
Received 21 May 2023, accepted 22 June 2023, date of publication 28 June 2023, date of current version 22 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3290897

Bi-Directional Adaptive Probabilistic Method
With a Triangular Segmented Interpolation
for Robot Path Planning in Complex
Dynamic-Environments
SUHAIB AL-ANSARRY 1, SALAH AL-DARRAJI 2, ASMAA SHAREEF 1, DHAFER G. HONI 1,3,
AND FRANCESCA FALLUCCHI4
1Department of Computer Science, College of Education for Pure Sciences, University of Basrah, Basrah 61004, Iraq
2Department of Computer Science, College of Computer Science and Information Technology, University of Basrah, Basrah 61004, Iraq
3Department of Civil Engineering, College of Engineering, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
4Department of Engineering Science, Guglielmo Marconi University, 00193 Rome, Italy

Corresponding author: Salah Al-Darraji (aldarraji@uobasrah.edu.iq)

ABSTRACT Path planning is a fundamental aspect of mobile robots and autonomous systems. Methods
of path planning are used in robotics to create a path for a robot or autonomous system to follow from
a starting position to a goal one while avoiding obstacles and satisfying any additional conditions. There
are many different methods to plan the path, including probabilistic methods, heuristics-based approaches,
and optimization-based methods. In this paper, we introduce a novel path planning method called Dynamic
Adaptive RRT-connect with Triangular Segmented Interpolation. Our approach aims to enhance the conven-
tional Rapidly-exploring Random Tree (RRT) algorithms by incorporating an Adaptive-RRT strategy. This
strategy involves selecting a random node as a new node to augment the exploration of the tree, thereby
improving its coverage of the search space. Furthermore, we employ a Bi-directional scheme to further
enhance the convergence time and cost of our method. By exploring the search space from both the initial
and goal configurations simultaneously, we exploit the advantages of a two-way search, potentially resulting
inmore efficient and optimized paths. To improve the quality of the generated paths, ourmethod leverages the
Triangular Segmented Interpolation (TSI) technique. TSI helps in reducing the path length and increasing its
smoothness by interpolating between the configurations in a triangular segmented manner, resulting in more
natural and feasible trajectories. Moreover, considering the dynamic nature of the environment, our method
operates within the framework of the Dynamic Window Approach (DWA). By adapting to the changing
environment, our approach effectively avoids dynamic obstacles and navigates the robot or system through
complex and unpredictable scenarios. We have conducted extensive experiments in various environments to
evaluate the performance of our proposed method. The results demonstrate that our approach outperforms
the individual RRT and RRT-connect algorithms in terms of computation time (reduced by 90-80%), cost
(reduced by 82-63%), and path length (shortened by 17-12%). Additionally, our method exhibits efficient
obstacle avoidance capabilities, enabling successful navigation in dynamic environments.

INDEX TERMS Autonomous system, dynamic obstacles, interpolation, probabilistic methods, robot path
planning.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) are increasingly being
used in a variety of tasks due to their small size, low cost, ease
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of use, and ability to operate in hazardous environments. UAV
path planning involves finding a safe, collision-free path from
a starting position to a goal position while considering any
potential threats and performance constraints of the UAV, and
minimizing the flying time as much as possible [1]. However,
traditional algorithms for UAV path planning may not always
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be suitable for complex environments and may not be able to
meet the specific needs of the mission.

Traditional classical methods such as mathematical induc-
tion, dynamic induction, and optimal control methods may
not be suitable for describing system dynamics and uncertain
environments in UAV path planning due to their computa-
tional intensity and tendency to get stuck in local optima [2].
For example, the A* algorithm [3] relies heavily on the cost
function, which must properly weigh various constraints.
If the cost function is not designed properly, the algorithm’s
search space can grow exponentially. While genetic algo-
rithms are efficient and globally robust optimization algo-
rithms, they tend to converge slowly after reaching an optimal
solution and may not be suitable for real-time trajectory plan-
ning, or the multi-threaded versions of probabilistic meth-
ods [4] which are needed for super equipment.

Random sampling algorithms, such as the probabilistic
roadmap (PRM) algorithm [5], PRM* [6], and the Rapidly
Exploring Random Tree (RRT) algorithm, are effective
in solving UAV trajectory planning problems. The PRM
algorithm generates a roadmap by setting random points in
space and linking them and then uses heuristic knowledge
to guide the search for the best or second-best flight path
from the initial state to the target state. The RRT algorithm
which is first introduced by LaValle et al. [7], relies on a
randomly-selected strategy and collision-checking method to
obtain a path in the mission environment and uses a tree
structure to describe the path, which makes the search more
efficient. However, the RRT algorithm may get stuck in a
local minimum area when the distribution of threat sources
in the mission environment is unclear, which is fixed by the
method called RRT-connect [8], and the search may become
less efficient as it increases the number of search failures.
RRT* and RRT*-connect [9], [10] improved variants of tradi-
tional RRT and RRT-connect respectively, which introduced
an optimized path against increased computational time and
cost.

In [11] combines the artificial attractive field (AAF)
approach with the (RRT) algorithm, resulting in an improved
AAF-RRT method with better search efficiency and colli-
sion avoidance ability for global and local planning. Another
method [12] called improved bidirectional RRT* introduces
to addresses the problems of a high degree of random-
ness, low search efficiency, and many inflection points in
traditional bidirectional RRT*. The improvements include
constraining the expansion direction of the random tree by
an improved artificial potential field method, biasing the ran-
dom tree sampling towards the target point, and optimizing
the planned path by extracting key points. An adaptation of
the standard RRT algorithm for real-time path planning in
congested environments has been proposed in [13], which
involves adjusting the step size based on the distance from
the root node, resulting in more precise short-term plans and
faster generation of coarse long-term plans. In the adaptive
RRT with dynamic step (DRRT) [14], the author addresses

the issues of the RRT algorithm such as falling into local
optimum areas and longer planning time. Additionally, the
issue of dimensionality of high degree-of-freedom articulated
robots handles also in an adaptive manner [15] through body
selection which chooses necessary robot bodies and joints
based on the complexity of path planning. Zhang et al. [16]
use the traditional RRT algorithms with a fixed step length
and bias probability which can lead to excessive nodes and
poor performance, while in [17], they consider the relation-
ship between environment complexity and the step size and
bias probability in the RRT algorithm and adjusts the two
parameters accordingly.

On the other hand, Zeng and Si [18] combine RRT and
Dynamic Window Approach (DWA) algorithms to explore a
sparse, relatively small-size point cloud local map, similarly
in [19] authors present an innovative approach that minimizes
planning time and solves sharp path problems. Moreover,
Jia et al. [20] present a framework for dynamic path planning
that avoids collisions with dynamic obstacles in a partially
unknown environment. In addition, Dai et al. [21] propose a
novel algorithm that uses a greedy approach to determine
whether a new node can directly reach the target point, and
Kang et al. [22] present a bidirectional interpolation method
for post-processing in sampling-based robot path planning
algorithms. Examples of methods that deal with the concept
of dynamic path planning and path smoothness can be found
in articles [23], [24]. These contributions have the potential
to make autonomous robots more efficient and practical in
real-world scenarios.

Yuan et al. [25] proposed a motion re-planning algorithm
called DBG-RRT (Dynamic Bias-Goal Factor Rapidly
Exploring Random Tree) that incorporates multiple queries
and sampling-based techniques. The work introduced a
relay-node method within the motion planning framework
to generate collision-free trajectories. Moreover, an uninter-
rupted strategy was employed to assess whether the generated
trajectory would be affected by dynamic obstacles.

Zhang et al. [26] introduced a rotary-wing UAV trajectory
plan model that considers patrol efficiency, trajectory cost,
and power consumption. An enhanced version of the Salp
Swarm Algorithm (SSA) was integrated to address the lim-
itations of traditional RRT in terms of search efficiency and
path smoothness.

Zhou et al. [27] presented the RRT*-Fuzzy Dynamic Win-
dow Approach (RRT*-FDWA) algorithm, which combines
the strengths of the RRT* algorithm in generating global
optimal paths with the real-time local path adjustments pro-
vided by the FDWA algorithm in the presence of nearby
obstacles. Compared to existing path planning algorithms,
RRT*-FDWA demonstrates superior capabilities in avoiding
local minima, performing rapid path re-planning, producing
smooth optimal routes, and enhancing the maneuverability of
the robot.

Guo et al. [28] proposed the Hierarchical Potential Opti-
mization RRT* (HPO-RRT*) algorithm, which utilizes a
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hierarchical structure, potential function lazy planning, and
low-cost optimization. The algorithm includes a UAV per-
ception system, path planner, and path optimizer. It employs
a bias sampling method based on an artificial potential field
function to guide sampling, an improved time-based lazy
collision checking RRT* algorithm to extend the tree, and a
low-cost path optimizer to optimize the heuristic path.

However, the previously mentioned literature appears to
have some limitations in addressing all the relevantmeasuring
factors. Path planning involves numerous factors that need to
be considered and evaluated to ensure the effectiveness of
the generated paths. While the previous literature discusses
certain aspects such as computation time, cost, path length,
and dynamic obstacle avoidance, it may not comprehensively
cover all the crucial measuring factors that contribute to
the quality of a path planning method.The present paper
holds significant importance due to its innovative approach
to address the limitations of existing path planning algorithms
for UAVs.

Our contribution can be summarized as follows:
• We improve the performance of the RRT algorithm by
introducing a directional adaptive variation (Adaptive-
RRT). It is an improved version of the RRT algorithm
that uses the random node directly as a new node to
increase the speed of tree exploration. It has proven
to be faster and more efficient in finding the solution
compared to the original RRT algorithm.

• We apply the concept of bi-directional search to propose
the (A-RRT connect) which is improved the planning
efficiency based on the combination of the adaptive two
trees during the sampling process leading to decreasing
the convergence time and the cost of generating nodes.

• The Triangular Segmented Interpolation (TSI) is pro-
posed as a new manner that helps in producing a short
and smooth path.

• We employ the DWA [29] to enable the robot to safely
reach its target point and avoid temporary obstacles
(dynamic obstacles) in the global path.

The present study’s implications, contributions, and nov-
elty lie in its ability to overcome the limitations of existing
path planning algorithms for UAVs. The proposed methodol-
ogy offers faster exploration, improved planning efficiency,
shorter and smoother paths, and efficient navigation in
dynamic environments. These advancements contribute to the
practicality and effectiveness of autonomous robots in real-
world scenarios.

The reminder of the paper is organized as follows: in
Section II, the proposed algorithms are presented. Section III
the designed algorithms are verified numerically, besides
simulating the path and robot movement. Finally, the paper
is summarized and concluded in Section IV.

II. METHODOLOGY
Dynamic path planning is a challenging problem in robotics
and autonomous systems, as it requires the ability to find an
optimal path in real-time while considering changes in the

environment. In this work, we present an improved method
for dynamic path planning called (Dynamic A-RRT-connect
TSI) algorithm. The proposed algorithm is a combination of
the A-RRT-connect with TSI, besides the Dynamic Window
Approach. The algorithm operates in a bi-directional manner,
starting from both the start position and the goal position,
to find a collision-free path in a dynamic environment. The
proposed method (Dynamic A-RRT-connect TSI) algorithm
can be broken down into the following steps:

1) Initialize the algorithm by setting the start and goal
positions for the robot, as well as any other algorithm
parameters such as the step size, number of iterations,
and goal distance threshold.

2) Begin growing the tree from the start position. The tree
is initially empty, so the first node added is the start
position.

3) Sample a random point in the environment. If the point
is in free space, proceed to the next step. If the point is
in a collision, discard it and sample another point.

4) Using the Adaptive-RRT approach, select the closest
node in the tree to the random point as the parent node,
and then extend the tree towards the random point.

5) Simultaneously grow another tree from the goal posi-
tion, which will allow the algorithm to quickly con-
verge on the path between the start and goal positions.

6) Check if the distance between the new node and the
goal is below a predefined threshold. If it is, a path to
the goal has been found and the algorithm terminates.
If not, add the new node to the tree and continue grow-
ing the trees.

7) Once the two trees meet, the algorithm terminates and
the path between the start and goal positions is returned.

8) Use the TSI method to enhance the resulting path.
9) Employ the DWA to calculate the attractive and repul-

sive forces acting on the new node. These forces will be
used to guide the robot toward the goal while avoiding
obstacles in real-time.

10) When an obstacle appears suddenly, step-8 is repeated
to avoid the dynamic obstacle and find the next valid
point on the resulting path to guide the robot around
the obstacle safely.

A. ADAPTIVE-RRT (A-RRT)
RRT is a popular path planning algorithm used in robotics and
control systems. The algorithm starts with an empty tree and
adds the start node to it. The algorithm then enters a loop that
runs for a maximum number of iterations. In each iteration,
as shown in Fig. 1, a random node (randN ) is sampled from
the environment and the nearest node (nearN ) in the tree to
the random node is found. The tree is then extended towards
the random node by creating a new node, with the step size
(ϵ) determining the size of the extension. If the new node is
in free space, it is added to the tree, and the distance between
the new node and the goal is checked. If the distance between
the new node and the goal is below a predefined threshold,
a path to the goal has been found, and the algorithm returns
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FIGURE 1. The RRT construct [30].

the path. If the maximum number of iterations is reached and
no path is found, the algorithm returns ‘‘No path found.’’

The RRT algorithm uses the following mathematical
formulas:

1) Distance calculation: The distance between two nodes
in the tree is calculated using a metric, such as
Euclidean distance. The equation for Euclidean dis-
tance between points (x1, y1) and (x2, y2) is:

d(x, y) =

√
(x2 − x1)2 + (y2 − y1)2 (1)

2) Nearest node calculation: The nearest node (nearN )
in the tree to the random node is found using the
distance calculation. Given a set of nodes in the tree and
a random node, the nearest node can be found using the
following formula:

nearN = min(d(tree[i], randN )) (2)

for all i in [1, n], where n is the number of nodes in the
tree.

3) New node calculation: The new node is calculated by
extending the tree towards the random node by step
size.

newN = nearN + stepSize ∗
randN − nearN
d(nearN , randN )

(3)

The first level of the proposed work is the Adaptive-RRT
(A-RRT), which is similar to the traditional RRT algorithm,
with a modified step of sampling a random child node for
each new node added to the tree, which leads to improve the
tree expansion, besides reducing the cost and convergence
time efficiently.

The proposed algorithm works iteratively to generate ran-
dom nodes within the search space and connect them to a tree.
The tree grows by connecting newly generated nodes to their
nearest nodes within the tree while ensuring that they avoid
obstacles. The algorithm continues to generate random nodes
and connect them to the tree until either the goal is reached
or the maximum number of iterations is exceeded. During
each iteration of the algorithm, a random node is generated
within the search space. If this node falls within an obstacle,
the node is omitted, and a new random node is generated.
If the node is valid, the nearest node in the tree to the random
node is found. Next, the line between the nearest node and the
random node does is checked to ensure it does not intersect

FIGURE 2. The Adaptive-RRT tree (a) MAP-1 (b) MAP-2.

FIGURE 3. The RRT-connect construct.

with any obstacle. If the line intersects with an obstacle, the
algorithm calculates the midpoint between the nearest node
and the random node and moves the random node towards
the midpoint to avoid the obstacle. A new node is created
from the updated random node, and it is added to the tree
with the nearest node as its parent node if it is a valid node,
otherwise, the process of finding another midpoint continues
until finding an obstacle-free line or the length of the line
is too small. The algorithm continues to iterate, generating
random nodes and connecting them to the tree while avoiding
obstacles, until either the goal is reached, or the maximum
number of iterations is exceeded. If the goal is reachable,
the goal node is added to the tree, and the function returns
the tree. If the maximum number of iterations is reached
without finding a feasible path, the function returns None,
indicating that no path was found. Algorithm 1 explains the
whole process. Fig. 2 show the rapid tree exploration with low
node expansion, besides the resulting path in blue color.

B. ADAPTIVE-RRT-CONNECT (A-RRT CONNECT)
The scheme of bi-directional search is a popular used for
finding a feasible path between two points in a configuration
space. Unlike traditional path planning algorithms that start
from the start node and expand the search space toward the
goal node, the bi-directional algorithm, as shown in Fig. 3,
uses two search trees, one starting from the start node and the
other starting from the goal node, to search for a feasible path.
The two trees then grow toward each other until they meet in
the middle.

The bi-directional algorithm has several advantages over
traditional search algorithms. Firstly, it reduces the search
space, as the search is performed from both ends of
the problem, leading to a faster search. Secondly, the
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Algorithm 1 Adaptive-RRT (A-RRT)
Input : start, goal, search_space, obstacles,

max_iterations, goal_distance_threshold,
line_length_threshold

Output: tree = [T]

T = InitializeTree (start)
for i = 1 to max_iterations then

random_node = SampleRandomNode
(search_space)
if not IsNodeInObstacle (random_node,
obstacles) then

nearest_node = (random_node, T)
line = LineSegment (nearest_node,
random_node)
while IsLineIntersectObstacle (line,
obstacles) and Length (line) ≥

line_length_threshold do
random_node =

CalculateMidpoint(nearest_node,
random_node)
line = LineSegment (nearest_node,
random_node)

end while
if Length (line) ≥ line_length_threshold
then
AddNodeToTree (T, nearest_node,
random_node)
if IsGoalReachable (random_node,
goal, obstacles,
goal_distance_threshold) then
AddGoalNodeToTree
(random_node, goal)
Return T

end if
end if

end if
end for

algorithm reduces the probability of getting stuck in dead-
end spaces, which often happens in traditional algorithms.
Lastly, it increases the probability of finding an optimal path
by allowing the algorithm to search for a path from both the
start and goal nodes, rather than searching for a path only
from the start node. One challenge with the bi-directional
path planning scheme is that it requires finding a connection
between the two search trees once they meet in the middle.
This is typically done by connecting the nodes that are closest
to each other, creating a path between the start and goal
nodes. Despite this challenge, the bi-directional path planning
scheme is widely used in robotics, computer vision, and other
related fields. It is particularly useful in high-dimensional
configuration spaces, where traditional algorithmsmay strug-
gle to find feasible paths. Additionally, it is a powerful tool
for finding optimal paths in complex search spaces, making
it an essential part of many modern path planning algorithms.

FIGURE 4. The A-RRT connect tree (a) MAP-1 (b) MAP-2.

In the second level of the proposed method, the proposed
algorithm starts by initializing two trees, one for the start
configuration and the other for the goal configuration. It then
iterates for a maximum number of iterations provided as input
or a feasible path is found. In each iteration, the algorithm
samples a random configuration within the search space,
checks if it is in an obstacle, and continues to the next iteration
if it is. Then, finds the nearest node in both the start and goal
trees to the random configuration, using a distance metric
such as Euclidean distance. It then attempts to connect the
nearest nodes in the two trees by checking if a straight line
between them does not intersect any obstacles in the search
space. If a connection is feasible, a new node is created and
added to the start tree, and the same is done for the goal tree.
If a newly added node in the start tree is close enough to
the goal configuration (i.e., within the goal distance thresh-
old), the algorithm attempts to connect it to the goal tree.
If successful, the algorithm returns a path connecting the start
and goal configurations. If the connection is not feasible, the
algorithm creates a new configuration by taking the midpoint
between the nearest node and the random configuration and
moving towards the random configuration by a factor of 0.5.
The algorithm then repeats the process of finding the nearest
node and attempting to connect to the trees. If the algorithm
reaches the maximum number of iterations without finding a
path, it returns None, indicating that no path was found. Fig. 4
shows the tree expansion and resulting path in a blue color of
the proposed A-RRT connect clearly. Algorithm 2 explains
the proposed method (A-RRT connect).

C. A-RRT CONNECT BASED ON TSI
Triangular Midpoint Interpolation (TMI) is a method used to
enhance path length and smoothness in geometric shapes. It is
particularly useful when working with polygons, which are
typically made up of straight lines and sharp angles. The basic
idea behind triangular midpoint interpolation, as shown in
Fig. 5, is to add a new vertex at the midpoint of each existing
line segment in the polygon. This creates a new set of triangles
that can be used to interpolate new points along the polygon’s
path. By adding these new vertices, the overall path length is
increased and the polygon becomes smoother.

The algorithm for triangular midpoint interpolation can be
broken down into several steps:
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Algorithm 2 A-RRT Connect
Input : start, goal, search_space, obstacles,

max_iterations, goal_distance_threshold,
line_length_threshold

Output: tree = [T]

start_tree = InitializeTree (start)
goal_tree = InitializeTree (goal)
for i = 1 to max_iterations then

random_node1 = SampleRandomNode
(search_space)
random_node2 = SampleRandomNode
(search_space)
if not IsNodeInObstacle (random_node,
obstacles) then

nearest_node1 = (random_node1, T)
nearest_node2 = (random_node2, T)
line1 = LineSeg (nearest_node1,
random_node1)
line2 = LineSeg (nearest_node2,
random_node2)
while IsLineIntersectObstacle
(line1, obstacles) and Length (line1) ≥

line_length_threshold do
random_node1 =

CalculateMidpoint(nearest_node1,
random_node1)
line1 = LineSeg (nearest_node1,
random_node1)

end while
if Length (line1)>=line_length_threshold
then
AddNodeToTree (start_tree,
nearest_node1, random_node1)
if IsGoalReachable (random_node1,
goal, obstacles,
goal_distance_threshold) then
AddGoalNodeToTree
(random_node1, goal)
Return T

end if
end if

end if
end for

1) Create a list of all line segments in the polygon.
2) For each line segment, find its midpoint and add a new

vertex at that location.
3) Create a new set of triangles using the existing vertices

and the newly added vertices.
4) For each new triangle, calculate the centroid and add

that point to the list of new vertices.
5) Repeat steps 3-4 until the desired level of smoothness

is achieved.
Once the new vertices have been added and the new trian-

gles have been created, the path can be interpolated using a

FIGURE 5. Single-phase triangular midpoint interpolation method [22].

FIGURE 6. The mechanism of TSI (a) Initial path (b) Single-Phase path (c)
Multi-Phase path.

variety of techniques. One common approach is to use linear
interpolation between adjacent vertices, which produces a
smooth path that follows the polygon’s original shape. In this
work, as shown in Fig. 6, we modify the method of TMI to
TSI which is helped to enhance the path length besides the
time and cost. In algorithm 3, we start with a set of points that
represent the vertices of the path want to plan. Then divide
the path into segments by connecting every two consecutive
vertices. This will create a set of line segments that form
the path, for each set of three consecutive vertices, do the
following:

• Divide the first line segment into smaller segments using
segment endpoint interpolation.

• Divide the second line segment into smaller segments
using segment endpoint interpolation.
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Algorithm 3 Triangular Segment Interpolated (TSI)
Input : initial_path, seg_size
Output: smoothed_path

path = GetSegPath (initial_path)
changed = True
while changed do

changed = False
smoothed_path = []
i = 0
p1 = path[i]
smoothed_path.append(p1)
while i < Len (path)-2 do

p2 = path[i+1]; p3 = path[i+2]
newline = LineSeg (p1, p3)
if not IntersectObs (newline) then

p1 = p3
i = i + 2
smoothed_path.append(p3)
changed = True

else
line1 = LineSeg (p1,p2)
line2 = LineSeg (p2,p3)
segments1 = Int (Len (line1) / seg_size)
segments2 = Int (Len (line2) / seg_size)
if segments1==0 or segments2==0 then

smoothed_path.append(p2)
p1 = p2
i = i + 1

else
newp1 = p1 + seg_size
newp3 = p3 − seg_size
newline = LineSeg (newp1, newp3)
while IntersectObs (newline)
and Dist (newp1,p2) ≥ seg_size
and Dist (newp3,p2)≥ seg_size do

newp1 = p1 + seg_size
newp3 = p3 − seg_size
newline=LineSeg
(newp1,newp3)

end while
if Dist (newp1,p2) ≥ seg_size and
Dist (newp3,p2) ≥ seg_size then

smoothed_path.append(newp1)
smoothed_path.append(newp3)
p1 = newp3
i = i + 1
changed = True

else
smoothed_path.append(p2)
p1 = p2
i = i + 1

end if
end if

end if
end while

end while

• Connect the new vertices with straight lines, creating a
new set of line segments that form the smoothed path.

Next, for each pair of adjacent segments in the first and
second lines, do the following:

• Create a set of parallel lines for the pair of segments.
• For each pair of parallel lines, find the valid connection
between the endpoints that do not intersect with any
obstacles.

• Connect the endpoints of the segments with the valid
connection, forming a path that avoids obstacles.

Finally, connect the endpoints of all the connected seg-
ments to form a complete path that avoids obstacles and
solves the issue of a sharp path. Algorithm 3 describes a
method for planning a path between a set of vertices while
avoiding obstacles.

D. DYNAMIC A-RRT-CONNECT TSI (DA-RRT-CONNECT TSI)
In the proposed work, DWA is used as a local planner to
find the path between two points while avoiding the dynamic
obstacles as the robot moves in real-time depending on the
Lidar scan, which makes it well-suited for applications where
dynamic obstacles are expected to appear frequently and
unpredictably. The DWA Planner algorithm generates a set of
possible trajectories based on the dynamic window concept,
which defines a range of achievable velocities and angular
velocities for the robot. The algorithm evaluates each tra-
jectory by calculating a cost function that considers several
factors such as distance to the destination, proximity to obsta-
cles, and smoothness of the trajectory. After evaluating all
possible trajectories, the DWA Planner algorithm selects the
optimal path for the robot to follow with the lowest cost.
Overall, the DWA Planner algorithm provides an effective
and efficient approach to path planning for mobile robots
and autonomous vehicles, enabling them to navigate through
complex and dynamic environments.

In this research, we modify the planner as shown in Fig. 7
to start the path-finding process from the current stop position
and update the list of obstacles in the environment using the
UpdateObstacles algorithm before each iteration. In the con-
text, the robot does not take the decision to find another path
until it ensures that the obstacle stays intersecting the original
path. This will allow the algorithm to adapt to changes in the
environment and find a path around dynamic obstacles.

The function of dynamic obstacle avoidance is imple-
mented in the following part of the algorithm:

UpdateObstacles(obstacles)
{ . . .

DWALocalPlanner = CalculateOccupiedSpaces
(newNode, obstacles)

. . .
}

The UpdateObstacles function updates the list of obstacles
in the environment, which is used by the CalculateOccu-
piedSpaces function to check the obstacle area for each new
node. This function is used to steer the new nodes away from
obstacles, allowing the algorithm to adapt to changes in the
environment and find a path around obstacles. To re-plan
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FIGURE 7. Dynamic path planning (a) Optimal global path (b-c) Local
planning within dynamic map.

the path from the current position to the next valid position,
we modify the planner as follows:

1) Store the current position of the robot in a variable
currentPosition.

2) After updating the list of obstacles, find the nearest
node in the trees to the currentPosition using the Find-
NearestNode function.

3) Start the path-finding process from the nearest node
in the trees (global path), instead of the start and goal
nodes, by updating the start and goal variables.

4) Repeat the path-finding process until a valid path is
found, or until a maximum number of iterations is
reached.

The algorithm of (A-RRT-connect TSI) is used as a global
planner to generate an optimized path between the start and
goal points, then handled the dynamic obstacles using a local
planner of DWA to re-plan the path from the current stop
position to the next valid position by finding the nearest node
on the global path from the current position, then extend the
sub-new path locally. Dynamic A-RRT-connect TSI intro-
duces a high-level overview of how one could use the DWA
planner to re-plan the path in response to dynamic obstacles.
Here is a more detailed explanation of the steps basing on the
proposed method through the flowchart in Fig. 8.
The proposed algorithm has several advantages compared

to other path planning methods. It is able to handle dynamic

FIGURE 8. Flowchart of the proposed method steps.

environments with moving obstacles, and it can generate
smooth, collision-free paths even in cluttered environments.

III. EXPERIMENTS AND RESULTS
The experiments were conducted on an Intel Core i7 laptop
with 8GB of RAM and an NVIDIA GeForce GTX graphics
card, running Ubuntu 20.04. The static experiments were
conducted using three different complexity maps, each with
varying levels of obstacles and challenges for the path
planning algorithm. The maps for the static experiments
were loaded into the Rviz environment within the Robotic
Operating System (ROS) framework, and the path planning
algorithm was run for each map. The results were recorded
and analyzed to determine the performance of the algorithm
in static environments. For the dynamic experiment, the
Gazebo simulation was used to introduce changes in the
environment, such as moving obstacles, while the algorithm
was running. The algorithm’s ability to find a path while con-
sidering these dynamic changes was evaluated and compared
to the results from the static experiments. The robot used
in the experiment was equipped with sensors for obstacle
detection and mapping. The obstacle avoidance is activated
when the obstacle within (0.5 meter) distance.

A. EXPERIMENT-1 (STATIC ENVIRONMENTS)
The comparisons of this experiment have been imple-
mented within a non-holonomic indoor environment of size
(1500*1500 cm) that has local minima regions and a crowd
of static obstacles for (1000 runs). The experiment among
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FIGURE 9. Tree exploration of each method in (a-b) MAP-1 (c-d) MAP-2.

TABLE 1. Experimental results comparison between (RRT and A-RRT).

TABLE 2. Experimental results comparison between (RRT-connect and
A-RRT-connect).

different methods was conducted based on the (time, cost,
path length, and standard deviation) with a bias of (0.25). The
start and goal points are acted by red circles, and the trees by
blue and green lines. Finally, the orange line represents the
initial path, while the red line is the optimum one.

• First comparison, as displayed in Fig. 9, shows the tree
exploration of (RRT and A-RRT), and how the nodes
spread extensively in the first map compared to the
spread of the A-RRT method for the same map, which
reduces the cost consumed in the process of searching
the goal. The same approaches were followed in the sec-
ond map, where RRT showed a wider spread compared
to the first map, due to the high map complexity as well
as the presence of local minimum regions where the goal
point is there. The results listed in Table 1 illustrated that
the A-RRT convergence time that is needed to find the
goal has been improved in both environments.

• In the second comparison, as illustrated in Table 2,
we tested (RRT-connect and A-RRT-connect) tech-
niques in the same aforementioned environments.
Fig. 10 illustrates the directional tree exploration of each
method and highlights how extensively the nodes are
distributed in both maps when compared to the spread
of the proposed method for the same map. This reduced
the cost incurred during the search for the goal. The same
strategies were also applied in the secondmap, where the

TABLE 3. Experimental results comparison of (RRT, RRT-connect, and
A-RRT-connect TSI).

TABLE 4. T-test comparison based on robot velocity (13 cm/sec) and
decision time.

RRT-connect displayed a more spread than in the first
map, due to the local minimum regions. Consequently,
the proposed method’s convergence time to reach the
goal was enhanced in both environments.

• Third comparison, as illustrated in Table 3, focuses
on the path length obtained through the previously
described search operations. The cost of generating the
initial path (orange line) in both RRT and RRT-connect
is substantial when compared to the cost of generating
the optimized path (red line) using the proposed A-RRT
connect. Furthermore, the time required to create the
final optimized path is comparable to that of RRT and
RRT-connect. Fig. 11 displays the path length of each
method and demonstrates how the optimized path (red
path) is shorter and smoother than other paths.

Based on the aforementioned comparisons, it can be
inferred that our algorithms (A-RRT, A-RRT-connect, and
A-RRT-connect TSI) demonstrate superior performance in
comparison to the original algorithms (RRT and RRT-
connect).
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FIGURE 10. Tree exploration of each method in (a-b) MAP-1 (c-d) MAP-2.

FIGURE 11. Path length for each method in (a-c) MAP-1 (d-f) MAP-2.

B. EXPERIMENT-2 (DYNAMIC ENVIRONMENT)
This experiment, as illustrated in Table 4, has been tested
on a dynamic map of size (500*500 cm), and the results of
(100 runs) have been evaluated depending on the t-test mea-
sure. The time and cost values had a narrow range between
the highest and lowest values. Furthermore, the value of the
standard deviation was small, and the average of the absolute
value from the median was convincing also.

In this part of the experiment, we replicated the situation of
local planning in a dynamic environment depicted in Fig. 12.

The paths generated, particularly in real-time, demonstrate
the adaptable nature of this method in the presence of unfore-
seen obstacles across different scenarios. The simulation was
implemented utilizing the ROS framework and TURTLE-
BOT3model (burger). In theGazebo view, static obstacles are
shown as grey blocks, dynamic obstacles as grey cylinders,
and the Lidar range is displayed as blue. In the Rviz view, the
global path is depicted as a red line, while the local path is
represented by a green one. The start and goal positions are
indicated by red and green circles, respectively.
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FIGURE 12. Screen snapshots of path planning simulation in a dynamic map (a,b,c,g,h,i) Rviz view (d,e,f,j,k,l) Gazebo view.
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IV. CONCLUSION
In conclusion, this paper introduces a dynamic hybrid path
planning method that combines the bi-directional Adaptive
RRT algorithm with the Triangular Segmented Interpolation
(TSI) and the DynamicWindowApproach (DWA). By adapt-
ing the method to work in both directions, from the initial
state to the goal point and vice versa, and leveraging the
fast tree exploration and obstacle-avoiding capabilities of the
Adaptive RRT-connect and DWA algorithms, respectively,
we have achieved significant improvements in path plan-
ning performance. The simulations conducted in this study
demonstrate that our proposed method is capable of promptly
finding safe and efficient paths, even in dynamic environ-
ments with varying levels of noise and obstacles. This makes
the method particularly valuable in scenarios where con-
stant environment changes necessitate frequent re-planning.
Furthermore, our proposed method consistently outperforms
in terms of computation time, cost, and path optimality,
as confirmed by experiments in diverse environments. This
highlights its practical benefits and its potential for real-
world implementation. Looking ahead, there are promising
directions for further improving the proposed method. As our
method is a probabilistic, which not always gives a better
solution, this method can be hybridized with another opti-
mization algorithm to handle these issues. One possibility
is to incorporate additional environmental information, such
as obstacle curvature or terrain characteristics, to guide tree
expansion and enhance path smoothing. Additionally, the
utilization of machine learning techniques, including rein-
forcement learning or imitation learning, could be explored
to adapt the method’s parameters and enhance its perfor-
mance in specific environments. In summary, the introduced
dynamic hybrid path planning method represents a signif-
icant advancement in the field. Its ability to quickly and
efficiently find collision-free paths in dynamic environments,
along with its potential for further enhancements, holds great
implications for the development of robust and adaptive path
planning algorithms.
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