Received: 22 March 2023 | Revised: 29 April 2023

Accepted: 1 May 2023

DOI: 10.37917/ijeee. 19.2.11

Iraqi Journal for Electrical and Electronic Engineering

Original Article

Vol. 19 | Issue 2 | December 2023

Open Access

University of
Basrah
College of
Engineering

An Efficient Path Planning in Uncertainty Environments
using Dynamic Grid-Based and Potential Field Methods

Suhaib Al-Ansarry *, Salah Al-Darraji, Dhafer G. Honi

Department of Computer Science, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq

Correspondance

* Suhaib Al-Ansarry

Department of Computer Science,
College of Education for Pure Sciences,
University of Basrah, Basrah, Iraq.
Email: suhaib.alansarry@Quobasrah.edu.iq

Abstract

Path planning is an essential concern in robotic systems, and it refers to the process of determining a safe and optimal
path starting from the source state to the goal one within dynamic environments. We proposed an improved path
planning method in this article, which merges the Dijkstra algorithm for path planning with Potential Field (PF) collision
avoidance. In real-time, the method attempts to produce multiple paths as well as determine the suitable path that’s
both short and reliable (safe). The Dijkstra method is employed to produce multiple paths, whereas the Potential Field
is utilized to assess the safety of each route and choose the best one. The proposed method creates links between the
routes, enabling the robot to swap between them if it discovers a dynamic obstacle on its current route. Relating to path
length and safety, the simulation results illustrate that Dynamic Dijkstra-Potential Field (Dynamic D-PF) achieves better
performance than the Dijkstra and Potential Field each separately, and going to make it a promising solution for the
application of robotic automation within dynamic environments.

Keywords

Robotic, Path Planning, Dijkstra, Potential Field, Static Obstacle, Dynamic Environment.

I. INTRODUCTION

Designing the path for an autonomous robot is a crucial task,
especially when operating in dynamic environments where ob-
stacles can appear or disappear unexpectedly in real-time. The
objective of planning the robot’s path is to identify a secure
and efficient route from the initial location to the desired end-
point, considering the existence of obstacles. [1] In dynamic
environments, the primary challenge is to devise a path that is
both safe and optimal while allowing the robot to adapt to any
changes in the environment and modify its course accordingly.
Finding a path that is safe from potential threats and efficient
to meet the objective requires an extensive understanding of
the environment and the robot’s capabilities. This involves
analyzing data from various sources such as sensors, cameras,
and LIDAR (Light Detection and Ranging) to detect obstacles
and other hazards, and then employing a suitable algorithm

that considers the robot’s motion constraints, obstacle avoid-
ance, and optimality criteria to compute an optimal and safe
path.

Several planner algorithms have been discussed in the
previous literatures. A* is a heuristic search algorithm that
uses a cost function to evaluate the distance from the starting
point to the goal, considering the appearance of obstacles. [2]
Dijkstra is a graph-based algorithm that finds the shortest path
between two nodes [3], while the Rapidly Exploring Random
Tree (RRT) is a sampling-based algorithm that generates a
tree structure and finds a path by connecting the starting and
goal points. [4], [5] Artificial Potential Field (APF) is a tech-
nique that uses a potential field to guide the robot away from
obstacles based on the gradient of the field. [6] Despite the
success of these traditional path planning algorithms, they
have limitations in dynamic environments. [7] For example,
A* and Dijkstra are computationally intensive and may not

This is an open-access article under the terms of the Creative Commons Attribution License,

©2023 The Authors.

which permits use, distribution, and reproduction in any medium, provided the original work is properly cited.

Published by Iraqi Journal for Electrical and Electronic Engineering | College of Engineering, University of Basrah.

https://doi.org/10.37917/ijeee.19.2.11

https://www.ijeee.edu.iq | 90

https://doi.org/10.37917/ijeee.19.2.11
https://www.ijeee.edu.iq

o1 |

Al-Ansarry, Al-Darraji & Honi

be suitable for real-time response, while RRT is not well-
suited for environments with dynamic obstacles. Potential
field obstacle avoidance is a promising solution for dynamic
environments, but it can result in sub-optimal paths that are
not safe or efficient and may also fall in the local minimum
regions.

L. Li-sang et al. describe a smart obstacle avoidance car
for autonomous driving, using Simultaneous Localization and
Mapping (SLAM) technology to generate a map of an in-
door unknown environment. [7] Other researchers focus on
finding the shortest mobile route in a virtual environment us-
ing the Modified Dijkstra’s algorithm. [8] D. S. Nair and P.
Supriya present a new approach for planning besides colli-
sion avoidance within the system of robot navigation using
Modified Temporal Difference Learning (MTDL). [9] On the
other side, another method that presents a solution for the
problem of constrained coverage path planning for Unmanned
Aerial Vehicles (UAVs) is proposed. [10] X. Li, proposes a
relaxed Dijkstra algorithm to plan the path of a robot within a
real time large-scale and obstacle-intensive environment. [11]
Particle Swarm Optimization (PSO) algorithm is applied to
improve the initial path of Dijkstra to get the final shortest
path. [12] Also, an improvement to the Dijkstra algorithm
for optimizing the shortest path for the direct navigation of
ships has been proposed. [13] In 2022, a new method pro-
poses an energy-efficient local path planning algorithm for
Autonomous Ground Vehicles (AGVs) by merging the Poten-
tial Field algorithm with future movement prediction. [14]
The algorithm of Dijkstra to find the optimal path in real-time
for a single unmanned surface vehicle in Portsmouth Harbour
is introduced. [15] B. Kasmi and A. Hassam (2021) proposed
a two-part path planning method for mobile robot navigation,
using cell decomposition for offline computation and a poten-
tial field method for online computation. [16] Finally, an ana-
Iytical method for path planning for a UAV to attack multiple
moving targets in a dynamic environment is presented. [17]
W. Yang et al. operate to address the problems of “local
minimum” and “unreachable target”. The improved method
modifies the direction and influence range of the gravitational
field, increases the virtual target and evaluation function, and
increases gravity to solve these problems. [18] These studies
offer valuable insights into various path planning and obstacle
avoidance techniques for robotic systems, which can be useful
in a range of applications. [19], [20], [21]

In this research, we present an improved method for path
planning that combines the Dijkstra path planning algorithm
with the Potential Field obstacle avoidance method to address
the aforementioned challenges (dealing with the dynamic ob-
stacles and overtaking the regions of local minima). The
Dijkstra algorithm is used to generate multiple paths from
the source point to the target one, and the potential field algo-

rithm is used to filter the only desirable paths (paths near to
the shortest one and have a responsible cost) to be assigned
as alternative paths in case of the basic path (shortest one)
intersect by any dynamic obstacle, then evaluated the safety
(obstacle-free) of each path that generated by Dijkstra and
select the next optimal one. The proposed method generates
connections between the alternative paths, allowing the robot
to switch between various paths if it faces a dynamic obsta-
cle on its current route in real-time. This allows the robot to
continue toward its target while avoiding obstacles in a safe
and efficient manner. The proposed method also handled the
issue of trapping within the region of local minima which
PF suffered from, making the path suitable for use in a wide
range of mobile robot applications.

The research is distributed as follows: Section II presents
the methodology for the proposed method and the problem
formulation. In section III, experiments are conducted and the
results are illustrated to validate the algorithm. Finally, the
conclusion is made in Section I'V.

II. PROPOSED METHOD

The method suggested involves utilizing a combination of the
Dijkstra path planning algorithm and potential field obstacle
avoidance to determine the most efficient path in constantly
changing environments. It consists of two distinct phases:
Path Generation and Path Selection.

A. Path Generation

The algorithm of Dijkstra is considered a common graph
traversal method that is used to locate the path with the short-
est length between two vertices in a graph with non-negative
edge weights. It is known for its efficiency and is commonly
used in various applications, such as finding the optimal route
between two nodes on a map or finding the shortest path in a
computer network.

The algorithm operates as shown in Figure (1) by itera-
tively exploring nodes within a graph, starting from the initial
node and visiting its neighbors. The distance between the
source node and each neighboring node is calculated and then
selects the neighbor with the shortest distance. This strategy
is continued till every single node has been examined, and the
path with the lowest distance has been determined between
the source node and all other nodes in a graph.

In the path generation phase, the Dijkstra algorithm is used to
generate multiple paths as shown in Figure (2) between the
start and goal points, considering the presence of obstacles
in the environment. The algorithm creates a graph structure,
where nodes represent the possible locations of the robot,
and edges represent the connections between the nodes. The
algorithm then finds the shortest path from the source point

Al-Ansarry, Al-Darraji & Honi

Fig. 1. Dijkstra Map Representation

to the goal by searching the graph structure for the minimum
distance between nodes.

Fig. 2. Path Generation

The goal here is to generate candidate paths from the
current robot position to the position of the goal. This is ac-
complished by using Dijkstra’s shortest path algorithm, which
finds the optimal path for each two points in a graph. By
generating and storing the multiple candidate paths, the pro-
posed method provides the robot with multiple options for
reaching the goal position and increases the robustness of the

path planning process. Algorithm (1) describes these steps
clearly.

Algorithm-1: Path Generation

Initialize : graph, start, end

dist = float("inf")

dist[start] =0

previous = {node: None for node in graph}
unvisited = graph.keys()

while unvisited:

current = min{unvisited, key=lambda x: dist[x])
if current == end:
break
unvisited.remove(current)
for neighbor, weight in graph[current]. items():
if neighbor not in unvisited:
continue
new_dist = dist[current] + weight
if new_dist < dist[neighbor]:
dist[neighbor] = new_dist
previous[neighbor] = current

return previous, dist[end]

The ShortestPath function takes three inputs: graph,
start, and end. Graph is a dictionary of dictionaries
representing the graph structure, where the keys are the
nodes, and the values are dictionaries of neighbors and
weights. Start and end are the starting and ending nodes,
respectively.

The distances dictionary is initialized with the value
float("inf”) for all nodes, representing that the distance
is unknown. Set the distance equal to 0 between the
start node to itself.

The previous dictionary is initialized with None for all
nodes, representing that there is no previous node in
the path yet. The unvisited list is initialized with all the
nodes in the graph.

The while loop continues until all nodes have been
visited or the end node has been found.

In each iteration, the node with the minimum distance
is selected as a current node. If it is the end node, the
loop is terminated. The current node is removed from
the unvisited list.

For each neighbor of the current node, the distance from
the start node to the neighbor is calculated as the sum
of the distance from the start node to the current node
and the edge weight connecting the current one and the

Al-Ansarry, Al-Darraji & Honi

neighbor. If this new distance j current distance to the
neighbor, the distances and previous dictionaries are
updated accordingly.

* The previous dictionary and the distance starting from
the source node to the end one is returned as the result
of the algorithm.

B. Path Selection

The Potential Fields is a path planning algorithm that calcu-
lates a path between the start and goal positions while avoiding
collisions that may occur in the environment. The algorithm
starts by initializing the current position to the start point and
runs a loop with a maximum amount of iterations. In each
iteration, the attractive force vector is calculated depending
on the current position and the goal location, while the re-
pulsive force vector is calculated depending on the current
location and the obstacles in the configuration. The vector of
the total-force is then calculated by adding the attractive and
repulsive force vectors and the current position is updated by
moving a small step in the direction of the total-force vector.
The distance between the current location and goal one is
checked, and if it is below a predefined threshold, a path to
the goal has been found and the algorithm returns the path. If
the maximum number of iterations is reached and no path is
found, the algorithm returns ”No path found”. In this phase,
the algorithm of the Potential Field (PF) is used to evaluate
the safety of each path generated by the Dijkstra algorithm.
The algorithm creates potential fields, where the gradient of
these fields as shown in Figure (3) guides the robot away
from obstacles and toward the goal point. The virtual path
represents by black dashed line and the actual path represents
by green dashed line. The attractive forces act as blue rows,
while repulsive forces as red rows.

Obstacle -z

!

"-....._--/

aoe
2

Start, »2=~

Fig. 3. Potential Field

The safety of each path is evaluated based on the potential
field, and the path with the safety highest score is chosen as
the optimal path. Additionally, the proposed method generates
connections between the paths, allowing the robot to switch
to different paths if it encounters a dynamic obstacle in its
current position. The connections are generated based on the

potential field, allowing the robot to switch toward another
path while still avoiding obstacles safely and efficiently. The
proposed method operates in real-time and can handle mov-
able obstacles, making it suitable for use in a wide range of
applications. The method is designed to find a path that is
both short and safe, while also allowing the robot to react the
variations in the environment and adjust its path accordingly.
Figure (4) demonstrates the representation of the Artificial
Potential Fields (APF).

(c)
Fig. 4. Potential Fields Representation (a) 3D Environment
(b) 2D Field (c) 3D Field

The main mathematical equations used in the potential
field algorithm are as follows:

1. Attractive Force Vector Calculation: The attractive
force vector is calculated using Equation (1):

F_attr = k_attr x (goal — current Pos) €))

Where: F_attr: Attractive force vector, k_attr: Attrac-
tive force constant (positive scalar value), goal: Goal
position, currentPos: Current position.

2. Repulsive Force Vector Calculation: The repulsive
force vector is calculated using Equation (2) and (3) for
each obstacle in the environment:

F_rep =k_repx(1/distance —1/d0) xdirection (2)

Al-Ansarry, Al-Darraji & Honi

direction = (obs — curPos) /||obs — curPos|| (3)

Where: F_rep: Repulsive force vector, k_rep: Repulsive
force constant (positive scalar value), obs: Obstacle, po-
sition curtPos: Current position, d0: Desired minimum
distance between the obstacle and the robot.

The goal here is to select the optimal path from the multi-
ple candidate paths generated in the Path Generation phase.
This is accomplished by employing the Potential Field to cal-
culate the safety of each candidate path and combining this
information with the length of the path to determine the over-
all cost of each path. The path with the lowest cost is then
selected as the optimal path, providing the robot with the best
trade-off between safety and efficiency in reaching the target
position. Algorithm (2) shows these steps clearly.

Algorithm-2: Path Selection

Initialize = robot_pos, target, obstacle

attr_force = k_attr * (target - robot_position)

rep_force = [0, 0]

for obstacle in obstacles:
distance = dist(robot_position, obstacle)
direction = normalize(robot_position - obstacle)
rep_force += k_rep * (1/distance - dO) * direction

total_force = attr_force + rep_force

return normalize(total_force)

* This algorithm, takes three inputs: robot_pos, target,
and obs. robot_pos represents the current position of the
robot, the target represents the desired target position,
and obstacles are a list of obstacles in the environment.

The attractive force is calculated as k_attr * (target -
robot_pos), where k_attr is a constant that determines
the strength of the attractive force. The attractive force
acts to pull the robot toward the target position.

* The repulsive force is initialized as [0, 0]. For each
obstacle in the obstacles list, the distance between the
robot and the obstacle is calculated, and the direction
away from the obstacle is calculated as normalized
(robot_pos - obs). The contribution of the obstacle to the
repulsive force is calculated as k_rep * (1/distance - dO)
* direction, where k_rep is a constant that determines
the strength of the repulsive force, and d0 is a constant
that represents a desired minimum distance between
the robot and obstacles. The repulsive force is updated
with the contribution of each obstacle.

¢ The total_force is calculated as the sum of the attractive
force and the repulsive force.

* The algorithm returns the normalized total force, repre-
senting the direction that the robot should move in to
avoid obstacles while still reaching the target position.
The normalization step ensures that the magnitude of
the force is always 1, which helps in controlling the
speed of the robot’s motion.

C. Problem Formulation
The problem of the (Dynamic D-PF) method is to find a
safe and efficient path for a robot to navigate from a starting
position to a target position in a 2D environment that may
contain dynamic obstacles. The solution to this problem is
formulated mathematically as a combination of path length
and obstacle avoidance, and the method returns the optimal
path with the minimum cost.

Let’s assume the following variables and their definitions:

* s: starting position of the robot.
* t: target position.
* O: a set of obstacles.

* p: a candidate path from s to t.

1(p): length of the path p.

f_obs(p): the rep_force exerted by obstacles on path p.

* cost(p): cost of path p, defined as the combination of
the path length and the safety of the trajectory.

The mathematical formulation of the (Dynamic D-PF) method
can be defined as follows:

1. Generate candidate paths using the Dijkstra algorithm:

p_candidates = Di jkstra(s,t))

2. For each candidate path, calculate the safe trajectory
using the Potential Field, for p in p_candidates:

safe_trajectory = PotentialField(s,p,0) (5)

3. Evaluate the cost of each path: for p in p_candidates:
cost(p) =1(p) + f-obs(p) ©)

4. Select the path which has a minimum cost:

p-optimal = argmin_pcost(p) @

95 |

Al-Ansarry, Al-Darraji & Honi

The method then returns the optimal path, p_optimal, which
is the minimum cost path. The cost of each path is calculated
as the sum of the length of the path and the repulsive force
exerted by obstacles on the path. The length of the path can be
calculated using any suitable distance metric, and the repulsive
force can be calculated using the method of Potential Field.

D. Dynamic D-PF Method

We present -in this section- the Dynamic Dijkstra-Potential
Field method (Dynamic D-PF). The goal here is to implement
the selected optimal path as shown in Figure (5) in a real-
time potential field environment and respond to any dynamic
obstacles that may arise during the execution of the path.
This is accomplished by using the connections generated in
the Path Generation phase, which allow the robot to switch
between candidate paths if it encounters a dynamic obstacle
on its current path.

Fig. 5. Potential Fields Heat Map with Dynamic Obstacles

By combining these two algorithms, the proposed method
(Dynamic D-PF) as illustrated in Algorithm (3) provides a
flexible and efficient way to find an optimal path (short and
safe) in real-time within a 2D environment. The combination
of the multiple paths generated by the Dijkstra and the Poten-
tial Field method provides robustness and adaptability in the
presence of dynamic obstacles.

Algorithm (3), takes as input the robot’s current position,
the target position, and the obstacles in the environment. It
first generates multiple paths from the robot’s current position
to the target one using Dijkstra’s algorithm. Then, for each
path generated by Dijkstra’s algorithm, it applies the Potential
Field method to find a safe trajectory along the path, avoiding
obstacles along the way. If a safe trajectory is found, the path
and its associated safe trajectory are added to the list of paths.
The EvaluatePath function calculates the cost of each path

Algorithm-3: Dynamic D-PF
Initialize = robot_pos, target, obstacle
paths =[]
path_candidates = Dijkstra(robot_pos, target)
for path in path_candidates:
safe_trajectory = PotentialField(robot_pos, path, obs)
if safe_trajectory:
paths.append((path, safe_trajectory))
optimal_path = None
optimal_cost = infinity
for path, safe_trajectory in paths:
path_cost = EvaluatePath(path, safe_trajectory)
if path_cost < optimal _cost:
optimal_path = path
optimal_cost = path_cost
return optimal _path

function EvaluatePath(path, safe_trajectory):
path_length = Length(path)
safety = Safety(safe_trajectory)
return path_length + safety

and its associated Potential Field trajectory by summing the
length of the path and the safety of the safe trajectory along
the path. Finally, the path with the lowest cost is chosen as the
optimal path and returned as the result. It is worth mention
that A* and Dijkstra are algorithms to locate the shortest route
between two points within a graph or a network. However,
there are some key differences between them.

* Heuristic Function One of the main differences be-
tween A* and Dijkstra is that A* utilizes a heuristic
function to guide the search toward the goal, while Di-
jkstra does not. The heuristic function estimates the
distance from a node to the goal, which helps A* to
prioritize nodes that are closer to the goal, potentially
leading to faster search times.

Optimality Dijkstra is guaranteed to reach the goal with
the minimum distance between two points, whereas
A* is only guaranteed to find an optimal path if the
heuristic function used is admissible, meaning it never
overestimates the actual distance to the goal.

* Memory Usage A* typically uses more memory than
Dijkstra, as it keeps track of more information about
each node in order to calculate the heuristic function.
However, this additional memory can often lead to
faster search times.

* Time Complexity In terms of time complexity, the
algorithm of Dijkstra has the worst time complexity:

Al-Ansarry, Al-Darraji & Honi

O(|E|+ |V|log|V|), where E is the set of edges and V
is the set of vertices. On the other hand, A* has a worst-
case time complexity of O(bd), where b is the branching
factor of the graph and d is the depth of the optimal
solution. However, in practice, A* often performs better
than Dijkstra due to its use of the heuristic function.

As a conclusion, the proposed dynamic path planning method
(Dynamic D-PF) can be illustrated through the blocks diagram.
Figure (6), shows the steps clearly.

III. EXPERIMENTAL RESULTS

The proposed method was evaluated through a series of experi-
ments in a simulated 2D environment. The performance of the
(Dynamic D-PF) was evaluated in terms of path length, safety,
and execution time. The path length was measured as the total
distance traveled by the robot starting from the initial location
to the target one. The safety of the path was evaluated by the
number of times the robot encountered a dynamic obstacle
and had to switch to a different path. The execution time was
measured as the time it took for the robot to complete the path
from start to finish. A variety of scenarios were tested, with
different numbers and types of static and dynamic obstacles,
and different levels of complexity in the environment. The
start point depicts as an orange circle and the goal point as a
green circle. The shortest global path (Dijkstra modified-path)
is represented by the red solid line. The dynamic real-time
path (generated by PF) is shown by the solid green line and
the final resulting path (generated by Dynamic D-PF) is repre-
sented by a black dotted line, which is calculated based on the
proposed method. The grey dotted line represents the desired
path-net, generated using the (Dijkstra algorithm) to cover
most free configurations. Static obstacles are denoted by black
blocks, while dynamic obstacles are represented by blue wide
arrows. Finally, the robot is acted by a blue polygon. The
simulation is built using Lenovo intel Core i7 8Gen laptop
with a Linux 20.04, Python-3 under the Robotic Operating
System (ROS) framework, and Rviz environment.

A. Experiment-1: (Global Path - Static)

In this experiment, the comparisons have been conducted by
implementing (A*, Dijkstra, and the Dijkstra-PF) on a static
offline map of size (300*150 cm) for (100 runs). The planner
efficiency as the experimental results illustrated in Table I
below, is measured based on the time-consuming, cost, and
path length until reaching the goal.

The simulation results illustrate that the time and cost
consuming of A* is less than both Dijkstra and Dijkstra-PF
(D-PF) respectively, due to exploring the only regions with
minimum cost based on the heuristic function, while it cannot
deal with the dynamic obstacles. On the other side, Dijkstra

)
v

Initialize Environment
Parameters

v

Explore Environment Using
(Dijkstra) Algorithm

v

Find the Shortest Path &
the Candidate Paths

v

Move the Robot Along the
Optimal Short Path Globally

Are there
Obstacles in the
Range of Scan?

Use Potential Field Planner to
Search Locally Next Valid
Candidate Paths that Avoid

Dynamic Obstacles

v

Move Robot One
Segment Forward

y

Does Robot
Reach the
Goal?

e)

Fig. 6. Blocks Diagram of Dynamic D-PF

has to explore all the regions’ free obstacles which cause to
increase the cost compare to A*. The Dijkstra-PF method
works to explore the desirable regions that have acceptable
costs. Moreover, in this experiment, the behavior that the
potential field takes influences the resulting path making it
shorter and smoother compared to that of A* and Dijkstra

Al-Ansarry, Al-Darraji & Honi

TABLE 1.
PLANNING METHODS COMPARISON (STATIC MAP)
Method Time (sec.) Cost (node) Length
A* 3.40 311 350 cm
Dijkstra 7.88 453 365 cm
Dijkstra-PF 6.04 440 335cm

respectively. Figure (7) shows the static map with global
paths that generates using the aforementioned methods above.

B. Experiment-2: (Local Path - Dynamic)

In this experiment, the proposed (Dynamic D-PF) has been
tested on a dynamic map of size (600*600 cm) and the results
of (50 runs) have been evaluated. As demonstrated in Table II,
the range of both time and cost values was reasonable between
the highest and lowest value. Finally, the standard deviation
was low and the median value average was also convincing.
In this experiment, the Dynamic D-PF has the ability to deal
with the dynamic obstacles based on employing the potential
field in case of facing moving obstacles accidentally where
the forces of repulsive and attractive guide the robot away
from the obstacles and move toward the goal by selecting
the nearest alternative safe path to be adopted. Figure (8)
simulates the dynamic path planning.

TABLE II.

DYNAMIC PLANNING BASED ON ROBOT VELOCITY (8
CM/SEC) AND THE DECISION TIME

Dynamic D-PF Time (sec.) Cost (node) Length
STD. 2.2 34.6 18.3 cm
Mean 114.5 1040 820 cm

Median 113.2 1025 810 cm
Lowest Value 112 1004 800 cm

The results of the experiments showed that the proposed
method (Dynamic D-PF) performed well in terms of path
length, safety, execution time, and demonstrating its effective-
ness as a path planning solution in dynamic 2D environments.
In comparison, the proposed method was found to provide a
good balance between (A* and Dijkstra) based on path length,
safety, and execution time. Moreover, the Dynamic D-PF in
this stage can deal with the dynamic obstacles (moving obsta-
cles that appear accidentally) due to the benefit of merging the
Potential Field (PF) and Dijkstra which makes the Dynamic
D-PF detects the obstacles efficiently and find another safe
path quickly.

The algorithm of Dijkstra is capable of generating the short-
est optimal path by searching all the available configurations

(a)

i
‘e
pe
I
I
ba
re
I
pe

BaessssRsRsaa

sesssssensns

(d)
Fig. 7. Offline Path Planning (a) Static Map (b) A* Path (c)
Dijkstra Path (d) Dijkstra-PF Path

(spaces) within the given environment. Although the A* algo-
rithm utilizes a heuristic function to identify a single optimal
path without the need to explore the entire map, it requires
less time than the Dijkstra algorithm. However, in the context
of this work, it is necessary to create and store the desired
paths, except for those that extend far from the goal. This
is done to provide alternative paths that can be used when
dynamic obstacles unexpectedly intersect with the global path

\O
oo

Al-Ansarry, Al-Darraji & Honi

Fig. 8. Snapshots of Real-Time Dynamic Path Planning

of the Dijkstra algorithm.

IV. CONCLUSION

In this paper, a new path planning method was proposed that
combines the strengths of Dijkstra’s algorithm and the Poten-
tial Field obstacle avoidance method to provide a robust and
efficient solution for online path planning in 2D environments
with dynamic obstacles. The proposed method (Dynamic D-
PF) consists of two phases: Path Generation, Path Selection.
The results of the experiments showed that the proposed Dy-
namic D-PF method outperformed the basic methods (Dijkstra
and Potential Field) in terms of path Optimality (short and
smooth) and safety (obstacles-free). The results also demon-
strate the effectiveness of the proposed method and provide
evidence for its possible use in real-world applications. On the
other side, the proposed method has some limitations (takes
more time compared to Dijkstra and Potential Field each sep-
arately). Future work will focus on improving the robustness
and efficiency of the proposed method. Additionally, the pro-
posed method will be tested in more complex and realistic

environments, such as 3D environments and environments
with multiple robots. These improvements and extensions
will further demonstrate the potential of the proposed method
for mobile robotics applications.

CONFLICT OF INTEREST

The authors have no conflict of relevant interest to this article.

REFERENCES

[1] M. Castillo-Lopez, P. Ludivig, S. A. Sajadi-Alamdari,
J. L. Sanchez-Lopez, M. A. Olivares-Mendez, and
H. Voos, “A real-time approach for chance-constrained
motion planning with dynamic obstacles,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 3620-
3625, 2020.

[2] P.E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis
for the heuristic determination of minimum cost paths,”
IEEE transactions on Systems Science and Cybernetics,
vol. 4, no. 2, pp. 100-107, 1968.

99 |

Al-Ansarry, Al-Darraji & Honi

[3] D. B. Johnson, “A note on dijkstra’s shortest path al-
gorithm,” Journal of the ACM (JACM), vol. 20, no. 3,
pp- 385-388, 1973.

[4] S. LaValle, “Rapidly-exploring random trees: A new
tool for path planning,” Research Report 9811, 1998.

[5] S. Al-Ansarry and S. Al-Darraji, “Hybrid rrt-a*: An
improved path planning method for an autonomous mo-
bile robots.,” Iraqi Journal for Electrical & Electronic
Engineering, vol. 17, no. 1, 2021.

[6] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numer-
ical potential field techniques for robot path planning,”
IEEE transactions on systems, man, and cybernetics,
vol. 22, no. 2, pp. 224-241, 1992.

[7] L. Li-sang, L. Jia-feng, Y. Jin-xin, H. Dong-wei, Z. Ji-
shi, J. Huang, and P. Shi, “Path planning for smart car
based on dijkstra algorithm and dynamic window ap-
proach,” Wireless Communications & Mobile Comput-
ing (Online), vol. 2021, 2021.

[8] S.J. Fusic, P. Ramkumar, and K. Hariharan, “Path plan-
ning of robot using modified dijkstra algorithm,” in 2018
National Power Engineering Conference (NPEC), pp. 1—
5, IEEE, 2018.

[9] D. S. Nair and P. Supriya, “Comparison of temporal
difference learning algorithm and dijkstra’s algorithm
for robotic path planning,” in 2018 Second International
Conference on Intelligent Computing and Control Sys-
tems (ICICCS), pp. 1619-1624, IEEE, 2018.

[10] S. M. Ahmadi, H. Kebriaei, and H. Moradi, “Con-
strained coverage path planning: evolutionary and clas-
sical approaches,” Robotica, vol. 36, no. 6, pp. 904-924,
2018.

[11] X.Li, “Path planning of intelligent mobile robot based
on dijkstra algorithm,” in Journal of Physics: Confer-
ence Series, vol. 2083, p. 042034, IOP Publishing, 2021.

[12] H. I. Kang, B. Lee, and K. Kim, “Path planning al-
gorithm using the particle swarm optimization and the
improved dijkstra algorithm,” in 2008 IEEE Pacific-Asia
Workshop on Computational Intelligence and Industrial
Application, vol. 2, pp. 1002-1004, IEEE, 2008.

[13] Z. Cheng, H. Zhang, and Q. Zhao, “The method based
on dijkstra of multi-directional ship’s path planning,”
in 2020 Chinese Control And Decision Conference
(CCDC), pp. 5142-5146, 1IEEE, 2020.

[14] R. Szczepanski, T. Tarczewski, and K. Erwinski, “En-
ergy efficient local path planning algorithm based on
predictive artificial potential field,” IEEE Access, vol. 10,
pp. 39729-39742, 2022.

[15] Y. Singh, S. Sharma, R. Sutton, and D. Hatton, “To-
wards use of dijkstra algorithm for optimal navigation
of an unmanned surface vehicle in a real-time marine
environment with results from artificial potential field,”
2018.

[16] B. Kasmi and A. Hassam, “Comparative study between
fuzzy logic and interval type-2 fuzzy logic controllers for
the trajectory planning of a mobile robot,” Engineering,
Technology & Applied Science Research, vol. 11, no. 2,
pp. 7011-7017, 2021.

[17] X. Chen, X. Chen, and G. Xu, “The path planning algo-
rithm studying about uav attacks multiple moving tar-
gets based on voronoi diagram,” International Journal
of Control and Automation, vol. 9, no. 1, pp. 281-292,
2016.

[18] W. Yang, P. Wu, X. Zhou, H. Lv, X. Liu, G. Zhang,
Z. Hou, and W. Wang, “Improved artificial potential
field and dynamic window method for amphibious robot
fish path planning,” Applied Sciences, vol. 11, no. 5,
p. 2114, 2021.

[19] G. Klancar, A. ZdeSar, and M. Krishnan, “Robot navi-
gation based on potential field and gradient obtained by
bilinear interpolation and a grid-based search,” Sensors,
vol. 22, no. 9, p. 3295, 2022.

[20] J. Luo, Z.-X. Wang, and K.-L. Pan, “Reliable path
planning algorithm based on improved artificial poten-
tial field method,” IEEE Access, vol. 10, pp. 108276—
108284, 2022.

[21] H. Qin, S. Shao, T. Wang, X. Yu, Y. Jiang, and Z. Cao,
“Review of autonomous path planning algorithms for
mobile robots,” Drones, vol. 7, no. 3, p. 211, 2023.

	Introduction
	Proposed Method
	Path Generation
	Path Selection
	Problem Formulation
	Dynamic D-PF Method

	Experimental Results
	Experiment-1: (Global Path - Static)
	Experiment-2: (Local Path - Dynamic)

	Conclusion

