Resonant Cavity Enhanced Photodiodes in the Short-Wave Infrared for Spectroscopic Detection

Publisher: IEEE

Andrew Bainbridge 🗓 ; Katarina Mamic ; Laura A. Hanks ; Furat Al-Saymari ; Adam P. Craig 🗓 ; Andrew R. J. Marshall 🗓 💮 All Authors

3 Cites in

Papers

398 Full

Text Views

Abstract

Document Sections

- I. Introduction
- II. Design and Fabrication
- III. Results
- IV. Summary

Authors

Abstract:

The design, fabrication and characterization of resonant cavity enhanced photodiodes for the short-wave infrared has been investigated. An InGaAsSb absorber and AlGaSb barrier were used in an nBn structure, within a Fabry-Perot cavity bounded by AlAsSb/GaSb DBR mirrors. The resonant cavity design produced a narrow response at $2.25~\mu m$, with a FWHM of ~26 nm and peak responsivity of 0.9 A/W. The photodiodes exhibited high specific detectivities and low leakage currents at 300 K - $5\times10^{10}~cmHz^{1/2}W^{-1}$ and 0.2 mAcm $^{-2}$ respectively, with an applied bias voltage of ~100 mV. A maximum specific detectivity of $1\times10^{11}~cmHz^{1/2}W^{-1}$ was achieved at 275 K and the detector continued to perform well at high temperatures - at 350 K the peak specific detectivity was $3\times10^9~cmHz^{1/2}W^{-1}$. The narrow resonant response of these detectors make them suitable for spectroscopic sensing, demonstrated by measurements of glucose concentrations in water. Concentrations as low as 1 % were discriminated, limited only by the associated electronic systems.