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a b s t r a c t 

This paper proposes a new extension of the well-known S -special function, which is called SM - 

function. We introduce this function by drawing inspiration from exponential function. This new 

special function is studied from a variety of analytical perspectives, including differential and 

integral operators. Furthermore, the 𝜚 -Weyl fractional integral operator involving the SM -function 

is studied. These classes are defined by utilizing a new q-differential operator. 

• The SM - function is provided. 

• The derivative and integral formulas of the SM -function are studied. 

• An application of the 𝜚 -Weyl fractional integral operator associated with the SM -function is 

investigated. 
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Method details 

Concepts 

One important area of study in complex analysis is the theory of special functions, sometimes known as special series. Special

functions are mathematical functions with specific consequences that are typically specified using integral representations, as solu- 

tions to several differential equations, or in the formula of a power series. The theory of special functions is strongly intertwined

with the theory of Lie groups and Lie algebras, as well as some aspects of mathematical physics, due to the fundamental role that

symmetries of differential equations play in both physics and mathematics. In 2015, Saxena and Daiya [ 29 ] provided and investigated

a new function called 𝑆-function, its relation with other functions, which is a generalization of 𝑘 -Mittag-Leffler function (MLF), 𝑘 -

function, Generalized 𝑀-series, 𝑀-series, generalized 𝑘 -hypergeometric function, 𝑘 -hypergeometric function, Mittag-Leffler function, 

and other several functions. All of these functions have been used to solve many problems in physical, mathematical, and engineering

applications. In recent times, the exploration of the theory of special functions has garnered significant interest among researchers, 

owing to the imperative need to address problems that arise in several fields of knowledge. Special functions play a crucial part in

the study of many special functions, since they are fundamental in the extensions and generalisations of these functions (e.g. see

[ 7 , 9 , 12 , 17 , 18 , 35 ]). The 𝑆-function is specified for 𝜂, 𝜗, 𝜍, 𝜎 ∈ 𝐶,  ( 𝜗 ) > 0 ,  ( 𝜗 ) > 𝜚  ( 𝜎) , 𝜎 ∈ (0 , 1 ) ∪𝑁 and 𝜚 ∈  as 

𝑆
𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝜚 ; 𝑧 ) =

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 
.
𝑧𝑗 

𝑗! 
. (1) 

In recent research, several writers have examined 𝜚 -fractional integral operators. To achieve this objective, we start by considering

the subsequent characteristics documented in the literature. In 2007, Diaz and Pariguan [ 14 ] introduced the generalized 𝜚 -Gamma

Function Γ𝜚 ( 𝜂) as 

Γ𝜚 ( 𝜂) = 𝑙𝑖𝑚 

𝑛 →∞

𝑛 !𝜚𝑛 ( 𝑛𝜚 ) 
𝜂

𝑘 − 1 
( 𝜂) 𝑛,𝜚 

, ( 𝜚 > 0 , 𝜂 ∈ 𝐶∖ 𝜚𝑍− ) . (2) 

Here ( 𝜂) 𝑗,𝜚 is the 𝜚 -Pochhammer symbol given by: 

( 𝜂) 𝑗,𝜚 =

{ Γ𝜚 ( 𝜂+ 𝑗𝜚 ) 
Γ𝜚 ( 𝜂) 

, 𝜚 ∈  , 𝜂 ∈ ℂ ∕{ 0} 

𝜂( 𝜂 + 𝜚 ) ( 𝜂 + 2 𝜚 ) ⋯ ( 𝜂 + ( 𝑗 − 1 ) 𝜚 ) , ( 𝑗 ∈ ℕ , 𝜂 ∈ ℂ ) , 
(3) 

where 𝜚 -Gamma function (see [ 22 ]) is also given by 

Γ𝜚 ( 𝑧) = ∫
∞

0 
𝑢𝑧 −1 𝑒

− 𝑢𝜚 

𝜚 𝑑𝑢 = 𝜚
𝑧 

𝜚 
−1 Γ

( 

𝑧 

𝜚 

) 

, ( 𝑧 ∈ 𝐶, 𝜚 ∈  , ( 𝑧) > 0) . (4) 

The 𝜚 -Beta function (see [ 22 ]) is defined as 

𝜚 ( 𝑓, 𝑔 ) =
1 
𝜚 ∫

1 

0 
𝑢

𝑓 

𝜚 
−1 (1 − 𝑢 ) 

𝑔 

𝜚 
−1 
𝑑𝑢, { ( 𝑓 ) , ( 𝑔) } > 0 . (5) 

The relation between 𝜚 -beta and 𝜚 -gamma functions can be given as 

𝜚 ( 𝑓, 𝑔 ) =
Γ𝜚 ( 𝑓 ) Γ𝜚 ( 𝑔) 
Γ𝜚 ( 𝑓 + 𝑔 ) 

, ( ( 𝑓 ) , ( 𝑔) ) > 0 . (6) 

Furthermore, provided other properties such as (also see [ 22 ]) 

Γ𝜚 ( 𝑧 + 𝜚 ) = 𝜚Γ𝜚 ( 𝑧) , (7) 

( 𝜅) 𝑛,𝜚 = 𝜚𝑛 
( 

𝜅

𝜚 

) 

𝑛 

, (8) 

( 𝜂) 𝑗𝜎,𝜚 = ( 𝜚 ) 𝑗𝜎
( 

𝜂

𝜚 

) 

𝑗𝜎

, ( 𝜂 ∈ 𝐶, 𝜚, 𝜎 ∈  , ( 𝜂) > 0) , (9) 

( 𝑧 ) 𝑗,𝜚 =
Γ𝜚 ( 𝑧 + 𝑗𝜚 ) 

Γ𝜚 ( 𝑧) 
, (10) 

( 𝑧 ) 𝑗+ 𝑛,𝜚 = ( 𝑧 ) 𝑛,𝜚 ( 𝑧 + 𝑛𝜚 ) 𝑗,𝜚 . (11) 

Definition 1 [ 16 ] . The 𝑀-series is defined as 

𝑀𝜗 
𝑙,𝑘 
( 𝑧) =

∞∑
𝑗=0 

(
𝜛1 

)
𝑗 
, … ,

(
𝜛𝑙 

)
𝑗 (

𝛾1 
)
𝑗 
, … ,

(
𝛾𝑘 
)
𝑗 

.
𝑧𝑗 

Γ( 𝜗𝑗 + 1 ) 
, 
with 𝜗 ∈ ℂ ,  ( 𝜗 ) > 0 and (𝜛𝑙 ) 𝑗 , (𝛾𝑘 ) 𝑗 are Pochammer symbols. Obviously, the series converges for all 𝑧 when 𝑙 ≤ 𝑘. 

2
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Definition 2 [ 16 ] . The generalized 𝑀-series is provided as 

𝑀
𝜗,𝜍 

𝑙,𝑘 
( 𝑧) =

∞∑
𝑗=0 

(
𝜛1 

)
𝑗 
, … ,

(
𝜛𝑙 

)
𝑗 (

𝛾1 
)
𝑗 
, … ,

(
𝛾𝑘 
)
𝑗 

.
𝑧𝑗 

Γ( 𝜗𝑗 + 𝜍 ) 
, 

with 𝜗, 𝜍 ∈ ℂ ,  ( 𝜗 ) > 0 and (𝜛𝑙 ) 𝑗 , (𝛾𝑘 ) 𝑗 are Pochammer symbols. 

Motivation and research objective 

The solution of differential equation with fractional order makes extensive use of the special functions. Fractional calculus has 

emerged as a valuable tool for modeling and analysis, playing a crucial role in several domains such as material science, physics,

mechanics, power systems, economics, and control theory. Recently, there has been an increased emphasis on the development 

of applications involving fractional calculus. When developing integration and differentiation using the fractional calculus powers 

of real or complex numbers, such as integral and differential operators, the fractional calculus is crucial. The reader may see [ 1–

5 , 7 , 8 , 13 , 19 , 20 , 24,25 , 33,35 , 36 ] for advancements in fractional calculus that are more recent. 

The structure of this paper is as follows: Section (2) addresses a new concept of the special function, namely 𝑆𝑀-function. Further,

some of differential and integral operators properties with the 𝑆𝑀-function are derived in Section (3). Results for 𝜚 -Weyl fractional

integral related to the 𝑆𝑀-functions is also examined in Section (4). 

This section start by defining the main concept 𝑆𝑀-function with some specific cases as in the Definition 4 below. 

Definition 3 [ 6 ] . The generalized 𝑘 -hypergeometric function is defined as 

𝑙 𝑘,𝑗,𝑣 

[
𝜛𝑛 ; 𝜏𝑢 ; 𝑧 

]
=

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 

𝑧𝑗 

𝑗! 
. (12) 

Definition 4. For 𝜂, 𝜗, 𝜍, 𝜎 ∈ 𝐶, 𝑚𝑖𝑛 { ( 𝜗 ) ,  ( 𝜍) ,  ( 𝜂) } > 0 ,  ( 𝜗 ) > 𝜚  ( 𝜎) , 𝜎 ∈ (0 , 1 ) ∪𝑁 and 𝜚 ∈  , we provide the 𝑆𝑀-function as

follows: 

𝑆𝑀
𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) =

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 
.
𝑧𝑗 

𝑗! 
, (13) 

where ( 𝜂) 𝑗,𝜚 is defined as (3) and ( 𝜂) 𝑗𝜎 = Γ(𝜂+ 𝑗𝜎) 
Γ( 𝜂) = 𝜎𝑗𝜎

𝜎∏
𝑛 =1 

( 𝜂+ 𝑛 −1 
𝜎

)
𝑗 
. 

Remark 1. Some types of special functions of the 𝑆𝑀-function are listed here: 

1. When 𝑣 = 1 , we get 𝑆-function (see [ 29 , 34 ]). 

2. When 𝑣 = 𝜚 = 1 , we find 𝑅 -function [ 23 ]. 

3. When 𝑣 = 𝜚 = 𝜎 = 1 , we get 𝐾-function [ 23 ]. 

4. When 𝑣 = 𝜚 = 𝜎 = 𝜂 = 1 , we get a generalized 𝑀-series [ 32 ]. 

5. When 𝑣 = 𝜚 = 𝜎 = 𝜂 = 𝜍 = 1 , we have 𝑀-series [ 30 ]. 

6. When 𝜎 = 𝜂 = 𝜍 = 𝜗 = 1 , we get a generalized 𝜚 -hypergeometric function [ 6 ]. 

7. When 𝑛 = 𝑢 = 0 , we find a generalized 𝜚 -Mittag-Leffler function (see [ 26 , 31 ]). 

8. When 𝑛 = 𝑢 = 𝜎 = 1 , 𝑛 = 𝑢 = 0 , 𝜛 = 𝛾, 𝑎𝑛𝑑 𝜏 = 1 , we get 𝜚 -Mittag-Leffler function [ 15 ]. 

The concept of the 𝑆𝑀-function in (13) is illustrated in Figs. 1 and 2 . 

Method validation 

From Definition 4 and properties (3) and (4) , we can get another form of the 𝑆𝑀-function as the following 

𝑆𝑀
𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) = 𝜚

1− 𝜍 

𝜚 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 (
𝜂

𝜚 
) 
𝑗𝜎∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ
(

𝜗 

𝜚 
𝑗 + 𝜍 

𝜚 

) .
(𝜚𝜎−

𝜗 

𝜚 𝑧 ) 
𝑗 

𝑗! 

= 𝜚
1− 𝜍 

𝜚 𝑆𝑀
𝜛,

𝜂

𝜚 

𝜏,
𝜍 

𝜚 
,
𝜗 

𝜚 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝜚𝜎−
𝜗 

𝜚 𝑧 

) 

. (14) 

Further, 

𝜚
𝜍 

𝜚 
−1 
𝑆 𝑀

𝜛,
𝜂

𝜚 

𝜏,
𝜍 

𝜚 
,
𝜗 

𝜚 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝜚
𝜗 

𝜚 
− 𝜎

𝑝𝑧 

) 

= 𝑆 𝑀
𝜛,

𝜂

𝜚 

𝜏,
𝜍 

𝜚 
,
𝜗 

𝜚 

( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑝𝑧 ) , 𝑝 ∈  . (15) 

Theorem 1. Let 𝜂, 𝜎, 𝜗, 𝜍 ∈ 𝐶, 𝑚𝑖𝑛 {  ( 𝜗 ) ,  ( 𝜍) ,  ( 𝜂)} > 0 and 𝜚 ∈  , then 

𝑆 𝑀
𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) = 𝜍𝑆 𝑀

𝜛,𝜂

𝜏,𝜍+ 𝜚,𝜗 ( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) + 𝜗𝑧( 𝑆 𝑀
𝜛,𝜂

𝜏,𝜍+ 𝜚,𝜗 ( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) ) 
′

(16) 
3
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Fig. 1. Represents the plots of the SM -function (13) in real and imaginary parts. 
and we have 

𝜗𝑧( 𝑆𝑀𝜛,𝜂

𝜏,𝜍+ 𝜚,𝜗 ( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) ) 
′ = 𝑆 𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) − 𝜍𝑆 𝑀

𝜛,𝜂

𝜏,𝜍+ 𝜚,𝜗 ( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) . (17) 

Proof. Starting on the left side of (16) , we get 

𝜍𝑆 𝑀
𝜛,𝜂

𝜏,𝜍+ 𝜚,𝜗 ( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) + 𝜗𝑧( 𝑆 𝑀
𝜛,𝜂

𝜏,𝜍+ 𝜚,𝜗 ( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) ) 
′

=
∞∑
𝑗=0 

𝜍
∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 + 𝜚 ) 
.
𝑧𝑗 

𝑗! 
+

∞∑
𝑗=0 

𝜗𝑗
∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 + 𝜚 ) 
.
𝑧𝑗 

𝑗! 

=
∞∑
𝑗=0 

( 𝜗𝑗 + 𝜍 ) 
∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 + 𝜚 ) 
.
𝑧𝑗 

𝑗! 

=
∞∑
𝑗=0 

( 𝜗𝑗 + 𝜍 ) 
∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 
( 𝜗𝑗 + 𝜍 ) 

∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 
.
𝑧𝑗 

𝑗! 
= 𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) . 

Theorem 2. Let 𝜂, 𝜎, 𝜗, 𝜍 ∈ 𝐶, 𝑚𝑖𝑛 {  ( 𝜗 ) ,  ( 𝜍) ,  ( 𝜂)} > 0 and 𝜚 ∈  , then (
𝑑 

𝑑𝑧 

)𝑚 

𝑆 𝑀
𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) =

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑚,𝑣 ( 𝜂) 𝑘𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑚,𝑣 
𝑆 𝑀

𝜛+ 𝑚𝑣,𝜂+ 𝑚𝜚 
𝜏+ 𝑚𝑣,𝜃𝑚 + 𝜍,𝜗 ( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) . (18) 

Proof. 

(
𝑑 

𝑑𝑧 

)𝑚 

𝑆𝑀
𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) =

(
𝑑 

𝑑𝑧 

)𝑚 ∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 
.
𝑧𝑗 

𝑗! 
4
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Fig. 2. Represents another plots of the 𝑆𝑀-function (13) in real and imaginary parts with different values. 

 

=
∞∑
𝑗= 𝑚 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 
.

𝑗!𝑧𝑗− 𝑚 

𝑗!( 𝑗 − 𝑚 ) ! 
=

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗+ 𝑚,𝑣 ( 𝜂) ( 𝑗+ 𝑚 ) 𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗+ 𝑚,𝑣 Γ𝜚 ( 𝜗( 𝑗 + 𝑚 ) + 𝜍 ) 
.
𝑧𝑗 

𝑗! 

= ( 𝜂) 𝑚𝜎,𝜚 
∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗+ 𝑚,𝑣 ( 𝜂 + 𝑚𝜚 ) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗+ 𝑚,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜗𝑚 + 𝜍 ) 
.
𝑧𝑗 

𝑗! 
. 

By the properties ( 𝛾) 𝑗+ 𝑚,𝜚 = ( 𝛾) 𝑚,𝜚 ( 𝛾 + 𝑚𝜚 ) 𝑗,𝜚 and (7) , then 

=
∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑚,𝑣 ( 𝜂) 𝑘𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑚,𝑣 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (( 𝜛 + 𝑚𝑣 ) 𝑛 ) 𝑗,𝑣 ( 𝜂 + 𝑚𝜚 ) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (( 𝜏 + 𝑚𝑣 ) 𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜗𝑚 + 𝜍 ) 
.
𝑧𝑗 

𝑗! 

=
∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑚,𝑣 ( 𝜂) 𝑘𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑚,𝑣 
𝑆𝑀

𝜛+ 𝑚𝑣,𝜂+ 𝑚𝜚 
𝜏+ 𝑚𝑣,𝜃𝑚 + 𝜍,𝜗 ( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) . 

Theorem 3. Let 𝜂, 𝜎, 𝜗, 𝜍 ∈ 𝐶, 𝑚𝑖𝑛 {  ( 𝜗 ) ,  ( 𝜍) ,  ( 𝜂)} > 0 and 𝜚 ∈  , then 

𝑆𝑀
𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) − 𝑆𝑀

𝜛,𝜂− 𝜚 
𝜏,𝜍,𝜗 

( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) =
∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑣 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑣 
𝜎𝜚𝜎𝑧( 𝜂

𝜚 
) 
𝜎−1 

𝑆𝑀
𝜛+ 𝑣,𝜂+ 𝜚𝜎− 𝜎
𝜏+ 𝑣,𝜗 + 𝜍,𝜗 ( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) . (19) 

Proof. By taking the right side for Eq. (19) . Using the relation between the property (14) and 𝑗𝜎( 𝑥 ) 𝑗𝜎−1 = ( 𝑥 ) 𝑗𝜎 − ( 𝑥 − 1) 𝑗𝜎 , we have

to prove 

�̌� = 𝜚
1− 𝜍 

𝜚 

[ 

𝑆 𝑀
𝜛,

𝜂

𝜚 

𝜏,
𝜍 

𝜚 
,
𝜗 

𝜚 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝜚𝜎−
𝜗 

𝜚 𝑧 

) 

− 𝑆 𝑀
𝜛,

𝜂− 𝜚 
𝜚 

, 

𝜏,
𝜍 

𝜚 
,
𝜗 

𝜚 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝜚𝜎−
𝜗 

𝜚 𝑧 

) 

] 
5
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= 𝜚
1− 𝜍 

𝜚 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 (
𝜂

𝜚 
) 
𝑗𝜎−1 

(𝜚𝜎−
𝜗 

𝜚 𝑧 ) 
𝑗 

.𝑗𝜎∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 

(
𝜗 

𝜚 
𝑗 + 𝜍 

𝜚 

)
𝑗! 

= 𝜎𝜚
1− 𝜍 

𝜚 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗+1 ,𝑣 (
𝜂

𝜚 
) 
( 𝑗+1 ) 𝜎−1 

( 

𝜚
𝜎− 𝜗 

𝜚 𝑧 

) 𝑗 

.( 𝑗 + 1 ) 

∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗+1 ,𝑣 Γ𝜚 

(
𝜗 

𝜚 
𝑗 + 𝜗 

𝜚 
+ 𝜍 

𝜚 

)
( 𝑗 + 1 ) ! 

= 𝜎𝜚
1+ 𝜎− 𝜗 + 𝜍 

𝜚 𝑧

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗+1 ,𝑣 (
𝜂

𝜚 
) 
𝑗𝜎+ 𝜎−1 

( 

𝜚
𝜎− 𝜗 

𝜚 𝑧 

) 𝑗 

∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗+1 ,𝑣 Γ𝜚 

(
𝜗 

𝜚 
𝑗 + 𝜗 + 𝜍 

𝜚 

)
( 𝑗) ! 

. 

By properties ( 𝛼) 𝑗+ 𝑞 = ( 𝛼) 𝑞 ( 𝛼 + 𝑞) 𝑗 and ( 𝛾) 𝑗+ 𝑚,𝜚 = ( 𝛾) 𝑚,𝜚 ( 𝛾 + 𝑚𝜚 ) 𝑗,𝜚 , we get 

�̌� =
∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑣 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑣 
𝜎𝜚

1+ 𝜎− 𝜗 + 𝜍 
𝜚 𝑧( 𝜂

𝜚 
) 
𝜎−1 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (( 𝜛 + 𝑣 ) 𝑛 ) 𝑗,𝑣 (
𝜂

𝜚 
+ 𝜎 − 1) 

𝑗𝜎

( 

𝜚
𝜎− 𝜗 

𝜚 𝑧 

) 𝑗 

∏𝑘 

𝑢 =1 (( 𝜏 + 𝑣 ) 𝑢 ) 𝑗,𝑣 Γ𝜚 

(
𝜗 

𝜚 
𝑗 + 𝜗 + 𝜍 

𝜚 

)
( 𝑗) ! 

. 

Hence 

�̌� =
∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑣 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑣 
𝜎𝜚

1+ 𝜎− 𝜗 + 𝜍 
𝜚 𝑧( 𝜂

𝜚 
) 
𝜎−1 

𝑆𝑀
𝜛+ 𝑣, 𝜂

𝜚 
− 𝜚 −1 

𝜌+ 𝑣, 𝜗 + 𝜍 
𝜚 

,
𝜗 

𝜚 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝜚𝜎−
𝜗 

𝜚 𝑧 

) 

. 

By property (15) , it follows that 

�̌� =
∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑣 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑣 
𝜎𝜚𝜎𝑧( 𝜂

𝜚 
) 
𝜎−1 

𝑆𝑀
𝜛+ 𝑣,𝜂+ 𝜚𝜎− 𝜎
𝜏+ 𝑣,𝜗 + 𝜍,𝜗 ( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) . 

In the subsequent part, we exmine fractional integral operators in terms of 𝑆𝑀-function . 

The 𝑺𝑴-function with fractional integral operators 

Theorem 4. Let 𝜂, 𝜎, 𝜗, 𝜍 ∈ 𝐶, 𝑚𝑖𝑛 {  ( 𝜗 ) ,  ( 𝜍) ,  ( 𝜂)} > 0 and 𝜚 ∈  , then 

∫
∞

0 
𝑒
− 𝑢 

𝑧 𝑢𝜇𝑆 𝑀
𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑢 ) 𝑑𝑢 =

𝑧𝜇+1 Γ( 𝜇 + 1 ) 
( 𝜇 + 1 ) 𝜚 

𝑆 𝑀
𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) . (20) 

Proof. Consider the integral 

∫
∞

0 
𝑒
− 𝑢 

𝑧 𝑢𝜇𝑆𝑀
𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑢 ) 𝑑𝑢 = ∫

∞

0 
𝑒
− 𝑢 

𝑧 𝑢𝜇
∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 
.
𝑢𝑗 

𝑗! 
𝑑𝑢 

= 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
∞

0 
𝑒
− 𝑢 

𝑧 𝑢𝜇+ 𝑗 𝑑𝑢. 

Let 𝑢 
𝑧 
= 𝜒, we have 

𝐴 =
∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑧𝜇+ 𝑗+1 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
∞

0 
𝑒− 𝜒 ( 𝜒) 𝜇+ 𝑗 𝑑𝜒. 

By the 𝜚 -Gamma function 

𝐴 = 𝑧𝜇+1 Γ( 𝜇 + 1 ) 
( 𝜇 + 1 ) 𝜚 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑧𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! 
= 𝑧𝜇+1 Γ( 𝜇 + 1 ) 

( 𝜇 + 1 ) 𝜚 
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) . 

Theorem 5. Let 𝜂, 𝜎, 𝜗, 𝜍 ∈ 𝐶, 𝑚𝑖𝑛 {  ( 𝜗 ) ,  ( 𝜍) ,  ( 𝜂)} > 0 , 𝜉, 𝛽 ∈  with 𝜉 > 𝛽 > 0 and 𝜚 ∈  , then 

∫
1 

0 

( 

1 − 𝑢
1 
𝛽

) 𝜉− 𝛽−1 
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧𝑢
1 
𝛽

) 

𝑑𝑢 = 𝛽( 𝛽, 𝜉 − 𝛽) 𝑆𝑀𝜛,𝜂,𝛽

𝜏,𝜍,𝜉,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) . (21) 

Proof. Consider 

𝑄 = ∫
1 

0 

( 

1 − 𝑢
1 
𝛽

) 𝜉− 𝛽−1 
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧𝑢
1 
𝛽

) 

𝑑𝑢 

= ∫
1 

0 

( 

1 − 𝑢
1 
𝛽

) 𝜉− 𝛽−1 ∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 
.

( 

𝑧𝑢
1 
𝛽

) 𝑗 

𝑗! 
𝑑𝑢 
6
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=
∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑧𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
1 

0 

( 

1 − 𝑢
1 
𝛽

) 𝜉− 𝛽−1 
𝑢
𝑗
1 
𝛽 𝑑𝑢. 

Put 𝑢
1 
𝛽 = 𝜒, then 

=
∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑧𝑗 𝛽∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
1 

0 
( 1 − χ) 𝜉− 𝛽−1 𝜒𝑗+ 𝛽−1 𝑑𝜒. 

Using the beta function 

𝑄 = 𝛽Γ( 𝜉 − 𝛽) Γ( 𝛽) 
Γ( 𝜉) 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑧𝑗 ( 𝛽) 𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) ( 𝜉) 𝑗 𝑗! 
= 𝛽( 𝛽, 𝜉 − 𝛽) 𝑆𝑀𝜛,𝜂,𝛽

𝜌,𝜍,𝜉,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) . 

Theorem 6. Let 𝜂, 𝜎, 𝜗, 𝜍 ∈ 𝐶, 𝑚𝑖𝑛 {  ( 𝜗 ) ,  ( 𝜍) ,  ( 𝜂)} > 0 and 𝜚 ∈  , then 

∫
∞

0 
𝑒− 𝑢𝑧 𝑢𝜉−1 𝑆 𝑀

𝜛,𝜂

𝜌,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑎𝑢 ) 𝑑𝑢 = Γ( 𝜉) 

𝑧𝜉
𝑆 𝑀

𝜛,𝜉,𝜂

𝜏,𝜍,𝜗 

(
𝑗, 𝜎, 𝑣, 𝜚 ; 𝑎 

𝑧 

)
. (22) 

Proof. Let 

𝑄1 = ∫
∞

0 
𝑒− 𝑢𝑧 𝑢𝜉−1 𝑆𝑀𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑎𝑢 ) 𝑑𝑢 

= ∫
∞

0 
𝑒− 𝑢𝑧 𝑢𝜉−1 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 
.
( 𝑎𝑢 ) 𝑗 

𝑗! 
𝑑𝑢 

= 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑎𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
∞

0 
𝑒− 𝑢𝑧 𝑢𝜉+ 𝑗−1 𝑑𝑢. 

Let 𝑢𝑧 = 𝜒 , then 

𝑄1 = 

1 
𝑧 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑎𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
∞

0 
𝑒− 𝜒

(𝜒

𝑧 

)𝜉+ 𝑗−1 
𝑑𝜒

= 

Γ( 𝜉) 
𝑧𝜉

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ( 𝜉) 𝑗 (
𝑎 

𝑧 
) 𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
∞

0 
𝑒− 𝜒 (

𝜒

𝑧 
) 
𝜉+ 𝑗−1 

𝑑𝜒

= 

Γ( 𝜉) 
𝑧𝜉

𝑆𝑀
𝜛,𝜉,𝜂

𝜏,𝜍,𝜗 

(
𝑗, 𝜎, 𝑣, 𝜚 ; 𝑎 

𝑧 

)
. 

Theorem 7. Let 𝜂, 𝜎, 𝜗, 𝜍 ∈ 𝐶, 𝑚𝑖𝑛 {  ( 𝜗 ) ,  ( 𝜍) ,  ( 𝜂)} > 0 , |𝑥𝜗 | < 1 and 𝜚 ∈  , then 

∫
∞

0 
𝑒− 𝑢 ( 𝑥𝑢 ) 

𝜍 

𝜚 
−1 
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; ( 𝑥𝑢 ) 
𝜗 

𝜚 

) 

𝑑𝑢 = 𝑥
𝜍 

𝜚 
−1 
𝑆𝑀𝜛,𝜂

𝜏

( 

𝑗, 𝜎, 𝑣, 𝜚 ; ( 𝑥) 
𝜗 

𝜚 

) 

. (23) 

Proof. Let 

𝑄2 = ∫
∞

0 
𝑒− 𝑢 ( 𝑥𝑢 ) 

𝜍 

𝜚 
−1 
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; ( 𝑥𝑢 ) 
𝜗 

𝜚 

) 

𝑑𝑢 

= ∫
∞

0 
𝑒− 𝑢 ( 𝑥𝑢 ) 

𝜍 

𝜚 
−1 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 
.
(( 𝑥𝑢 ) 

𝜗 

𝜚 ) 
𝑗 

𝑗! 
𝑑𝑢 

= 𝑥
𝜍 

𝜚 
−1 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑥
𝜗 

𝜚 
𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
∞

0 
𝑒− 𝑢 ( 𝑢) 

𝜗 

𝜚 
𝑗+ 𝜍 

𝜚 
−1 
𝑑𝑢. 

By the definition of 𝜚 -Gamma function, we obtain 

𝑥
𝜍 

𝜚 
−1 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑥
𝜗 

𝜚 
𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! 
Γ𝜚 ( 𝜗𝑗 + 𝜍 ) = 𝑥

𝜍 

𝜚 
−1 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑥
𝜗 

𝜚 
𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 𝑗! 

= 𝑥
𝜍 

𝜚 
−1 
𝑆𝑀𝜛,𝜂

𝜏

( 

𝑗, 𝜎, 𝑣, 𝜚 ; ( 𝑥) 
𝜗 

𝜚 

) 

. 
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When 𝜂 = 1 , implies that the generalized 𝑘 -hypergeometric function 

𝑄2 = 𝑥
𝜍 

𝜚 
−1 

𝑙 𝑘,𝑗,𝑣 

[ 
𝜛𝑛 ; 𝜏𝑢 ; 𝑥

𝜗 

𝜚 

] 
is satisfied. 

The 𝜚 -Weyl fractional operator is studied in the subsequent section. Numerous researchers will find it easier to solve integral

and differential issues with the introduction of the extended 𝜚 -Weyl fractional integral and the examination of its characteristics

and outcomes. These findings will be extremely helpful in resolving issues with fractional differential mask-based paper texture 

enhancement for medical imaging [ 21 ]. 

Results of 𝝔 -Weyl fractional operator 

This section discusses some analytic consequences of 𝜚 -Weyl fractional operator, which provided by [ 27 ], in terms of 𝑆𝑀-function

(also see [ 10 , 11 , 28 ] for further explain). 

Theorem 8. Let 𝜂, 𝜎, 𝜗, 𝜍 ∈ 𝐶, 𝑚𝑖𝑛 {  ( 𝜗 ) ,  ( 𝜍) ,  ( 𝜂) ,  ( 𝜅) ,  ( 𝜇)} > 0 and 𝜚 ∈  . Then 

1 
Γ𝜚 ( 𝜅) ∫

1 

0 
𝜇

𝜍 

𝜚 
−1 (1 − 𝜇) 

𝜅

𝜚 
−1 
𝑆 𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧𝜇
𝜗 

𝜚 

) 

𝑑𝜇 = 𝜚𝑆 𝑀
𝜛,𝜂

𝜏,𝜍+ 𝜅,𝜗 ( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) . (24) 

Proof. We have the left side for Eq. (24) that 

1 
Γ𝜚 ( 𝜅) ∫

1 

0 
𝜇

𝜍 

𝜚 
−1 (1 − 𝜇) 

𝜅

𝜚 
−1 
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧𝜇
𝜗 

𝜚 

) 

𝑑𝜇

= 1 
Γ𝜚 ( 𝜅) 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑧𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
1 

0 
𝜇

𝜍 

𝜚 
−1 (1 − 𝜇) 

𝜅

𝜚 
−1 

𝜇
𝜗 

𝜚 
𝑗 
𝑑𝜇. 

By (4) , we obtain 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑧𝑗 𝜚
2−

(
𝜗 

𝜚 
+ 𝜍 

𝜚 
+ 𝜅

𝜚 

)

Γ
(

𝜅

𝜚 

)∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ
(

𝜗 

𝜚 
𝑗 + 𝜍 

𝜚 

)
𝑗! ∫

1 

0 
𝜇

𝜗 

𝜚 
𝑗+ 𝜍 

𝜚 
−1 (1 − 𝜇) 

𝜅

𝜚 
−1 

𝑑𝜇

= 𝜚

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑧𝑗 𝜚
2−

(
𝜗 

𝜚 
+ 𝜍 

𝜚 
+ 𝜅

𝜚 

)

Γ
(

𝜅

𝜚 

)∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ
(

𝜗 

𝜚 
𝑗 + 𝜍 

𝜚 

)
𝑗! 


( 

𝜗 

𝜚 
𝑗 + 𝜍 

𝜚 
; 𝜅
𝜚 

) 

. 

We get the following result by applying the well-known relationships between the 𝜚 -Gamma and 𝜚 -Beta functions: 

1 
Γ𝜚 ( 𝜅) ∫

1 

0 
𝜇

𝜍 

𝜚 
−1 (1 − 𝜇) 

𝜅

𝜚 
−1 
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧𝜇
𝜗 

𝜚 

) 

𝑑 𝜇 = 𝜚

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑧𝑗 𝜚
1−

(
𝜗 

𝜚 
+ 𝜍 

𝜚 
+ 𝜅

𝜚 

)
∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ
(

𝜗 

𝜚 
𝑗 + 𝜍 

𝜚 
+ 𝜅

𝜚 

)
𝑗 ! 

= 𝜚

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑧𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + ς + κ) 𝑗! 
= 𝜚𝑆𝑀

𝜛,𝜂

𝜏,𝜍+ 𝜅,𝜗 ( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑧 ) . 

Theorem 9. Let 𝜂, 𝜎, 𝜗, 𝜍 ∈ 𝐶, 𝑚𝑖𝑛 {  ( 𝜗 ) ,  ( 𝜍) ,  ( 𝜂) ,  ( 𝜅) ,  ( 𝜁 )} > 0 and 𝜚 ∈  . Then 

𝜅
𝜚 

(
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 

(
𝑗, 𝜎, 𝑣, 𝜚 ; ( 𝜁 + 𝑎 ) − 𝜍 

))
=

Γ𝜚 ( 𝜍𝜚 − 𝜅) ( 𝑎 + 𝑧 ) 
𝜅

𝜚 

Γ𝜚 ( 𝜍𝜚 ) 
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 

(
𝑗, 𝜎, 𝑣, 𝜚 ; ( 𝑎 + 𝑧 ) − 𝜍 

)
. (25) 

Proof. We have the left side for Eq. (25) that 

𝜅
𝜚 

(
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 

(
𝑗, 𝜎, 𝑣, 𝜚 ; ( 𝜁 + 𝑎 ) − 𝜍 

))

= 1 
𝜚Γ𝜚 ( 𝜅) ∫

∞

𝑧 

( 𝜁 − 𝑧 ) 
𝜅

𝜚 
−1 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ( 𝜁 + 𝑎 ) − 𝜍𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! 
𝑑𝜁

= 1 
𝜚Γ𝜚 ( 𝜅) 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
∞

𝑧 

( 𝜁 − 𝑧 ) 
𝜅

𝜚 
−1 ( 𝜁 + 𝑎 ) − 𝜍𝑗 𝑑𝜁. 
8
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Let 𝜒 = 𝜁− 𝑧 
𝜁+ 𝑎 , we get 𝜁 = 𝑧 + 𝑎𝜒

1− 𝜒 , 𝑑𝜁 = 𝑎 + 𝑧 
(1− 𝜒) 2 

𝑑𝜒 and 

𝜅
𝜚 

(
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 

(
𝑗, 𝜎, 𝑣, 𝜚 ; ( 𝜁 + 𝑎 ) − 𝜍 

))

= 1 
Γ𝜚 ( 𝜅) 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ( 𝑎 + 𝑧 ) 
𝜅

𝜚 
− 𝜍𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! 
1 
𝜚 ∫

1 

0 
𝜒

𝜅

𝜚 
−1 ( 1 − 𝜒) 𝜍−

𝜅

𝜚 
−1 
𝑑𝜒

= 1 
Γ𝜚 ( 𝜅) 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ( 𝑎 + 𝑧 ) 
𝜅

𝜚 
− 𝜍𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! 
𝜚 ( 𝜅, 𝜍𝜚 − 𝜅) , 

where 𝜚 is the 𝜚 -Beta function. 

𝜅
𝜚 

(
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 

(
𝑗, 𝜎, 𝑣, 𝜚 ; ( 𝜁 + 𝑎 ) − 𝜍 

))
= 1 

Γ𝜚 ( 𝜅) 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ( 𝑎 + 𝑧 ) 
𝜅

𝜚 
− 𝜍𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! 
𝜚 ( 𝜅, 𝛿𝜚 − 𝜅) 

= 1 
Γ𝜚 ( 𝜅) 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ( 𝑎 + 𝑧 ) 
𝜅

𝜚 
− 𝜍𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! 

Γ𝜚 ( 𝜅) Γ𝜚 ( 𝜍𝜚 − 𝜅) 
Γ𝜚 ( 𝜍𝜚 ) 

=
∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ( 𝑎 + 𝑧 ) 
𝜅

𝜚 
− 𝜍𝑗 ∏𝑘 

𝑢 =1 (𝜌𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! 

Γ𝜚 ( 𝜍𝜚 − 𝜅) 
Γ𝜚 ( 𝜍𝜚 ) 

=
Γ𝜚 ( 𝜍𝜚 − 𝜅) ( 𝑎 + 𝑧 ) 

𝜅

𝜚 

Γ𝜚 ( 𝜍𝜚 ) 
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 

(
𝑗, 𝜎, 𝑣, 𝜚 ; ( 𝑎 + 𝑧 ) − 𝜍 

)
. 

Theorem 10. Let 𝜛, 𝜂, 𝜏, 𝜗, 𝜍 ∈ 𝐶, 𝑚𝑖𝑛 {  ( 𝜗 ) ,  ( 𝜍) ,  ( 𝜂) ,  ( 𝜅) ,  ( 𝜁 )} > 0 and 𝜚 ∈  , then 

𝜅
𝜚 

( 

𝜁
− 𝜅

𝜚 
− 𝜍 

𝜚 𝑆𝑀
𝜛,𝜂

𝜏,𝜍,𝜗 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝑢𝜁−
𝜗 

𝜚 

) ) 

= 𝑧
− 𝜍 

𝜚 𝑆𝑀
𝜛,𝜂

𝜏,𝜍+ 𝜅,𝜗 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝑢𝑧−
𝜗 

𝜚 

) 

. (26) 

Proof. Consider 

𝜅
𝜚 

( 

𝜁
− 𝜅

𝜚 
− 𝜍 

𝜚 𝑆𝑀
𝜛,𝜂

𝜏,𝜍,𝜗 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝑢𝜁−
𝜗 

𝜚 

) ) 

= 1 
𝜚Γ𝜚 ( 𝜅) ∫

∞

𝑧 

( 𝜁 − 𝑧 ) 
𝜅

𝜚 
−1 
𝜁
− 𝜅− 𝜍 

𝜚 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑢𝑗 𝜁
− 𝜗 

𝜚 
𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! 
𝑑𝜁

= 1 
𝜚Γ𝜚 ( 𝜅) 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑢𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
∞

𝑧 

( 𝜁 − 𝑧 ) 
𝜅

𝜚 
−1 
𝜁
− 𝜅− 𝜍 

𝜚 
− 𝜗 

𝜚 
𝑗 
𝑑𝑣. 

Put 𝜒 = 𝜁− 𝑧 
𝜁

, we obtain 

𝜅
𝜚 

( 

𝜁
− 𝜅

𝜚 
− 𝜍 

𝜚 𝑆𝑀
𝜛,𝜂

𝜏,𝜍,𝜗 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝑢𝜁−
𝜗 

𝜚 

) ) 

= 1 
𝜚Γ𝜚 ( 𝜅) 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑢𝑗 𝑧
− 𝜍 

𝜚 
− 𝜗 

𝜚 
𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
1 

0 
( 𝜒) 

𝜅

𝜚 
−1 ( 1 − 𝜒) 

𝜗 

𝜚 
𝑗− 𝜍 

𝜚 
−1 
𝑑𝜒

= 1 
𝜚Γ𝜚 ( 𝜅) 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑢𝑗 𝑧
− 𝜍 

𝜚 
− 𝜗 

𝜚 
𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! 
𝜚 ( 𝜅, 𝜗𝑗 + 𝜍 ) 

= 𝑧
− 𝜍 

𝜚 𝑆𝑀
𝜛,𝜂

𝜏,𝜍+ 𝜅,𝜗 

( 

𝑗, 𝜎, 𝑣, 𝜚 ; 𝑢𝑧−
𝜗 

𝜚 

) 

. 

Theorem 11. Let 𝜛, 𝜂, 𝜏, 𝜗, 𝜍 ∈ 𝐶, 𝑚𝑖𝑛 {  ( 𝜗 ) ,  ( 𝜍) ,  ( 𝜂) ,  ( 𝜅) ,  ( 𝜁 )} > 0 and 𝜚 ∈  , then 

𝜅
𝜚 

(
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑒− 𝜔𝑧 ) 

)
= 1 

𝜔𝜚
𝜅

𝜚 

𝑆𝑀
𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑒− 𝜔𝑧 ) . (27) 

Proof. Consider 

𝑊 = 𝜅
𝜚 

(
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑒− 𝜔𝑧 ) 

)
= 1 

𝜚Γ𝜚 ( 𝜅) ∫
∞

𝑧 

( 𝜁 − 𝑧 ) 
𝜅

𝜚 
−1 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑒− 𝜔𝜁𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! 
𝑑𝜁

= 1 
𝜚Γ𝜚 ( 𝜅) 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜌𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
∞

𝑧 

( 𝜁 − 𝑧 ) 
𝜅

𝜚 
−1 
𝑒− 𝜔𝜁𝑗 𝑑𝜁. 
9
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Putting 𝜒 = 𝜁 − 𝑧, we get 

𝑊 = 1 
𝜚Γ𝜚 ( 𝜅) 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
∞

0 
𝜒

𝜅

𝜚 
−1 
𝑒− 𝜔( 𝜒+ 𝑧 ) 𝑗 𝑑𝜒. 

Let 𝜔𝜒 = 𝜑, therefore 

𝑊 = 1 

𝜚Γ𝜚 ( 𝜅) 𝜔
𝜅

𝜚 

∞∑
𝑗=0 

∏𝑙 

𝑛 =1 (𝜛𝑛 ) 𝑗,𝑣 ( 𝜂) 𝑗𝜎,𝜚 𝑒− 𝜔𝑧𝑗 ∏𝑘 

𝑢 =1 (𝜏𝑢 ) 𝑗,𝑣 Γ𝜚 ( 𝜗𝑗 + 𝜍 ) 𝑗! ∫
∞

0 
𝜑

𝜅

𝜚 
−1 
𝑒− 𝜑𝑗 𝑑𝜑. 

From (4) , we obtain 

𝜅
𝜚 

(
𝑆𝑀

𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑒− 𝜔𝑧 ) 

)
= 1 

𝜔𝜚
𝜅

𝜚 

𝑆𝑀
𝜛,𝜂

𝜏,𝜍,𝜗 
( 𝑗, 𝜎, 𝑣, 𝜚 ; 𝑒− 𝜔𝑧 ) . 

Conclusion 

Within the extension of fractional integral and differential operators, we have established some novel findings of 𝜚 -fractional 

integral operators involving new extension of 𝑆-function in this paper. Furthermore, we discovered some unique instances of functions 

such as the 𝑀-series, 𝑅 -function, and 𝑘 -Mittag-Leffler function. The generalized 𝑘 -Mittag-Leffler function findings given by [ 15 ] were

obtained if we set 𝑛 = 𝑢 = 𝜎 = 1 , 𝑛 = 𝑢 = 0 , 𝜛 = 𝛾, 𝑎𝑛𝑑 𝜏 = 1 . We reached good results about the 𝜚 -Weyl fractional operator and

other fractional calculus operators. The investigated results are indicated by the generalized k -hypergeometric function, k -MLF and

R -function. To demonstrate the probably enforcement of SM -type function, the investigations of fractional kinetic equations (FKEs) 

may be derived with the axuilary of Sumudu transform. The findings are also have considerable consequence as the solution of

FKEs association variaty of other special functions. Moreover, numerous transforms such as Whittaker, Laplace and Fourier can be

evaluated employing the SM -function. 
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