique for real-time scenarios
	﻿Discussions

	﻿﻿Conclusion and future work
	﻿References


