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Abstract 

 

Cirrhosis is an advanced stage of many chronic liver diseases, primarily caused by viral hepatitis. Early 

detection is crucial to prevent further liver tissue scarring and to prolong patient survival. AI-based 

computer-assisted diagnostics, utilizing Machine Learning (ML) and Deep Learning (DL) methods, offer 

significant advantages over conventional approaches by reducing time, effort, and risks, in addition to 

improving the accuracy and efficiency of diagnosis. This paper aims to review recent key studies on 

diagnosing various liver diseases, with a focus on cirrhosis, using ML and DL techniques. Additionally, it 

will cover publicly accessible liver disorder datasets and metrics for evaluating model performance and 

discuss existing research restrictions and future works for the automatic detection of cirrhosis.  
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1 Introduction 

Liver-related disorders are a leading cause of death worldwide and are increasingly prevalent. These 

conditions can progress to liver cirrhosis over time [1]. Cirrhosis, an advanced stage of chronic liver 

diseases, causes about 1.3 million deaths annually, ranking as the 14th leading cause of death globally [2]. 

It is characterized by the replacement of normal liver tissue with scar tissue, a dynamic process involving 

inflammation, hepatocyte injury, necrosis, fibrosis, and regeneration [3]. Various factors, such as hepatitis 

viruses (B and C), alcohol consumption, Non-Alcoholic Fatty Liver Disease (NAFLD), and autoimmune 

diseases, can lead to cirrhosis [1]. Clinically, cirrhosis is divided into two stages: compensated and 
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decompensated. Compensated cirrhosis is often asymptomatic, while decompensated cirrhosis is marked 

by symptoms such as jaundice, variceal bleeding, hepatic encephalopathy, ascites, and portal hypertension 

[4] [5]. 

Liver biopsy is the gold standard for diagnosing cirrhosis and conducting histological evaluations [6]. 

However, it has a recorded fatality rate of up to 1.6%, and it is invasive, expensive, and associated with 

risks such as bleeding, pain, and even death [6][7]. Additionally, sample mistakes (inadequate sample size, 

improper puncture placement, etc.) could lead to an underestimation of liver damage [8]. 

Due to these limitations, there is a need for alternative, non-invasive methods to identify the stages of liver 

cirrhosis. Recognized non-invasive diagnostic algorithms, such as (DL) and (ML) methods, offer promising 

alternatives. 

1.1 Overview of Machine Learning (ML) and Deep Learning (DL) 

ML is a branch of AI designed to enable computers to learn specific skills without human intervention [9]. 

It is extensively used in healthcare for diagnosing and treating illnesses because the complexity of medical 

data makes manual detection challenging; medical data, which includes patient records, is increasingly 

stored electronically as information technology advances. Based on clinical and biochemical data, various 

ML algorithms can be used to predict conditions such as cirrhosis and liver disorders in patients [10][11]. 

DL is a subcategory of ML, with several layers in its structure that are utilized to extract high-level features 

from the input. These layers convert the picture-based input data into an output that identifies the disease   

[12]. One of the primary advantages of utilizing DL methods is that they automatically extract features 

without the need for human interaction. In contrast, ML models require manually designed feature 

extraction procedures [13]. DL approaches are the main engine of artificial intelligence (AI) in hepatology 

[14]. ML algorithms are, in general, categorized into four primary types, which are listed below: 

• Supervised Learning (SL): is a crucial ML technique in the medical field. It involves training an 

algorithm on labeled data to learn the associations between input and output data. This approach is 

commonly used in medicine to construct predictive models that can accurately diagnose and classify 

diseases. (e.g., present/absent illness or result) [15]. 

• Unsupervised Learning (UL): An ML method where algorithms learn patterns exclusively from 

unlabeled data. One of the three primary ML techniques, clustering, association rules, and 

dimensionality reduction, is used to get the output of this kind of learning. In the medical field, clustering 

can be used, for instance, to find coherent groups of patients that are well-separated and have comparable 

demographics (such as age and gender) and shared clinical histories [16]. 

• Semi-Supervised Learning (SSL): Semi-supervised learning combines the strengths of both SL and 

UL ML techniques by leveraging both labeled and unlabeled data during training. In a diagnostic 

context, SSL provides the means to improve classification performance by using the massive volumes 

of unlabeled medical data obtained during normal clinical procedures, all without requiring large, fully-

labeled data sets [17]. 

• Reinforcement Learning (RL): In RL, the model is trained by providing positive environmental 

feedback for desired actions and negative feedback for undesired actions.RL is less common than 
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supervised and unsupervised learning, but it has significant applications in various fields, including 

clinical research [18]. 

1.1.1 Supervised Learning Methods 

AI employs algorithms specifically created to assimilate information from extensive medical datasets and 

identify their correlation with a certain condition (such as a disease or disease stage) or outcome (such as 

time to clinical events or death) in order to aid in clinical practice. These algorithms incorporate self-

updating instructions to enhance accuracy by incorporating regular feedback input. This helps to minimize 

clinical errors and provides the opportunity for real-time diagnostic and prognostic judgments [15], 

including supervised learning approaches are widely used across various domains, including Gradient 

Boosting (GB), Decision Trees (DT), Logistic Regression (LR), Random Forests (RF), and Support Vector 

Machines (SVM). These techniques are detailed below: 

• Logistic Regression (LR): This method categorizes data by predicting the probability that a data point 

belongs to a certain class, with the output value ranging between 0 and 1. It is particularly popular for 

binary classification problems, utilizing the sigmoid function as a crucial component of the classifier 

[19]. 

• Decision Tree (DT):  This technique addresses classification problems and can also be applied to 

regression tasks. It constructs a model based on simple decision rules derived from the training data, 

where each leaf node represents an outcome, internal nodes signify attributes, and branches indicate 

decision rules [20]. 

• Gradient-boosting (GB): This ML technique builds strong predictive models by applying the boosting 

approach, where a series of trees are constructed sequentially, each one improving upon the previous 

iteration. It comprises three elements: a loss function, a weak learner (such as a DT), and an additive 

model [21]. 

• Random Forest (RF): Introduced by Breiman in 2001, RF is an ensemble learning algorithm that 

employs multiple training subsets derived from the original dataset using the Bootstrap sampling 

method. Each subset is used to train a decision tree, and the final model is an aggregation of these trees 

[22]. 

• Support Vector Machines (SVM): SVM is a supervised method used for both regression and 

classification tasks. It works by finding a hyperplane in an N-dimensional space that best separates the 

different classes, aiming to create the most effective decision boundaries [23]. 

The most important DL algorithms are: 

• Artificial Neural Network (ANN): is made to mimic human brain anatomy in order to duplicate studies 

on humans. Neural networks consist of input and output layers in addition to a hidden layer that houses 

components that transform data into a format that the output layer can use. ANN is made up of three 

linked layers. Another name for it is a Feed-Forward Neural Network [24]. 

• Convolutional Neural Networks (CNNs): represent a subset of the widely utilized artificial neural 

networks (ANNs) in image processing. Over the past thirty years, since CNN was first developed in 

1989, a distinct kind of CNN has been introduced and has shown remarkable performance in disease 

identification. The input layer, hidden layer, and output layer make up the three layers of a CNN 

architecture [19].  
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2 Related works 

The following is an overview of earlier research that used ML and DL approaches to diagnose liver 

problems. Table 1 summarises these studies and includes the source number, publication year, topic, 

number of patients, techniques employed, and best accuracy attained. The accuracy of each ML and DL 

technique from past research that was collated in this study is shown in Figure 2.  

The proportion of each (ML) and (DL) technique used in previous studies, which have been compiled into 

this research, is shown in Figure 1. 

• Elias et al.  [25]   constructed a prediction model for liver disease using ML approaches, with the 

voting classifier showing superior performance with an Area Under Curve (AUC) of 88.4% and 

other metrics such as recall, accuracy, F-measure, and precision around 80%. 

• Zheyu et al. [26] proposed a unique Decision Tree model to improve the accuracy of liver cirrhosis 

diagnosis in Hepatocellular Carcinoma patients. The DT model demonstrated exceptional 

diagnostic accuracy in both the training and testing populations, achieving an AUC of 0.853 and 

0.817 in the ROC curve (Receiver Operating Characteristic), respectively. 

• Fei Chen et al. [27] constructed a prediction model based on individual Bile Acid (BA) profiles to 

detect Compensated Advanced Chronic Liver Disease (CACLD) using SVM and RF, with 

equivalent scores for the improved SVM model around 0.86, 0.84, and 0.85. 

• Ruhul et al. [28] proposed an integrated feature extraction method for classifying liver injury 

patients. They used various ML methods including LR, K-nearest Neighbor (KNN), Voting 

Classifier, SVM, Multilayer Perceptron (MLP), and RF achieving an accuracy of 88.10%. 

• Jing et al.  [29] introduced ML models for liver disease prediction using SVM, Gaussian process 

(GP), eXtreme Gradient Boosting(XGBoost), bagging, and RF algorithms, achieving the highest 

accuracy of 80.35%. 

• Ke Chena et al.[30] developed a prediction model for liver cirrhosis in Wilson Disease patients, 

achieving an AUC of 0.78 and an accuracy of 0.76 in the testing set using XGBoost. 

• Anıl Utku  [31]   suggested a deep learning model using Multilayer Perceptron to predict cirrhosis 

likelihood, outperforming other ML models with 80.48% accuracy and 85.71% recall, F1-score, 

and precision. 

• Mikolaj et al.  [32]  developed a Deep Neural Network using CNN to distinguish cirrhosis patients 

with an accuracy of 86%. 

• Ji-Yuan et al. [33] proposed a non-invasive model to predict HBV-related liver inflammation using 

RF, achieving 69.17% sensitivity, 81.44% specificity, and 73.8% accuracy . 

• Xiangyu et al. [34] developed a non-invasive diagnostic algorithm for identifying Chronic Hepatitis 

B (CHB) related liver cirrhosis using binary logistic regression and Lasso regression for feature 

selection. Their model achieved an AUC of 0.852 in validation cohorts. 
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Table 1 - An overview of the previously listed studies. 

Figure .1: A pie chart for the utilization of ML and DL methodologies in the studies referred to above.  

SN Reference Year        Subject 
 No. of             
patients 

           Methods of Classification Outcomes 

1.  Elias et al. 

[25] 

2023 Liver Disease 579 MLP, Voting, LR, RF, Random Tree 

(RT), J48, Naive Bayes (NB), SVM, 

ANN 

Accuracy 

80 % 

2.  Zheyu et al. 

[26] 

2023 Liver 

Cirrhosis 

240 DT AUC 

81% 

3.  Fei Chen 

et al. [27] 

2023 CACLD 159 RF, SVM Accuracy 

82% 

4.  Ruhul Amin 

et al. [28] 

2022 Liver Disease 583 MLP, SVM, RF, LR, KNN Accuracy     

88.10 % 

5.  Jing et al. 

[29] 

2022 Liver 

Disorder 

345 SVM, GP, XGBoost, Bagging, RF Accuracy 

80.35% 

6.  Ke Chena 

et al.[30] 

2022 Liver 

Cirrhosis 

346 XGBoost Accuracy 

76 % 

7.  Anıl Utku 

[31] 

2022 Liver 

Cirrhosis 

418 MLP Accuracy 

80.48% 

8.  Mikolaj 

et al. [32] 

2022 Liver 

Cirrhosis 

46 CNN Accuracy 

86% 

9.  Xiangyu et 

al. [34] 

2021 HBV-related 

liver cirrhosis 

754 logistic regression AUC 

85 % 

10.  Ji-Yuan 

et al.[33] 

2021 hepatic 

inflammation 

650 RF Accuracy 

73.8% 

LR,11%RF, 21%

SVM, 14%

KNN, 4%

NB, 4%

MLP, 11%
ANN,4%

DT, 4%

XGBoost, 7% Voting, 4%

CNN, 4%

J48, 4%

RT, 4%
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Figure .2: Evaluation of the identification of liver disease using ML and DL models for accuracy. 

3 Publicly Accessible Liver Disorder Datasets 

The general datasets pertaining to liver disease detection are enumerated below and are summarized in 

Table 2, it encompasses classes, datasets, features, and samples. The most common characteristics found 

in the liver disease datasets are outlined in Table 3.  

3.1 Related Datasets 

a) Indian Liver Patient Dataset (ILPD): Utilized for categorizing liver illnesses, the ILPD consists of 

583 patients and 11 attributes, including class (both with and without liver disease), Albumin and 

Globulin Ratio, Total Proteins, Alkaline Phosphatase, Total Bilirubin, Alamina Aminotransferase, 

gender, age, Albumin, Aspartate Aminotransferase, and Direct Bilirubin, accessible via the University 

of California Irvine ML Repository repository (UCI) [21]. 

b) Hepatitis Dataset (HD): This dataset encompasses 20 distinctive characteristics accessible in the UCI 

Repository, comprising 155 patient records. Attributes include histopathology, steroids, age, weariness, 

malaise, liver_big, anorexia, and antivirals, among others such as protime, gender (male or 

female),alk_Phosphate, ascites, liver_firm, sgot, varices, bilirubin, albumin, and class (lived or died) 

[23]. 

c) HCV Dataset: Downloadable from Kaggle, the HCV dataset comprises 14 characteristics and 615 

records encompassing Hepatitis C patients (categorized as fibrosis, hepatitis C, cirrhosis). Attributes 

include age, gender, class, ID, and healthy patients (blood donors) ALT, CREA, GGT, AST, CHE, 

PROT, BIL, and CHO [35]. 

d) Liver Disorders Dataset (BUPA): Available in the UCI repository, comprising 345 entries, the BUPA 

dataset encompasses 7 characteristics such as selector, drinks, MCV (Mean Corpuscular Volume), 

Gammagt (gamma-glutamyl transpeptidase), SGOT (aspartate aminotransferase), SGPT (alanine 

aminotransferase) and alkphos (alkaline phosphatase) [29]. 
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e) Hepatocellular Carcinoma Dataset (HCC): This dataset consists of demographic, risk factors, 

laboratory, and overall survival characteristics of 165 records diagnosed with HCC, featuring 49 

variables used for predicting an HCC patient's survival, essential for clinical decision-making [36] . 

f) Cirrhosis Prediction Dataset (CP): Encompassing 418 Primary biliary cholangitis (PBC) patients and 

20 features are symptoms of the disease such as jaundice, ascites, edema, etc., as well as blood tests for 

liver function and patient information, such as age and gender, the CP dataset, is available to all users 

on Kaggle [31]. 

Table 2 - An overview of the liver disease public datasets. 

Datasets Number of classes 
Number of 

records 
Number of 

features 
Resource 

ILPD dataset 2 583 11 [37] 

HD dataset 2 155 20 [38] 

HCV dataset 3 615 14 [39] 

BUPA dataset 2 345 7 [40] 

HCC dataset 2 165 49 [41] 

CP dataset 4 418 20 [42] 

Table 3 - recurring features in open datasets. 

Important features Datasets 

Gamma-glutamyl transpeptidase (GGT) HCV, BUPA, HCC 

Alanine transaminase (ALT) ILPD, HCV, BUPA, HCC 

Aspartate aminotransferase (AST) ILPD, HD, HCV, BUPA, HCC, CP 

Albumin (ALB) ILPD, HD, HCV, CP 

Alkaline phosphatase (ALP) ILPD, HD, HCV, HCC, CP 

Bilirubin ILPD, HD, HCV, HCC, CP 

 

3.2   Suggested Dataset 

➢ Liver Disorders Dataset (LD) 

LD dataset was acquired from the Zenodo website [43], accessible through a link specified on the GitHub 

website. It encompasses 70 features and includes data from 10,000 patients, featuring patient information, 

liver function tests, and symptoms related to liver diseases such as age, gender, Alt, Ast, diabetes, obesity, 

Hyperbilirubinemia, triglycerides, bleeding, jaundice, among others. The target class in this dataset is 

Cirrhosis, with three categories: absent, compensated, and decompensated cases . 

Given that data extracted from patient records may not always be entirely accurate, the dataset underwent 

pre-processing operations to ensure its readiness for use in ML models and to yield more precise diagnostic 

outcomes. Pre-processing involves converting raw data into a structured format [35] . 

Table 4 provides detailed information about the suggested dataset. 

Table 4 - Details of the dataset suggested. 

 

Dataset Number of instances Attributes Class Resource 

Liver disorders 10,000 30 3 Zenodo 
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4 Measures of Performance Evaluation 

Researchers evaluating the efficacy of prediction algorithms for liver disease have employed various 

metrics, including accuracy, F1-score, specificity, and sensitivity. Among these measures accuracy and 

area under the curve (AUC) are the most commonly used. Here are the specifics of each measure: 

• Accuracy: This metric is widely utilized and is defined as the ratio of correctly identified instances to 

all instances within each test dataset [25].It can be mathematically represented as follows: 

Accuracy = 
𝐓𝐏+𝐓𝐍

𝐓𝐏+𝐓𝐍+𝐅𝐏+𝐅𝐍
                       (1) 

• True Positive (TP): indicates a positive output, resulting in the accurate classification of the 

expected outcome. 

• False Positive (FP): indicates a positive output, leading to an incorrect classification of the expected 

outcome. 

• True Negative (TN): indicates a negative output so that the anticipated outcome is correctly 

categorized. 

• False Positive (FN): indicates a negative output, which leads to an incorrect classification of the 

expected outcome [44]. 

• Precision: When retrieving information, precision only yields favorable outcomes. In the event that 

the real positive plus false positive equals zero, precision will return zero [45]. The computation is as 

follows: 

                                       Precision = 
𝐓𝐏

𝐓𝐏+𝐅𝐏
                                    (2)      

• Specificity: To calculate true negatives (TN) using false positives (FP) and TN, specificity assesses the 

accuracy of negative predictions [45]. The computation is as follows: 

                                           Specificity = 
𝐓𝐍

𝐓𝐍+𝐅𝐏
                                    (3)                              

• Sensitivity: It measures the classifier's ability to detect positive samples accurately, indicating the 

proportion of actual positive samples identified by the model [20]. The mathematical calculation of 

sensitivity is represented by the following equation:  

                                              Sensitivity = 
𝐓𝐏

𝐓𝐏+𝐅𝐍
                                          (4) 

• F1-score: The F-Measure (F1) is the weighted average of precision and recall, incorporating false 

positive and false negative readings. It is considered more valuable than accuracy as it accounts for both 

types of errors [45]. Following is the computation of the F-Measure: 

                                     F1-score = 
𝟐(𝐑𝐞𝐜𝐚𝐥𝐥∗𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧)

(𝐑𝐞𝐜𝐚𝐥𝐥+𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧)
                         (5) 
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• ROC AND AUC: The Receiver Operating Characteristic Curve (ROC) assesses the performance of a 

classification model by comparing the True Positive (TP) rate against the False Positive (FP) rate at different 

classification thresholds. The area under the ROC curve (AUC) represents the total area under the curve, offering 

an overall performance metric across all possible classification thresholds [44]. 

5 Restrictions and Future Work 

This section will focus on the key limitations identified in previous studies related to predicting liver 

disease, followed by the proposed prospects outlined below: 

5.1 Restrictions 

• The existing liver disease datasets, including those for cirrhosis, are often small in size (usually under 

one thousand samples) and publicly available. This small sample size can lead to lower predictive 

accuracy in artificial intelligence models, potentially resulting in inaccurate disease diagnosis. Obtaining 

larger clinical datasets from hospitals and clinics can be challenging due to concerns regarding patient 

privacy. 

• Research on the diagnosis of cirrhosis is comparatively rare, and what is known about it frequently 

focuses on forecasting the disease's presence or absence rather than assessing its severity or stage. 

Effective management and therapy of cirrhosis depend on early detection and precise staging of the 

disease. 

• Limited availability of publicly available datasets devoted to liver disease, especially those including 

individuals with cirrhosis. 

5.2 Future Work 

For future work aimed at predicting the stage of cirrhosis using (AI) models, we plan to leverage a large 

dataset that has not been previously utilized. Our approach involves comprehensive data processing 

techniques to preprocess and refine the dataset. Additionally, we intend to integrate several methods for 

(ML) methodologies to improve the accuracy of diagnosing cirrhosis.  

6 Conclusion 

This study explores recent research on ML and DL methods in predicting liver disorders related to cirrhosis. 

Among the algorithms summarized in previous studies, RF and SVM are the most widely used ML 

approaches for this topic. Accuracy, specificity, and sensitivity are the performance metrics used. 

Common characteristics were also identified among publicly available liver disease datasets. The study 

examines important challenges to AI-assisted early detection of liver cirrhosis stages and our future 

endeavors aim to increase the size of the dataset and explore additional machine learning models and feature 

selection techniques to refine the predictive accuracy further. 
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