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Method details

Concepts
Let A denote the set comprising all complex-valued functions f(z) in the form
f@=z+) a7 o
i=2
where these functions are analytic within the open unit disc U = {z € C : |z| < 1}. A function f(z) is considered univalent within the
domain U. The subset of functions in the class .4 that are univalent is represented as S.

A function f(z) from class A is denoted as a starlike function (f(z) € S$*) and a convex function (f(z) € C) if the following
inequality hold:

Zf’(z)] > 0 and m[l MEZAMC] N
f(z) f'(z)
where z € U.

The sets S*(4) and C(4), which represent starlike and convex functions of order A (where 0 < A < 1), are provided as follows:

S*(A) = {f(z) eA: m{ zf’(z)} > (ze IU)}
f(2)

and

C(i) = {f(z) eA: m{l + Zfﬁ(z)} > (z€ EU)}.
f'(2)

Setting A = 0, it is evident that $*(0) = S* and C(0) = C.
Kanas and Wisniowska [1,2] defined the categories r — U, and r — Ug- of r-uniformly convex functions and r-uniformly starlike

functions, respectively, in the following ways:
(z'@)’
Rl ——— ), zeUr>0
( (@)

(zf'(2)
w - 1| <§R<Zf/(z)>, ze[UrZO}.

!/

r—UCV={f€ASr‘

and

f(2)
f(2) f(2)

These two categories represent extensions of the sets of convex univalent functions and uniformly starlike functions, as provided by
Goodman [3]. Similarly, Liu et al. [4] explored the subfamilies S*(5, 1) and C(», 1) of analytic functions, formulated by the following
inequalities:

r—US*z{feA:r

z2f(2) | zf'(2)
-1 A 1{, U
@ M T RS
and
(/') (/')
_ —_— + 1, U,
7 " T ES

where0 <y <land0< A< 1.
Background

Analysis of integral and differential operators has been a fruitful field of research sice the beginning of the theory of analytic
functions. The first integral operator was introduced in 1915 and is credited to Alexander [5]. Numerous viewpoints have been
examined concerning these operators, including how they integrate with quantum mathematics. The study of g-calculus has become
more important recently because of its extensive use in the practical sciences. Jackson [6,7] pioneered the use of g-calculus to define
g-analogues of derivatives. Ismail et al. [8] developed and studied g-starlike functions by using q-derivatives, which encourages more
research on g-calculus in the field of geometric functions theory (GFT). As a result, many expansions of integral and differential
operators using the variable q have been developed. Kanas and Raducanu [9] proposed the g-Ruscheweyh differential operator,
while Noor et al. [10] investigated the g-Bernardi integral operator. In addition, Govindaraj and Sivasubramanian [11] introduced
the g-Salagean operator as a g-analogue of the operator described in [12]. Contributions from authors [13-17] have made major
advancements in the g-generalizations of certain categories of analytic functions. In a recent publication, Srivastava [18] presented
a thorough review article that serves as a significant reference for researchers and academics working in the fields of generalized
fractional calculus and g-calculus (Figs. 1-4).
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Fig. 2. The figure shows the function N,(z) with A =1 =
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Fig. 3. The figure shows the function X,(z) with A =1 and n = %
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Fig. 4. The figure shows the function X,(z) with A=n=1.
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Let us now consider certain definitions and nuances of calculus. This review will help us better understand the content presented in this
new article.
Definition 1 [6]. The g-number (1, where 0 < q < 1, is expressed as 11%‘1;, with t being a complex number (1 € C). Specifically, when t is a
non-negative integer, denoted as m € N = {1,2,3, ...}, [m], is defined as the sum of q to the power of i. The nth q-factorial, denoted as [m],,
is defined as the product of H:"zl [i1,- For n =0, [0],! is set to 1.

Definition 2. [6] For any complex number t, the g-extended Pochhammer symbol [t],,, is defined as follows:
When m = 0, [tlgo = 1.
For natural numbers m:

[Flgn = (111t + 11 + 2]y ... [+ m = 1],

Definition 3. [7] The g-difference operator D, : A — A, actingon f € A, is described as:

f(2)-f@z) , if z ;é 0
D = 2-qz 2
(Dof)@ 10, if z=0. @

The g-derivative of f(z) appearing in (1) is as follows:
(D f) D=1+ Z lilgaz " 3)
i=2

It is worth noting that

ql_i)r{l_ [m]q = m.

Additionally, using a simple computation, we obtain the following operation rules for two real-valued functions, f (&) and g(¢).
D, (af(§) +g) =aD,f(&) £ D88, 6 €R,
D, (f(©)g(©) =)D, f (&) + f(a)D,8(5),

7O _ 80D f()-S(©)D,8(8)
q(%) = LSO TR (6 # 0. 8(a8) # 0.

Definition 4. [8] A function f(z) in (1.1) belongs to the class C, if the subsequent inequality holds:

D, (29, (2)) 1
Dy f(2) l-¢q

Obviously, if ¢ - 1— then

zf"(z) 1 <!

[z 1-q|” 1-¢

Alternatively, we can consider the principle of subordination functions to obtain
Dy (quf (2)

Dy f(2)

where R, (z) = ll_quz.

Definition 5. For 0 <n < 1 and 0 < 4 < 1, we provide the subsequent uniformly g-convex class C,(n, 1) of order A

Dy (2Dy/(2) 1' i 1Dy (29,1 (2))

1
<1,

(ze ). C)]

<N (2),

Dy f(2) Dy f(2)
Equivalently,
D (z@ f(z))
q\*~q
—_— < N,(2),
D,/ (2) 2()
where R,(z) = l:azz, 0O<p<land0<i<1.

When q - 1-, it achieves the class C(n, A) explored by Liu et al. [4].
Motivation and research objective

Recent advancements in the study of holomorphic functions have led to significant generalizations, employing diverse techniques.
Notably, the application of a specific type of quantum calculus, renowned for its wide-ranging implications across various scientific
disciplines, has emerged as a prominent approach. Through these generalizations, we aim to establish novel classes of quantum-
convex (g-convex) functions, characterized by the incorporation of a novel g-differential operator. Our investigation extends to the
exploration of coefficient values |q;| (i = 2, 3,4), and we use these values in the analysis of Hankel determinants across different orders.
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Additionally, our study delves into specific instances of Toeplitz determinants, such as the second-order 7,(2) and third-order 73(1)
inequalities, providing a comprehensive exploration of these mathematical entities.

Employing the g-calculus, Shaba et al. [19] established the g-differential operator &, ;V;Aq : A — A, which is provided by
%;’f:gf(z) =z+ 2 riaizi 5)
T i=2

with
o= (1+p(3§l(¢)—v)([i]q+w—e— 1))", (p>0,v>0,¢>0,0<e<w)

and the g-binomial series

T
ooy L\ Nitlgi
B =Y <1> =D
i=1 q
Remark 1. Several remarkable operators are also obtained (see the illustration and the references [11,20-29].
We introduce two new classes of q-convex functions, Cylp,v,§, @, €) and Cyn, 45 p,v.¢, . ), utilizing the g-differential operator
Foaf(2).

Srepu
Definition 6. For 0 < q < 1, we call f(z) in C,(p,v,{, w,¢), if and only if

(re,w

$q (qu%n,p,v,qf(z)> 1 . |

D8z 1-4| T 1-4q

{rew

or equivalently

D (D110 @) s
sgarm (v 25 ©

(p>0,v>0,{>0,0<e<w,and z € U).

Definition 7. For 0 <n < 1 and 0 < A < 1, we cdll f(z) in C,(n, 4; p,v,{, @, €), if and only if

D (22,8 10a ) s
swm < (o 1) g

This class is equivalent to

D (oase) | e (=ae)
,

Crew
DBl (@) Dl (@)

Remark 2.2 [t is evident from (6) and (7) that

1. If n = 0 in the class (6) we get the original class C; deduced by Ismail et al. [8].
2. If @ —» 1- and n = 0 in the class (7) we get the original class C(y, A) established by Liu et al. [4].

The H,(m) Hankel determinant of the function f, was introduced by Noonan and Thomas [29].
In thiscase, / > 1, m>1,and ¢, = 1

Cm Cmt1 Cmtl-1
¢ ¢ .oc
— +1 +2 +l
Hym =" m2 i) ®
Cmti—1  Cmyl R L)

When / = 2 and m = 1, the Hankel determinant H,(m) reduces to the famous Fekete-Szeg6 functional:
mnm=|" © :lc—cz‘
2 [P 370

This functionality is additionally extended in a more generalized form as:
(-
where o represents either a real or complex number.
The importance of the Hankel determinant becomes apparent in singularity theory [30], and it is valuable for analyzing power se-
ries with integer coefficients (refer to [4,31]). Numerous scholars have derived upper bounds for H,(m) across different combinations
of m and n within various subclasses of analytic functions (see, for instance, [32-34]).
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The symmetric Toeplitz determinant 7;(m) is defined as follows:

Cm Cm+1 Cm+i-1
Ol Cmi2 o Cmyr2

Tim)=|" . ) : )
-1 Cmy—2 --- Cm

where / > 1, m > 1 and ¢,;, = 1, which was inferred by Thomas and Abdul Halim [35].

Recently, some scholars have worked on examining the limits of the Toeplitz determinant 7;(m) for different analytic function
families (see, e.g., [36-38]). Toeplitz of analytic functions introduced by means of the Borel distribution is explored in [39], whereas
quantum calculus is included in the study of Toeplitz determinants carried out in [40].

The proof of our key results depends on the application of the following lemmas:

Auxiliary lemmas

To demonstrate Hankel determinants bounds for the classes Cylp,v, ¢, m,€) and Co(n, A;p,v,¢, w,€), the subsequent Lemmas must
first be introduced.

The familiar class of Carathéodory functions y(z) = 1 + Z;‘il 7zt with R(y(2)) > 0 is pointed by P.

Lemma 1. [41] If the function y(z) € P, then

[ri] 2, (2 2.
Lemma 2. [26] If the function y(z) € P, then
2 =vi+u(4-v})
and
dyy=r +2(4=ri)nu— (4=} +2(4 = r7) (1= 1ul?)z

with |¢| < 1 and |z| < 1, for some y and z.
Lemma 3. [42] If the function y(z) € P, then

|y2 - ayf) < 2max(1, |26 — 1|), (¢ € C).

Subsequently, we should beging by investigating the Hankel determinant of first type H,(1) in order to find the maximum value
of the 2th-order Hankel determinant H,(2).

Method validation

We shall identify initial coefficients bounds in the following theorem, which will aid in the proof of objective findings.
Theorem 1. If f(z) € C,(p,v,{, w, €), with f(z) as in (1.1) then
1
Hy(1)=|a3 —al| < ———8M8 8 .
2= =) 2q(1+q+q?)r3
Proof. Considering the subordination requirement expressed in Eq. (6) we obtain

D, (22,8035 ()

Srewm

DS (@)

re, @

= R, (0(2)). 10)

We will now proceed to demonstrate the function y(z) in the following method:
_ 1+ w(z)

1—-w(z)
Obviously, y € P, it achieves

_r@-1
7(z)+1

y(2) =1+ylz+y2z2+y3z3+y4z4+...'

(z)

and

2y(2)
I+ -gr)+q
A calculation produces

R;(0(2)) =

2(2) =1+ (1+4)71Z+{(1+q)y2 (=) }Zz +{(l+q)y3 (- (+ad -’ }Z3
I+ -qr(@+q 2 2 4 2 2 8
U+qr  (1-d)r3 (1-P)nr 30+9@-Drin G+90-r )
+{ > T2 T 2 ¢ 8 * 16 i
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We derive the following from the second side of Eq. (10):

2, (@)

Sre,w

DB, 1l (2)

re, @

+q(1+ (1 + a3ty — 2+ (1 + g+ q*)ara3y7y
+(1 +q2) (l +q+ qz)a4r4)z3 + e

Compared to that, we deduce

02=E}’|a
2
o 1 - (1+4d*) ,
} 2q(1+q+q?)r3 : 4¢2(14 g+ q?)7; !
and
B 1 q-2q° -2
ay = V3 — 1404

q(1+@)(1+q+q)n " 4@2(1+q@)(1+q+q)z
(1_q+q2) 3
8q3(l+q+q2)r4 1

Here, the functional |a; — a%l can be find utilizing the equations of a, and a;

<(1+q+q2)fz—(1+q2)fﬁ> >

1

2| vy —
2q(1+q+q?)73 2

a; —a;

yl'

2qr§
Considering Lemma 2 together with y, < 2, we attain

u(4-r}) —((1+q+q2)fs—(1+q+q2)rg>h
2|

1

2=
2q(1+q+ q?)73

az —a;

2

2qr§

Setting y; =y (y €[0,2]) and |u| = 9, it achieves that

9(4—y2 1+q+q%) 73— (1+g+q?) 22

= 2q9(1+4+q%)73 2q7

We reach to the subsequent outcome by partially differentiating the function y(y, 9) with regard to 9.

ax(r.9)

> 0.
29

= 1441+ Qayryz+ (1 + @)((1+ g+ q*)azrs — (1 + @yael)z

2
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an

12)

13

14

s)

As a consequence, the function y(y,d) becomes an increasing function of 9, when 9 is within the interval [0, 1]. Therefore, the

relation is satisfied by the maximal value of y(y,9) at 9 = 1.

max{x(y,9} = x,1)=C\ (),

l+g+¢)r — (14 ¢)*72
i) = L (24 ( )32 2)2).
2q(1 +q+q )73 2qry

It is evident that C,(y) permits a maximal record at y = 0; therefore, it follows that
1

2q(1+g+q?)75

Theorem 2. If f(z) € C,(n, A; p, v, ¢, @, €), with f(z) as in (1) then
A1 +17)

al+9)(1+q+q)zs

Proof. Considering the subordination requirement expressed in Eq. (7) we attain.

gq(zqug"””'q f(z))

Crem

Dl (@)

re,w

with

|ay - a3| <cin) =

Hy(1) = |ay - a3 <

= Ny(a(2)).

After making a simplification of X,(z), we obtain

Ny(2) = 14+ A0 + )z +n 20 + 22 + P2 BA + 2> + -

(16)

an
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We will now illustrate the behavior of the function y(z) using the following method:
_ 1+ w(z)
T 1-ow(2)

Distinctly, y € P then

_)/(Z)—]_] 1 _1 2 2 1
w(z)_y(z)+1_2712+2<72 27'>Z i)

Considering of N,(z) and y(z), it can be inferred that

r(2)

=1 +y|z+y222+y323 +y4z4+

1
(73 -—nrt 173)23 +

Ry(o(2)) = 1+

A1+ A0+ A0+ (A — 1
2”?12+{ 2”)h+ n)4(n )},lz}zz

AL +7) 1= 2nA+n*22
+i3l{%+WLJMh+——4ri—ﬁ 2t (18)
Similarly, the Eq. (11) gives us
D, (22,8035 ()
7 = 1+q(1+ Qayryz+ g1+ @) ((1 + g + @) azrs — (1 + )a372) 2>
.7 /() = q q)a,7 q q q+q°)azt; q)ayT5
qO¢re,w
+q(1+ 9)((1 + a7y — 2+ @) (1 + 9+ q*)ara3 7575
+ (1 + qz)(l +q +q2)a4r4)z3 + -
By substituting into the Eq. (16) the results are
Ml +1n)
) = —————7, (19)
T g +gr, !
A1+ A-1 A0+
o = (L+m) . {y2+<n Rt n)>712} 20)
291+ @) (1 + g +q?)7;3 2 2q
and
A1+ 1) { ( A+ 1) (2+61)> 3
a, = 3+ (nAi-14 ——— Y172 + Q17; (21)
U+ p(1+@)(1+q+ ) U 2 ql+gq)12TN
where
L 222 Al4n) Qtq)
_Ja72 4 2 q(+q
Q= x(@ + /1(1+'1)) _ R (- 22)
2 2q aq?
The requested value of inequality H,(1) is verified by following the process of Theorem 1.
When q — 1 —and n = 0, then Cy(1,0,1,e,6) = C(1,1;1,0,1,¢,6) = C and the following outcome occurs:
Corollary 1. [2] If f(z) € C, with f(z) as in (1) then
o 1
jos - 3] < 3 23)

The following findings determine the upper bound of Hankel determinant H,(2) for the classes Cylp,v, ¢, @, €) and
Cy(n, 4; p,v, ¢, @, €), respectively:
Theorem 3. If f(z) € Cylp,v, ¢, @, €), with f(z) as in (1) then

1

H,(2) = |ayay — a2 < ——————.
| | @+ -+

Proof. Considering the coefficients g; (i = 2,3,4) of Theorem 1 it follows that

—_ 2= 1
ara, —ay <4q2(1+q2)(1+q+q2)1’274>y1}I3

_ (¢-2-2¢%) (1+q%)
8a°(1+ @) (1+4+ @)y 43 (14q+ )

2
2 5 yl 72
%

- ! N IS E S B (5 M
4q2 222 [ 16g*(1 + g + q2) 4 o [
?(1+q+0?)°7; q a+q7) 07 16qH(1+q+q?) 7
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Utilizing Lemma 2 we attain

(1-a+d®)  (1+¢)’ 4
169*(1+q+9*)n7y  16¢%(1 +q+q?)°72 !

ayay — a% =

1 3 2
+ +27,(4-
<16q2(1+q2)(1+q+q2)rﬂ4>y1{71 n(4=ri)u

—n(4 =) +2(4=77) (1= |ul?)z}

(q—2-2¢?) (1+¢?)
- 3 2 2 + 2 il +ud-17))}
1663 (1+@?) (1 +q+ @) 07y 8g3(1+q+¢2)°c2

1
|l ————= {2+ (=D
169%(1+q+¢q?)°72
Setting y; =y and |u| = 9, then
1
|a2a4 - ag) < o [(péy4 +2¢°(1+q+¢*)e3r (4 - %)

q
+(p3(4 =)0+ (a(1+9+ ) + P (1+ %) nry

(4=7?) -2¢*(1+ g+ q*)cdy) (4= ¥2) 9] = T (. 9).
2 2
where ¢} := 16g*(1 + ¢*)(1 + ¢ + ¢*) 57374, ¢ = [(1 + @)1 + ¢+ ) (75 = 7,7)]

and 9 = [a(1+ g +6) ((2+ 9 +2¢%) 73 = 2(1 + ) ry) |
The partial differentiation of J(y,d) concerning to 9 yields the following results:
oJw. 9 _ 1 [(pg(z; —A)P2(q(1+a+ )2+ (1+ @) nny (4= 77) = 26> (1 + g+ ¢°)ey) (4 - yz)g] S 0.

29 (p}]

As a result, the function J(y,9) is an increasing function of 9 (9 € [0, 1]), and we acquire

max{J(y,N} =T, 1) =Gy),

where

((pé - (PZ - q(l +q+ q2)132 + q2(1 + qz)rzr4)y4

1
Glr) = <_1> (403 +49(1+ q+ )72 = 8¢ (1 + @) oy )2 24)
P 2 2 )
+16q%(1 + q?) 7574,
and
dw = <$> [4((P§ oy —a(l+a+d) 3+ (1+ q2)72r4>}’3
q
(25)

+2<4(|)(31 +4q(1+q+q*) 3 -8q*(1+ q2)7214)y].

Continue differentiating the function G} (y) concerning to y, then

1
J'(y) = (a) [12<(P§ —(PZ - ‘1(1 +51+’512)T§ +q2(1 +q2)72T4>}’2
q

+ 2(4@3 +4q(1+q+q*) 2 - 8q*(1+ q2)‘r2r4>].
This indicates that, the highest value of G(y) happens at y = 0. Therefore, we get

2 1
aay —a;| £ ——— .
| 3) q2(1 +q +q2)21_32
Theorem 4. If f(z) € C,(n, A; p, v, {, @, €), with f(z) as in (1) then
21 +q)
(1 + 91 +q+)°72

H,02) = |a2a4 - a§| <

10
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Proof. With the assistance of (19), (20) and (21) it will be obtained that

2 2 _ A+n) 2+ '\ _ 2
aya, - = A (14+ 1) {xmyz; + <11 (n/l 1 +2—42 —q(]+q)) 2){293)71 }’2} 26)
vt (119 - )(293)7/1
where Q,; was concluded in (22)
1 1

X = X =
P+ (1+@?)(1+a+a)nr @1+ +q+) 7

and

A=1 Q1
_n LAt

Q
3 2 2qr,

Employing a similar approach as demonstrated in Theorem 4.3 we achieve the desired result.
When q —» 1 —and n = 0, then Cy(1,0,1,e,6) =Cy(1,1;1,0,1,6,6) = C and the following outcome occurs:
Corollary 2. [30,43] If f(z) € C, with f(z) as in (1) then

1
|aza4 - ag) < 3 27
Theorem 3. If f(z) € C,(p, v, ¢, @, ), with f(z) as in (1) then
1
P,

—al <
205 - a] < C+@)(1+4+¢) 0

where
®) = |(14+0) (1+q+0) (r4 = ©a73) | (28)
Proof. Simplifying from (12) to (14) of Theorem 1 we procure

aray; —a, = (1+q2) - (1—q+q2) )’3— ! 4
o 8¢3(1+g+q?)nrs 843 (1+q+q%)zy ! 2q(1+q?)(1+g+¢?)zy }

1 (29° =g +2)
+ - 71Y2- 29
42(1+q+@?)rory 4¢2(1+q2) (1 +g+q?)zy
Employing Lemma 2 we attain

(1+) Uard) )

M m = <8q3(1 +q+q2)12r3 - 8q3(1 +q+q2)‘r4
1 3 2 2\, 2 2 2
- 2 (4= -y (4 - +2(4—2)(1 -
Sal+ra) (1 ara)m [ +2n(4=r)u=-n@=r})? +2(4=r}) (1= luP)]

+( L 2a ~9+2) )71{712"'/4(4_712)}'
8q2(

1+q+q?)rm - 82(1+q?)(1+q+q¥)zy

Afterwards, assuming y, = y and using |u| = 9, we obtain
|azas — ay| < Ky, 9),

where

1 1,3 2 2
Ky,9) = 0l + 2 (4 —12)9
(r.9) <3q3(1+q2)(1+q+qz)7213r4>[ q qy( r?)

+2q272r3 (4 - yz) + q21213(y - 2)(4 - y2)82] s

with @] = |q(1 + ¢*)7y — ¢(2 + g + 247)7,73| and @] well-known in (28).
Upon differentiating the function K(y,d) concerning to 9, we obtain

1
K'(y,9) =
8¢3(1+ @) (1+q+q?)1ym37y
As a result, the function K(y,9) is an increasing function of 9 (9 € [0, 1]), and we acquire

K@, 9) <K@, D.

>[<I>§r(4 — ) 2¢2 0,73y = 2)(4 - 1) 9] > 0.

11
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Subsequently,
max{K(y,9)} =K@, 1) <L),

where

1
L = [(I)l_q)Z_Z >3+ 4®2+42 )]
v (8‘13(1+q2)(1+4+q2)1273f4> ( q” TaTAREB) ( e TH 0T )Y

Since 0 < y < 2, which indicates that y = 2 is the maximal point, so

1
(I)q

L(y) <
P(1+@?)(1+q+q) 1137y
this relates to the intended limit, y =2, and 9 = 1.
We can deduce the bound values of the inequality |a,a; — a4| for the class Cq(n, 43 p,v,¢, @, ) in view of the previous theorem
Theorem 6. If f(z) € Cy(n, 45p,v,¢, w, ), with f(z) as in (1) then

1
|ayas — ay] < @+ 0l (30)
@(1+q2) A +@?(1+q+q2) 17374

where
Tie= [(1+@7) 0 +m(and® + A +ma%) 7y = (a2 + (1 +mini®
+(1+72+(1+q*+¢*)n)) 1) z,131.
Proof. Simplifying from (19) to (21) of Theorem 3 we procure

e — s = (I +m*a(q(nA? = 2) + A +mA?) ~ (1+”MY(11 .
o 8¢°(1+ 0 (140 +@)na3 8P (1+@2)(1+9)(1+q+q?)z,

_ (1 +m4a ot A +n)?222
2q(1+@)A+p(1+a+a)r )7 \ 420 + 9 (1+q+)rr

(1 +mi2q(l + @i = D+ 2+ g)(1 + mA)
- 2 1725 (€3]
42(1+ @)1 +9*(1+ g+ q?)zy
where
Yy =290+ m(nd® = 4) + A+ 727 + ¢ (1 =204+ 77 4%)
+@2 (1 =274+ (1 + mnA® + =1+ n(=1 +nA)).
By continuing with the analogous technique of Theorem 5 the inequality (30) is derived.
When q — 1 — andn = 0, then Cy(1,0,1,e,6) =Cy(1,1;1,0,1,e,6) = C and the following outcome occurs:
Corollary 3. [6] If f(z) € C, with f(z) as in (1) then
1
|ayas —ay| < 5 (32)
Toeplitz determinants findings
This part considers the bound values of the second 7,(2) and third 75(1) orders inequalities of Toeplitz matrix.
Theorem 7. If f(z) € C,(p,v,{, @, €), with f(z) as in (1) then
22
1 I+9*(1+¢?) (U+g+g)r
Ty2) = |a - | < — (2 ), — (33)
(1 +q+q*)7; a 2

Proof. In Theorem 1 given the values a, and a3, we have

2

2_ g2 ! (1+4¢) 1

_ &2l = . _
|a3 a2‘ (2q(1+q+q2)r3 & 4¢2(1+q+q?)r3 i 4q2r§yl
and

2_ 2 1 , (@ +q2)2 4 (1+q%)737, —q(1 +4+q2)2732 2
|"3_2‘= TSt —n+ > 212

421+ g+ 75 4q qr?

12
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Employing Lemma 2 with y; <2, we attain

- =

2
1+q? A +q(1+¢? (+q+q>) 772
@G- = ———————— /42X2+( q)2X+ ( q)4— 3,2
4@l +q+q>) 7

I
3 2q ¥ 42 " <2 ¢

5

where X := (4 — 712)'
Afterwards, assuming y, =y with 0 <y <2, and using |u| = 9, we obtain

1
42(1 + g + )7

2
(1+q)21+ 2 (1+qg+q>) 72
(1+d) . | Lo s

y* -
4q2 722

o3 - a3 < 6y =

(1+q°)
2q

rex|, (34)

with X =4 —y2.
Upon differentiating the function G (8) concerning to 8 (0 < 8 < 1), we consider that

%=42 : 232 2<%8X2+(1J2F—qZ)y2X)>O'
g% (1 + ¢ +q?)°7; q
Consequently, we procure that the function ¢(9) is an increasing function of 9 with 9 = 1.
max{Gy(9)} = Gy(1),
where

(1 +¢2(1+¢ (1+q+q)°2 1+
( q)y4 e (+a) 5

qu

4q2 - T;

2 2‘< 1

2l < 5 +la2y
4?0 +q+q>)°73 4

y = 2 is the maximal point since 0 < y < 2. The desired outcome then materializes.
We derive now the inequality |a§ - aél for the class Con, 25p,v.{, @, €) considering the preceding theorem.
Theorem 8. If f(z) € C,(n, Ap,v,{, . ), with f(z) as in (1.1) then

2
2z (A +n)*2 ¥ (+g+q) T
7,2 = |@ - a}| < . —| =~ —| (35)
41 +9+¢) (1 +g+¢)7 |4 5

where ¥} := |q(1 + mna? + ¢* (A2 = 1) + (1 + > A2|.
Proof. In Theorem 3 given the values a, and a3, we have

2
A0 + 1) ni—1  Al+n) A2(1 +n)?
== ( e (1520 ) -
291+ @) (1 +g9+q*)7 q 421 + 9’7
and
yl A2, 232 2
|a2_a2‘_ (A + a2 2 Via ‘) vy, 2 —all+q+q7) 73 )
3 21 T 2 2 271 2 1
421+ (1 +q+q?) 72 4q qr;

where V’f,q = 2q(1 + (A% = 1) + (1 +n)? 2% + @21 + A% — 252) and w;‘” =qnA—q+ A+nA
Employing Lemma 2 with y; < 2, we attain

2 A 22 2
1 2 )2 v, (I+g+q)t
|a§_a§‘= ( +;7) 2 %”ZXZJF 22,”}/12’"\;+ ”2 - 2 s
42 +q+92) (1 +q+ )72 q 4q 75

where X := (4 — y]) and W) == q(1 + mnA® + @(n4% = 1) + (1 +n)* 4%,
The inequality (34) is derived by carrying out the same procedure of Theorem 7.
Theorem 9. If f(z) € C,(p,v,{, @, €), with f(z) as in (1.1) then

1 4 4 q4r§r§ + 2q2‘L'32 + 122 + 215
() =la, 1 a| < .
q41.21.2
a3 ay; 1 273

Proof. In Theorem 1 given the values a, and a3, we have

(D

1+2a§(a3 - 1) —a%’

2 2
L+Al 2+ Ay - T - D
a1 a2k ad(egrad)’ |

13
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where

Al (1+q+q*)r; — (1+¢%)7?
4q3(1+q+q2)2'r221'32

and

, 200+ @) (1+g+)m—(+e)'s

q :

16q4(1 + g + q2)’ 2372
Considering Lemma 2 we observe that

20y — 72 y?
T ke v G
16q*z;y 7] 2¢°7, 16q2(1 +q+q2) ,[32

) =

where X = (4 — ylz) with

2
Mo B7H

1 83 (1+4q+ qz)rgraz
Afterwards, assuming y; = y with 0 <y < 2, and using |u| = 9, we deduce that

2
273 — o, y2 1

Al +
167" 2607 | 16q2(1+ g +¢?) 22

T S W) = |1 +

9Px? + Agyfgx.

Upon differentiating the function W,(9) concerning to 8 (0 < 9 < 1), we consider that

W)
26
This proves that the function Wy (9) increses and reaches its greatest value at 9 = 1.

max{Wy(9)} = Wy(),

where
27y — 12 2
2 4 14 1 2 3,2
() <|1+ LA 222( + A X
l6q*z; 73 2q°7, 16q2(1 +q+q2) 72

The maximal point is y = 2 since 0 < y < 2. The desired result occurs.
Theorem 10. If f(z) € C,(n, 4; p,v,{, @, €), with f(z) as in (1) then

21 = )2 22 )

_ 2 4y 2 2
73(1)—‘1+2a2(a3 1) a3|§<1+2qm T

where

P 1 2 3020022 2
wn 2(14q+q*)(1+ 1) 2% (qni®> + (1 +m)A* )y,

- 2
169*(1 + q)* (1 + g+ q2) w2y?

2
1+ q)((;12 —1)2 A% 4 2q(1 + A2 ((n = 12022 +4n2) + 2 ((0r = Pna* + 8243 — 4r1/12)>y/22|.

Proof. In Theorem 3 with a, and a3, we have

_m2a2 147)2 2 2
1+A42 +A54_ (A=n)4 2 _ (I+n ,
172 a1 2q2(1+9)° 73 " 4q2(14+9) (1+q+q2) 72 72

() =

where

A M+ ((1+ g+ )L +mitey — (1 +9)(q(ni® = 2) + (1 +mi%)72)
.=

4631 + ¢)° (1+q+ q2)2122r32
and
1

Y 16g4 1+ (1 +q + @) ele
(1- 11)2<q(n/12 - )+ (+(1 + n)ﬂz)zrg).

The inequality (35) is produced following the same technique as Theorem 9.

14

A = 2(1+q+g)A+n* 22 (q(nd* = 2) + (L +m)A*) 3 — (1 +q)

MethodsX 13 (2024) 102842

(36)
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Application by pascal distribution

The Taylor series whose their coeffiecients representing Pascal distribution probabilities was provided by Murugusundaramoorthy
et al. [44], which is formulated as

Péf(z) z+z< 2) =11 = p)fazt = 2+ ep(1 — p)ayz +(£T+1)p2(1—p)ga3z3+~-~.

Replacing the operator %Z o [ by the operator P¢ e f(2), then we get the following coefficients:
Theorem 9. IfPff(z) eC, (p, v, C w, €), then

|az| <

qep(1 — p)°’

2
Pe(e + Dp(1 - p)

|as| <

and

31+ 9(P+q+1)
@ (1+02) (1 +g+q?)ee + (e +2)p3(1 — p)¥

lag] <

Theorem 10. If P f(2) € Cy(n, 4; p,v,{, w, €), then

A0 + 1)

loy| <« — 210
2= g0+ @ep(l = py

241 + n)(gnA + AL + 1))
P +)(1+q+q2)e(e + Dp(1 - p)*

and

3(1+mA(qQ + QAL + n)and + AL + 1) + (1 + @) (q®Q2nA + nA(=2 + 1)) — A2(L +n)?))
G+ (1+q2) (1+ g +63)ele + (e +2)p3(1 = p)° '

las| <

Conclusion

This work’s primary goal was to improve the previously established limits of the Hankel and Toeplitz determinants for the classes
of analytic convex functions (see [30,45,46]). To present new findings, we used g-calculus. This study may encourage the adoption
of more operators. Furthermore, the supplied boundary values of the inequalities might serve as a foundation for examining the
requirements for the operator’s univalence presented in this work. Using the operator %" v . f(z) given in Eq. (5), further study may

include the creation of new classes of analytic functions. Moreover, other ideas on nelghbourhoods, differential subordination, and
the Fekete-Szeg6 problem can be studied.
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