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A B S T R A C T   

Increasing electrical energy consumption during peak hours leads to increased electrical energy losses and the 
spread of environmental pollution. For this reason, demand-side management programs have been introduced to 
reduce consumption during peak hours. This study proposes an efficient energy optimization in Smart Urban 
Buildings (SUBs) based on Improved Sine Cosine Algorithm (ISCA) that uses the load-shifting technique for 
demand-side management as a way to improve the energy consumption patterns of a SUBs. The proposed sys-
tem’s goal is to optimize the energy of SUBs appliances in order to effectively regulate load demand, with the end 
result being a reduction in the peak to average ratio (PAR) and a consequent minimization of electricity costs. 
This is accomplished while also keeping user comfort as a priority. The proposed system is evaluated by 
comparing it with the Grasshopper Optimization Algorithm (GOA) and unscheduled cases. Without applying an 
optimization algorithm, the total electricity cost, carbon emission, PAR and waiting time are equal to 1703.576 
ID, 34.16664 (kW), and 413.5864s respectively for RTP. While, after applying GOA, the total electricity cost, 
carbon emission, PAR and waiting time are improved to 1469.72 ID, 21.17 (kW), and 355.772s respectively for 
RTP. While, after applying the ISCA Improves the total electricity cost, PAR, and waiting time by 1206.748 ID, 
16.5648 (kW), and 268.525384s respectively. Where after applying GOA, the total electricity cost, PAR, and 
waiting time are improved to 13.72 %, 38.00 %, and 13.97 % respectively. And after applying proposed method, 
the total electricity cost, PAR, and waiting time are improved to 29.16 %, 51.51 %, and 35.07 % respectively. 
According to the results, the created ISCA algorithm performed better than the unscheduled case and GOA 
scheduling situations in terms of the stated objectives and was advantageous to both utilities and consumers. 
Furthermore, this study has presented a novel two-stage stochastic model based on Moth-Flame Optimization 
Algorithm (MFOA) for the co-optimization of energy scheduling and capacity planning for systems of energy 
storage that would be incorporated to grid connected smart urban buildings.  
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Nomenclature  

Abbreviations & Acronyms 
ISCA Improved Sine Cosine Algorithm 
SUBs Smart Urban Buildings 
DSM Demand-Side Management 
UC User Comfort 
GOA Grasshopper Optimization Algorithm 
MFOA Moth-Flame Optimization Algorithm 
MG Microgrid 
DI Discomfort Index 
DG distributed generation 
FCs Fuel Cells 
MTs Micro-Turbines 
PV Photovoltaic 
WTs Wind Turbines 
CMG Community Microgrid 
DERs distributed generating resources 
SG smart grid 
FPS flat price system 
BPSO Binary Particle Swarm Optimization 
SCADA Supervisory Control and Data Acquisition 
MPPT Maximum Power Point Tracking 
DRP demand response program 
IoT Internet of Things 
BSA Back Tracking search Algorithm 
P2P Peer-to-Peer 
MAF Multi-Agent Framework 
PAR peak-to-average 
CoAP Constricted Application Protocol 
DO Dandelion Optimizer 
RTP Real-time pricing 
LDCs local distribution companies 
DERs distributed energy resources 
TOU Time of Use 
ESS Energy Storage System 
Variables & Parameters 
IGridbuy
i,t and IGridsell

i,t 
Buying and selling electricity 

ICut
i,l,t controllable load 

IGridbuy
i,t and PGridsell

i,t 
bought and sold electricity 

PESS
i,t energy storage device’s power 

E− Cos t electricity cost 
T periods time 
πGridbuy

t and πGridsell
t 

cost of power bought or sold at moment t 
M− Cos t PV panel and energy storage device operating costs 
PPV

i,t PV power produced at moment t 

πpv and πESS PV panel and energy storage device operating expenses 
L total number of controllable loads 
PCut

i,l,t reduced power 

lth controllable load 
ρCut

t weight factor, 
λ emission coefficient of grid-purchased electricity 
PLoad

i,t electricity demand at time t 

Pch
i,t and Pdch

i,t energy storage device’s charging and discharging powers 

PGridbuy.max
i,t and 
PGridsell.max

i,t 

maximum power value of the electricity a microgrid buys 
and sells 

EESS
i,t and EESS

i,t− 1 energy of energy storage device at time t or t − 1 

EESS⋅max
i maximum energy storage device capacity 

PESS⋅max
i maximum energy storage device power 

A P V is a solar panel’s area (m2) 
I r (t ) The solar irradiation (

kW
m2 ) at a given time 

ξP V PV inverter efficiency (%) 
T empf The temperature factor 
T empa (t ) outside room temperatures (◦C) 
T empamb ambient room temperatures (◦C) 
A The athematic mean of data 
Γ Role of gamma 
η standard deviation of data 
S P V PV operating cost 
S s Levelized cost of PV energy (

$

kWh
) 

N P V A N PV energy output (kWh), 
S P V total PV energy cost 
S sinv PV investment cost ($), 

(continued on next column)  

(continued ) 

S som PV operation and maintenance cost 
ηs degradation in PV 
S g The utility energy cost ($), 
W gs(t ) excess micro-grid producing power delivered to utility (kW) 

during time t, 
W gc (t ) The utility-paid microgrid power (kW) for time t (hours) 
ϱ(t )

utility pricing signal (
$

kWh
) at time t. 

N g ($) The predicted thermal generators’ utility emissions cost 
τ utility generating emission coefficients 
Appα appliance that is being switched ON 
Appd

Wt 
waiting time of a particular appliance d 

Pi stands for the grasshoppers’ location 
SOi social interaction force 
GREi gravitational force 
Wi wind advection 
dij Euclidean distance between the ith and jth grasshoppers 
N number of grasshoppers 
s represents a function that explains the strength of social 

forces 
êg gravitational constant, 
g unity vector in direction 
bd and lbd upper and lower bounds inside the dth dimension 
Td dth dimension goal (best solution identified) 
Pim imported power 
Pex exported power 
PL load power 
PRE renewable energy generation 
FiT Feeds-in-Tariff 
π Cost of wholesale electricity 
Pch,B and Pdch,B Battery bank charging and discharging capacity 
Pch,SC and Pdch,SC Power to charge and discharge from the SC bank 
E B

SC 
The battery or SC bank’s energy content 

σB/SC selfdischarge rate of battery/SC bank 
η

ch, B
SC 

and η
dch, B

SC 
battery/SC bank charging and draining efficiency 

P
ch, B

SC 
and P

dch, B
SC 

battery/SC bank’s charging and discharging capacities 

Pmax
ch, B

SC 
and Pmax

dch, B
SC 

maximum power of the battery or SC bank for charging and 
discharging 

uch and udch Binary variables are utilized to prevent simultaneous 
charging and discharge. 

NI ideal dimensions for the installed inverter 
PI,r installed inverter’s rated power 
Pl,ins capacity of the inverter that is currently installed 
Nc maximum capability of component c 
CC, RC, and O&M Costs of capital, replacement, and upkeep and operation 
Qlife and Qthr The storage component’s lifetime throughput as well as its 

annual throughput. 
CRF capital recovery factor 
SPPW factor of Single payment present worth 
PL project lifetime 
ir interest rate 
CL component lifetime 
SV salvage value 
NS maximum capacity of the storage element 
Ci

exch cost of energy purchased 
NPCB, NPCSC, and 

NPCI 

current price of the inverter, SC bank, and battery bank 

c a penalty factor that raises the objective function’s returned 
value by a sizable positive constant. 

NPVexch power exchanges value 
NB and NSC maximum battery and SC bank capacity 
AHmin

B/SC minimum autonomy hour required of battery or SC bank 

GOSmin
MG minimum grid outage 

PB,r and PSC,r rated power of the battery and SC banks 
Nmax

B , Nmax
I , and Nmax

T the maximum capacity of the transformer, inverter, and 
battery bank at the common coupling point 

PRE,ins current installed capacity of the components used in the 
production of renewable energy 

Dij distance among moth i and flame j 
S
(
Mi,Fj

)
spiral function of moth i and flame j 

r a random integer between − 1 and 1. 
b a parameter that establishes the logarithmic spiral’s form  
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1. Introduction 

To acquire secure, dependable, and clean energy, the outdated grid 
infrastructure needed to be improved and modernized due to the surge 
in worldwide electrical energy production and consumption as well as 
the quick integration of intermittent renewable sources. As a result, the 
idea of the “smart grid” has come into being, whereby all participants in 
the grid network communicate and collaborate with one another via 
information and communication technologies (ICTs) in order to enhance 
sustainability, resource efficiency, and stability in the fields of energy 
production, transmission, and distribution. In order to regulate resi-
dential end-users’ electrical energy consumption—who account for 
26.9 % of global electricity final consumption—residential demand-side 
management, or DSM, is linked to the smart grid idea [1]. 

All short-term actions intended to alter end users’ consumption 
patterns in the form of peak cutting, valley filling, or load shifting in 
order to satisfy a load shape required by the electrical grid are collec-
tively referred to as demand response (DR), a tool for demand-side 
management. Load-serving entities (LSEs) use advanced metering 
infrastructure (AMI) to provide end-users with financial incentives or 
time-dependent pricing to facilitate direct load control (DLC) or indirect 
load control (ILC) as part of residential DR. In DLC, end customers give 
LSEs permission to remotely operate their appliances, primarily for 
frequency management or peak shaving, in exchange for rewards [2,3]. 

Systems for responding to demand offer a flexible and efficient way 
to balance the supply and demand of power. Demand response systems 
can be added to microgrids to maximize the use of renewable energy 
sources. By allowing the supply and demand for power to be balanced, it 
eliminates the need for expensive energy reserves. Microgrids, as 
opposed to traditional reserve units, offer a more steady and balanced 
electrical supply by actively monitoring and reacting to variations in 
demand. SUBs has garnered significant attention due to its critical role in 
the construction of future smart grids, and in recent years, there has 
been a rising number of relevant research projects. Demand-side man-
agement was first proposed by the authors in Ref. [4] as a requirement 
for the profitable operation of home and rural microgrid systems. The 
application of firefly hybridization with particle swarm optimization in 
DSM research was described by the authors in Ref. [5]. 

The authors of [6] provided a real-time community microgrid 
scheduling system. In the event of a power loss, the authors of [7] 
offered a unique method for scheduling distributed generating resource 
(DER) to serve loads inside a micro grid (MG). In order to solve the 
demand-side management (DSM) issue, the authors of [8] proposed a 
method for logically distributing energy consumption in the smart grid 
(SG) by utilizing a flat price system (FPS). The authors presented a novel 
solution for optimized energy management systems in Ref. [9], which 
included an AC/DC hybrid microgrid system for industries. The authors 
presented a novel approach to achieve mppt for photovoltaic system 
based SCADA in Ref. [10]. The authors presented their efficient opti-
mization algorithm-based demand-side management program for smart 
grid residential load in Ref. [11]. In Refs. [12–15], writers offered a 
control method for inverters that run in parallel for use in environ-
mentally friendly applications. Since solar and tidal energy are 
commonly utilized in power networks as renewable resources, 
renewable-based microgrids (MGs) have access to a demand response 
program (DRP), which was made accessible in Ref. [16]. The authors of 
[17] put up a plan for controlling household energy use those accounts 
for uncertainty and uses workable demand response techniques. The 
authors developed a unique internet of energy optimal multi-agent 
control system in Refs. [18–20] for microgrids that include renewable 
energy resources. The authors of [21] described energy management in 
microgrids using deep reinforcement learning and specialized knowl-
edge. A novel Internet of Things-based optimization method for a home 
demand side management system based on BPSO and BSA was created 
by the authors in Refs. [22,23]. A novel decentralized control approach 
for microgrids in the internet of energy framework was given by the 

authors in Ref. [24]. 
The authors in Ref. [25] offered power demand control scenarios for 

smart grid applications with a restricted number of appliances. An al-
gorithm focused on planning the smart device problem for sparing load 
change in demand management was proposed by the authors in 
Ref. [26]. The ease of a load transfer reduces consumer annoyance. 
Using an Internet of Things (IoT)-based bald eagle search optimization 
technique, the authors of [27] proposed a unique solution for day-ahead 
scheduling challenges. To encourage a smart grid usage culture, the 
authors of [28] proposed developing a cloud-based Multi-Agent 
Framework (MAF) for residential microgrids (RMG). Reducing peak 
load and energy expenditures associated with intelligent homes is the 
aim of the micro grid and intelligent home agents described in the MAS. 
The authors of [29] introduced multi-objective scheduling based on 
arithmetic optimization approaches for energy management in Internet 
of Things (IoT) enabled smart homes. In Ref. [30], the author developed 
a P2P architecture for building islanded microgrids. Multi-layered, 
multi-agent systems and procedures that accomplish several goals 
enable P2P development. Agents proficient in data processing and 
transmission can perform these concurrent tasks linked to multi-layer 
control. Using effective DSM approaches, the authors of [31] investi-
gated the peak-to-average (PAR) ratio of the grid energy consumption. 
They examine several aspects such as weather, power pricing, energy 
use trends, and others to determine the best load management method 
for flattening the load curve. It provides an energy management strategy 
based on genetics. An example of a Raspberry Pi3-powered SCADA--
controlled smart home was given by the authors of [32]. The authors 
described a fog-based internet of energy architecture in Ref. [33] for 
transactive energy management systems. 

The authors introduced a new on-grid/off-grid energy management 
system in Ref. [34] that uses an adaptive neuro-fuzzy inference method. 
An energy management system for demand-side control in smart grids 
based on cloud computing and the Internet of Things was presented by 
the authors of [35]. Utility companies and consumers can both remotely 
access a consumer recharge profile by using this device. Consumer load 
profiles can help businesses control, offer incentives to, and convince 
customers to reduce their energy usage. A multi-agent system based on 
demand response was developed and implemented in Ref. [36] for 
active network control of delivery networks. The project’s objective is to 
supply dynamic boards to distribution network operators and distribu-
tion system operators (DSOs) as a practical and efficient means of 
communication. The authors of [37] presented hierarchical EMS, which 
was optimization-based. A novel agent-based paradigm that integrates 
the adaptable features of home and work environments has been 
developed by the authors of [38]. A task scheduling system for 
multi-objective demand response to real-time prices (RTP) was pre-
sented by the authors of [39]. 

Instead of examining the optimal BOA-based DSMS operation, the 
authors of [40] created a SEMS as a service for nanogrid equipment used 
in cloud computing platforms. An adaptive power management method 
for both grid mode and insulated mode was published by the authors of 
[41]. In this study, demand is satisfied in the client’s home area through 
the employment of a hybrid system that combines photovoltaics, bat-
teries, and energy distribution. When necessary, the coordinated energy 
delivery services can supply active power and the appropriate quantity 
of service thanks to the suggested approach. The authors of [42] pro-
vided a framework for energy management (EMS) in smart homes. This 
gadget establishes a wireless network of many devices on each home 
computer by connecting to an IP address-based Internet of Things (IoT) 
module. The author’s operational state models and flexible load are 
provided in Ref. [43]. In southern Anhui, load scheduling was employed 
to maximize the variable load of residential buildings while taking 
current power costs and renewable energy generation into consider-
ation. The optimization process’s goal was to lower the buying price. A 
novel binary backtracking search algorithm-based real-time optimal 
scheduling controller for a home energy management system was 
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presented by the authors of [44]. For an islanded power system with 
scattered energy supplies, the authors of [45] proposed the ideal 
load-shedding technique based on the grasshopper optimization 
algorithm. 

The authors published their presentation, “Energy management in 
smart cities based on the internet of things: peak demand reduction and 
energy savings,” in Ref. [46]. A novel real-time electricity scheduling for 
home energy management system using the internet of energy was 
presented by the authors in Ref. [47]. The developers of [48] offer a 
distinct fog computing network service for power management. The 
adoption of the fog computing platform facilitates real-time energy 
management, data protection, accessibility, flexibility, and interopera-
bility. The authors presented a self-learning home management archi-
tecture in Ref. [49]. The Internet of Things concepts were combined for 
agent interaction and communication using a Multi-Agent System plat-
form. An inventive, dependable EMS and control method for a hybrid 
microgrid system powered by green energy was proposed by the authors 
of [50]. A real-time monitoring interface was employed by the authors 
of [51] to define an enhanced microgrid energy management strategy. 
The authors initially introduced consensus negotiation-based decision 
making in Ref. [52] for connected appliances in smart home manage-
ment systems. In Ref. [53], the authors described an effective demand 
response program and renewable energy sources for smart grid energy 
management. The authors provided a multi-objective enhanced cock-
roach swarm algorithm technique in Ref. [54] for residential energy 
management systems. The authors of [55] proposed utilizing the ITS-BF 
algorithm to schedule residential units’ electrical appliances for the 
following day in a smart home network. For internet-of-energy-based 
smart homes, the authors of [56] provided a thorough strategy for 
intelligent energy management and demand reduction. 

The authors in Ref. [57] covered the integration of control methods 
for integrating a grid-connected wind-photovoltaic hybrid system with 
adaptation converters coupled to a shared DC bus. In order to minimize 
costs, the authors of [58] described how to size renewable energy sys-
tems with microgrids based on energy storage systems using hybrid 
shuffling, frog-leaping, and pattern search algorithms. The authors of 
[59] proposed energy management and optimal operation of renewable 
energy sources and electric vehicles based on microgrid by using a 
hybrid gravitational search and pattern search method. The authors 
suggested the hybrid crow and pattern search algorithm in Ref. [60] as a 
cost-oriented resource scheduling technique for a solar-powered 
microgrid. The authors of the study in Ref. [61] suggest a novel 
Dandelion Optimizer (DO) to precisely determine the PEMFC model’s 
parameters for the first time. Improved off-grid wind, PV, and hybrid 
energy storage system based on novel Moth-Flame optimization algo-
rithm framework was proposed by the authors in Ref. [62]. By zoning 
the network into many clusters, the authors of [63] presented a 
zonal-based optimal microgrid identification model with the goal of 
determining the ideal microgrid topology in the current distribution 
systems. The integrated utility grid system was the main focus of the 
authors of [64]. A novel technique for managing a DPGS’s grid side 
inverter is developed, accounting for an unbalanced grid. For a micro-
grid that includes renewable energy sources, the authors in Refs. 
[65–71] developed a day-ahead combined energy management and 
battery size framework based on the β-modified krill herd algorithm. 

The vehicle-to-home idea was integrated into one of the two resi-
dential microgrids compared by the authors of [72], providing a case 
study that highlights the attractiveness of this technology for house-
holds. The authors of [73] introduced the coalitions-game theory for 
energy management schemes in intelligent microgrids, which is based 
on the consensus algorithm. By employing renewable energy resources, 
the authors of [74] developed a novel technique for coordinating the 
operation of hybrid microgrids with changing loads and generating 
circumstances. In Ref. [75] the authors presented the modeling and 
design of a modular energy management system and its integration into 
a grid-connected battery-based microgrid. In the stand-alone system, the 

authors of [76] provide a novel economic dispatch using an improved 
butterfly optimization technique. Authors of [77] presented a method 
for demand side management in smart homes that integrates energy 
optimization with microgrid operations. Multiple HEMS simultaneously 
optimize their individual energy consumption patterns and calculate 
their flexibility provision, which is conveyed to the local distribution 
companies (LDCs), according to a two-stage optimization paradigm 
proposed in Ref. [78]. Distributed energy management of the hybrid 
AC/DC microgrid with high penetration of distributed energy resources 
based on ADMM was given by the authors in Ref. [79]. The authors of 
[80] introduced a multi-objective optimization technique for solar and 
battery energy storage in household energy management systems. Au-
thors of [81] presented a time-of-use tariff plan for Bangladeshi resi-
dential energy consumers to regulate their consumption. 

The demand side management strategy for smart buildings utilizing 
the multi-objective hybrid optimization technique was given by the 
authors in Ref. [82]. In Ref. [83] the authors presented a Flexible 
demand-side management program in accordance with the consumers’ 
requested constraints. 

In [84] the authors presented Optimization-based optimal energy 
management system for smart home in smart grid. Deep 
learning-assisted distributed fiber optic sensors for intelligent moni-
toring of spatially distributed cracks was presented by the authors in 
Ref. [85]. The authors published a review on machine learning-based 
automated condition assessment of pipelines in Ref. [86]. The authors 
of [87] presented the use of heterogeneous signal characteristics ac-
quired from utterance-based parallel neural networks for audio senti-
ment analysis. The authors of [88] described the complimentary 
merging of many modalities and multiple characteristics in sentiment 
analysis. The authors presented a deep learning-based method for clas-
sifying macromolecules using unbalanced data from cellular electron 
cryotomography in Ref. [89]. 

1.1. Research gap of related works 

While extensive research has been conducted on reducing peak-to- 
average ratio (PAR), energy costs, and improving customer savings 
and utility benefits in Time-of-Use (ToU) pricing, several gaps remain.  

- In many systems like [81], and [100], the authors did not use a 
metaheuristic technique (e.g., Improved Sine Cosine Algorithm 
(ISCA) and the Grasshopper Optimization Algorithm (GOA), etc.) to 
minimizes Electricity Cost (EC) and Peak to Average Ratio (PAR) 
while maximizing User Comfort (UC).  

- In many papers, accuracy is enhanced at expense of increased 
complexity of system.  

- In many papers, a stable, accurate, and efficient performance is 
achieved at the cost of high execution time.  

- Some literatures did not consider the trade-offs between minimizing 
electricity bills and user discomfort.  

- Absence of a two-stage stochastic model based on the Moth-Flame 
Optimization Algorithm (MFOA) for co-optimizing energy storage 
system capacity planning and scheduling in grid-connected medium- 
sized generators (MGs). 

1.2. Contributions of this work  

- This paper presents an efficient energy optimization in smart urban 
buildings based on Improved Sine Cosine Algorithm (ISCA) and the 
Grasshopper Optimization Algorithm (GOA)  

- The article seeks to accomplish a number of contradictory goals, such 
as reducing energy costs, increasing the total amount of requests for 
approved power, reducing CO2 emissions, and maximizing the total 
amount of requests for authorized power. 

- To overcome a number of obstacles and improve the overall effec-
tiveness of the study, ISCA is suggested. A number of simulations are 
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carried out to validate the results. The effectiveness of the recom-
mended methodology is validated by looking at performance in-
dicators that offer significant cost savings with a low chance of 
unfavorable events for the user.  

- The results obtained via proposed methodology are compared to a 
number of existing techniques. Also, savings in electricity bills for 
various consumer categories are estimated.  

- Analyzes the impact of battery storage on appliance operation times 
and grid balancing. 

- Develops a novel two-stage stochastic model for co-optimizing en-
ergy storage system capacity planning and scheduling in grid- 
connected MGs using the MFOA. 

2. Proposed system 

Installing a small-scale photovoltaic energy storage system has 
become vital for every family in Smart Urban Buildings due to the 
exponential expansion of distributed energy. The system structure dia-
gram for a smart urban building based on an energy management system 
is displayed in Fig. 1. Evidently, each managed load is linked to a smart 
socket, which the SUBs may control directly. The controlled load can be 
turned on or off when the smart socket receives a signal from the SUBs. 
One way to respond to demand for electricity is to reduce or modify 
one’s usage. The primary study items in this investigation are energy 
storage devices and changeable loads. Reducing partially controllable 
loads and scheduling energy storage devices are the main goals of this 
article in order to lower carbon emissions and Smart Urban Buildings 
power costs. The model accounts for the exchange of electricity between 

Smart Urban Buildings and the grid in the interim. This section describes 
the specific choice variables, the model’s objective functions and con-
straints, and the energy storage device’s approach to handling 
limitations. 

2.1. Factors that influence decisions 

The Smart Urban Buildings (SUBs) model’s six different character-
istic categories are selected as the choice factors in order to get the best 
solution for electricity usage: 

C=
[
IGridbuy
i,t , IGridsell

i,t , ICut
i,l,t ,P

Gridbuy
i,t ,PGridsell

i,t , PESS
i,t

]
(1) 

The time period index (t), SUB residence index (i), and controllable 
load index l are represented in this example. Electrical energy pur-
chasing and selling are represented by the binary variables IGridsell

i,t and 

IGridbuy
i,t respectively. The binary variable ICut

i,l,t represents the controllable 

load’s operational condition. The variables IGridbuy
i,t and PGridsell

i,t in the 
microgrid stand for the power that was bought and sold at time t, 
respectively. PESS

i,t denotes the power being charged or discharged by the 
microgrid’s energy storage device at time t [90]. 

2.2. Objective functions 

To maximize the economic and social benefits of Smart Urban 
Buildings consumption, optimization objectives are given for energy 
cost, DR curtailment value, and carbon emissions while accounting for 

Fig. 1. Suggested smart urban buildings system.  
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inhabitants’ electrical economy, DR participation, and environmental 
indicators. 

2.2.1. Cost of electricity 
The definition of the electricity cost goal function includes the price 

of purchasing power for the family, the revenue from selling electricity, 
and the running costs of photovoltaic panels and energy storage devices: 

E− Cost =
∑I

i=1

∑T

t=1

(
IGridbuy
i,t ×PGridbuy

i,t × πGridbuy
t

− IGridsell
i,t ×PGridsell

i,t × πGridsell
t

)
×

1
Δt

+ M− Cost (2)  

where T is total number of hours in a day, and the electricity cost is 
represented by E− Cos t. Let I be the total number of SUB; let Δt be the 
total number of 1-h time intervals, each lasting 15 min. At every given 
moment t, the prices of power bought and sold are represented, 
respectively, by πGridsell

t and πGridbuy
t . PV panel and device of energy 

storage operating expenses are stated in terms of M− Cost, which is 
calculated as follows: 

M− Cost=
∑I

i=1

∑T

t=1

(
PPV

i,t × πpv +

⃒
⃒
⃒PESS

i,t

⃒
⃒
⃒× πESS

)
×

1
Δt

(3)  

where PPV
i,t stands for photovoltaic power generated at t. Operating costs 

of solar panel and energy storage device are denoted by the symbols πpv 

and πESS. 

2.2.2. DR restriction’s value 
By reducing partial loads, the DR curtailment value—which has the 

following definition—is utilized to measure resident involvement in the 
DR program: 

DRValue =
∑I

i=1

∑T

t=1

∑L

l=1

(
PCut

i,l,t × ICut
i,l,t × ρCut

t

)
×

1
Δt

(4) 

In this case, DR Value is the DR curtailment value, PCut
i,l,t is the DR 

curtailment value, and L is total number of controlled loads. The load’s 
power at time t is equal to the lth controlled load’s reduced power. 
Weight factor, ρCut

t is configured to reduce partial loads. 

2.2.3. Emissions of carbon 
Achieving low-carbon electricity use for residents is important 

because CO2 emissions have a significant green Smart Urban Buildings 
effect on the environment. The following is the definition of the carbon 
emission objective function: 

EnvirCO2 = λ×
∑I

i=1

∑T

t=1

(
IGridbuy
i,t ×PGridbuy

i,t

)
×

1
Δt

(5)  

where λ, the emission coefficient of power purchased from the grid, has 
a value of 0.785 kg CO2/kWh, and Envir CO2 represents carbon 
emission. 

2.3. Restrictions 

The following constraints apply to the schedule optimization model 
in order to provide regular exchanges between Smart Urban Buildings 
and the grid. 

2.3.1. Limitations on equilibrium power 
The power balance equation can be represented as follows; 

PG ridbuy
i,t +PPV

i,t + Pdch
i,t = PLoad

i,t + Pch
i,t + PG ridsell

i,t (6) 

The energy storage device’s charging and discharging powers are 
represented by Pch

i,t and Pdch
i,t , respectively, and are defined as follows: PLoad

i,t 

represents the electricity demand at time t: 

Pch
i,t =PESS

i,t ,&&PESS
i,t > 0 (7)  

Pdch
i,t =PESS

i,t ,&&PESS
i,t < 0 (8)  

2.3.2. Limitations on inequality  

• Limitations on Operating State with Controlled Load: 

0≤ ICut
i,l,t ≤ 1 (9)    

• Electricity purchase and sale constraint: 

0≤ IGridbuy
i,t + IGridsell

i,t ≤ 1 (10)    

• Restrictions on the power of electricity that is bought and sold: 

0≤PGridbuy
i,t ≤ PGridbuy.max

i,t (11)  

0≤PGridsell
i,t ≤ PGridsell.max

i,t (12)  

In this case, PGridbuy.max
i,t and PGridsell.max

i,t stand for the highest power 
value that microgrids can buy and sell, respectively. 

2.4. Energy-storing 

Because the energy storage device buffers the electricity used in 
Smart Urban Buildings, it is important to account for the financial and 
environmental aspects of charging and discharging the device. Storage 
device’s mathematical model is as follows: 

EESS
i,t = EESS

i,t− 1 + PESS
i,t ×

1
Δt

(13)  

0≤EESS
i,t ≤ EESS⋅max

i (14)  

− PESS⋅max
i ≤PESS

i,t ≤ PESS⋅max
i (15)  

where EESS
i,t and EESS

i,t− 1, respectively, indicate the energy of storage device 
at times t and t − 1; EESS⋅max

i and PESS⋅max
i represent the energy storage 

device’s maximum capacity and power, respectively. The capacity 
constraint on the energy storage device makes fixing the constraints 
challenging during the algorithm’s optimization stage. The direct repair 
method was employed in this work to solve the limitation and produce 
more workable solutions. Here is how the repair process is defined: 

EESS
i,t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, EESS
i,t < 0

EESSmax
i , EESS

i,t > EESS⋅max
i

EESS
i,t , otherwise

(16)  

PESS
i,t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

EESS
i,t − EESS

i,t− 1,E
ESS
i,t < 0

EESS
i,t − EESS

i,t− 1, E
ESS
i,t > EESSmax

i

PESS
i,t , otherwise

(17)  

where Equation (17) describes what should happen if the energy storage 
capacity limit is exceeded, and Equation (18) illustrates what should 
happen if power is charged or discharged. 
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2.5. Photovoltaic system 

The output power, W P V (kW), of the installed rooftop PV system is 
expressed in micro grid as follows [91]. 

W P V (t )= ξP V ×A P V × I r (t )
[
1 − T emp

f
(T emp

a
(t ) − T emp

amb
)
]

(18)  

W min ≤W P V ≤ W max (19)  

where A P V is a solar panel’s area (m2), I r (t ) is the solar irradiation 
(kW

m2 ) at a given time, and ξP V is the PV inverter efficiency (%). The 
temperature factor is T empf , while the outside and ambient room 
temperatures (◦C) are represented by T empa (t ) and T empamb . 

The PV output power hourly distribution (WPDF) likelihood is 
computed and assessed using the Weibull probability density function. 
Next, the shape and scale parameters of the WPDF are used to validate 
the PV model. The PV output power’s WPDF is as follows: 

f (W P V (t ))=
k

c
×

(
I rr (t )

c

)k− 1

× e
−

(
Ir(t)

c

)k

(20)  

k=
( η

A

)− 1.086
, and c=

A

Γ
(

1 + 1
k

) (21)  

where A is the data’s mathematical mean, η is the data’s standard de-
viation, and Γ is the gamma function. 

The following methods can be used to simulate the PV running cost 
(S P V ) and levelized PV energy cost (S s) ( $

kWh) over the course of the 
system lifespan, respectively. 

S s =

S sinv +
∑n

i=1
S som(1 + E r)

− i

∑n

i=1
N P V A N (1 − ηs)

i − 1
(22)  

S P V =
∑T

t =1
S s ×W P V (t )f (W P V (t )) (23)  

where n is the PV lifetime, S som is the PV operation and maintenance 
cost S sinv is the PV investment cost ($), and S P V is the total PV energy 
cost. The annual PV energy output (kWh) is denoted by N P V A N . The 
PV degradation is represented by ηs. 

2.6. Utility grid 

RES and ESS are examples of private supply sources that are linked to 
the utility during times when the microgrid’s demand is at its highest. 
Conversely, the electricity generated by the microgrid is provided to the 
utility at the utility rate during off-peak hours. A contract between the 
utility and the owner of the microgrid is necessary in order for the utility 
to be able to buy the excess energy from the microgrid. As a result, the 
generating units’ energy costs and CO2 emissions expenses will go 
down. To increase dependability and meet demand, the deal also per-
mits the utility to sell SMG its electricity. The utility energy cost S g ($), 
based on the price signal, is provided as [92]: 

S g =
∑T

t =1

[
W gc (t ) − W gs(t )

]
ϱ(t ) (24)  

where W gs(t ) is excess micro-grid producing power delivered to utility 
(kW) during time t. The utility pricing signal ( $

kWh) at time t is repre-
sented by ϱ(t), and W gc (t ) is microgrid power paid from utility (kW) 
during that period. The predicted thermal generators’ Cost of utility 

emissions, N g ($), is calculated as follows: 

N g =
∑T

t =1
[σ
(
W gc (t )

)2
+ ςW gc (t)+τ] (25)  

where τ represents utility generating emission coefficients. 

2.7. Smart appliances 

SUB dwellings have three different kinds of loads: hybrid, non- 
interruptible, and interruptible. Batteries, water heaters, air condi-
tioners, and dishwashers can all be grouped according to the user’s 
lifestyle. Appliances of the first class have a programmable work cycle. 
On the other hand, appliances that are non-interruptible cannot have 
their use postponed. Operational limitations and mathematical 
modeling of the main domestic appliances are covered here. The amount 
of time that each appliance must run is decided by Ref. [93]: 

Oi(t)=
{

1 if t ∈ τi,∀, i ∈ A,
0 otherwise (26) 

Water heaters and air conditioners are examples of appliances that 
operate to maintain temperatures within set ranges. Therefore, the 
following conditions have to be satisfied in order to accurately portray 
this equipment. 

Tmin ≤Treq ≤ Tmax ,∀t ∈ τi, i ∈ {AC,wh} (27)  

Oi(1)=
{

1, if Ti(0) > Ti(1), i ∈ {ac,wh}
0, if Ti(0) < Ti(1), i ∈ {ac,wh} (28)  

In this instance, Equation (27) guarantees that thermal appliances 
function within temperature ranges that the user has selected, and 
Equation (28) guarantees that an appliance will first switch on if its 
temperature surpasses the upper limit before the model initialization; if 
not, it will stay in the off state. Apart from the aforementioned limita-
tions, every appliance is associated with a specific mathematical equa-
tion that illustrates its functioning; this is addressed in the subsequent 
sections. 

2.7.1. Air condition 
The model considers all the significant factors that can affect cooling, 

including activity level, the temperature difference between the indoor 
and outdoor settings, and the number of occupants, in order to maintain 
the air conditioning temperature within a given range. The air condi-
tioning system’s operational limitations are shown in the following 
equation: 

Tfinal (t)=Tini (t − 1)+ μ(Tout (t)

− Tint (t))+ μ(β(t)+ ζ)+ μOi(t)∀t = τ, i= ac (29) 

Equation (29), which illustrates how the AC interior temperature 
changes over time. The formula shows how the indoor temperature is 
affected at specific intervals by the initial temperature, the amount of 
activity in the Smart Urban Buildings, the difference in temperature 
between the inside and outside, and whether an appliance is on. The 
cooling effect of the air conditioner in its ON state is represented via 
beta. μ represents the effect of population density, activity level, and 
temperature differential on a given temperature, respectively. The 
temperature threshold, or the upper and lower bounds at which cus-
tomers can tolerate temperature variation, is another factor considered 
by the model. 

2.7.2. Water heater 
The quantity of hot water utilized in different microgrids fluctuates 

every hour. Additionally, it has been observed that the consumption 
pattern differs significantly on weak and regular days. Consequently, 
this problem is taken into account when creating the water heater 
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model. The following list illustrates the water heater’s operating limits: 

Twh(t)=Twh(t − 1)+ vwh(Tcold − Thot) + [φOi(k) − Vcoldωwh] (30) 

The internal temperature of the water heater is influenced by its ON/ 
OFF status, usage habits, and the water’s temperature at a specific in-
terval (t) throughout the last hour. 

2.7.3. Laundry machine, clothes dryer, and dishwasher 
The following are the limitations on how the dishwasher, washing 

machine, and clothes dryer can operate: 
∑

t=τj

Oi(t)=OPm
i ax, ∀t ∈ τi (31) 

The total timeslots in a day that the devices must function in 
accordance with end-user preference are given by equation (31). During 
the modeling process, other limitations are considered, like the 
maximum consecutive operating duration and the need to coordinate 
the washing machine and fabric drier to avoid their starting simulta-
neously. The drying machine will start up after the washing machine has 
completed its cycle. Equation (32) confirms that the device will subse-
quently work to control the second type of appliances, which are 
referred to as uninterruptible appliances: 
∑

xa
ei(t) ⋅ ei,t+1⋅ei,t+2⋅et + (τ − 1) ≥ 1 (32)  

Sdryer + Swasher ≤ 1 ∀t ∈ τ (33)  

Fi1 ≥ Fi2 + τi (34) 

The textile dryer and washing machine cannot operate simulta-
neously, according to equation (33). 

2.7.4. PAR decrease 
Reducing the PAR allows us to achieve one of our primary objectives, 

which is to guarantee grid stability. The following is a mathematical 
expression for it [94]: 

O3 =min (PAR) (35) 

The PAR can be expressed formally as: 

PAR=
max

(
E Lood sch / unsch N

)2

(
avg

(
ELoodsch/unsch

))2 (36)  

where E Lood schN 
= {E Lood sch1

;E Lood sch2
;E Lood sch3

;….;

E Lood sch24
}

is a list of the scheduled and unscheduled electrical load 

profiles for each hour is maintained in E Lood unschN 
=

{
E Lood unsch1

; E Lood unsch2
; E Lood unsch3

;….; E Lood unsch24
}

. 

2.7.5. Making users as comfortable as possible 
Customers require some leeway in scheduling Smart Urban Buildings 

appliances in real-world situations. They ought to be able to ask for the 
scheduling of other appliances to accommodate their demands and turn 
off any equipment that they don’t need. This rescheduling results in a 
somewhat shorter wait time for the user to turn on the required equip-
ment. When an appliance is rescheduled on demand, the waiting time is 
zero, regardless of the user’s previous demand time. Maximizing con-
sumer comfort is our aim, and it can be expressed mathematically as: 

O4 =min (Comfort) (37) 

Coordination between the two parties ensures comfort when the user 
asks real-time rescheduling from Appα

↑ and the scheduler is interrupted ̂I 
to turn off an appliance. In formal words, this may be expressed as: 

Appα =

{
1, if Î,

0, otherwise
(38)  

where Appα represents an appliance that the user has turned on due to a 
run-time interruption. On the other hand, Appα

↑ ⊆ App is the list of ap-
pliances that the user wishes to change in real time. The scheduler will 
determine whether the operational time interval (Oint

time) and the avail-
able time interval (Avalint

time) are compatible before turning on an appli-
ance. 

The waiting time Appd
Wt 

and user comfort are inversely correlated. 
The mathematical expression for this relationship is as follows: 

Comfort∝
1

Appd
Wt

(39)  

where the symbol for an appliance’s waiting time is Appd
Wt

. The duration 
of an appliance’s processing will be the basis for calculating user comfort 
in this thesis. It is calculated as: 

Appd
Wt

=Δ
(
Appd

Dmd( hour ),Appd
Sch( hour )

)
, Such that Wt ≤ 24 hour (40) 

The waiting time of the appliance Appd
Wt 

should be less than 24 h. The 
constraint helps in ensuring that the desired appliance will be scheduled 
at least once within 24 h time domain. 

3. Grasshopper optimization algorithm (GOA) 

In natural environments, grasshopper swarms are modeled by the 
GOA. The following is a mathematical expression for this grasshopper 
swarm behavior [95]. 

Pi = SOi + GREi + Wi (41)  

where Pi stands for the grasshoppers’ location, SOi for their social 
interaction force, GREi for their gravitational force, and Wi for their 
wind advection. Keep in mind that a random distribution of search 
agents throughout search space is necessary for all metaheuristic algo-
rithms. The GOA algorithm’s random behavior is provided by rewriting 
equation (41) as follows: 

Pi = r1SOi + r2GREi + r3Wi (42) 

This indicates that the random integers inside [0, 1] are r1, r2 and r3. 
The force of social contact is the main search factor that the GOA al-
gorithm found: 

SOi =
∑N

j=1;

j∕=i

s
(
dij
)
d̂ij (43)  

When the following definitions apply: N is number of grasshoppers; dij is 
Euclidean distance between the ith and jth grasshoppers; 

dij =
⃒
⃒Pj − Pi

⃒
⃒ (44)  

Additionally, the method outlined below can be used to obtain ̂dij , which 
represents a single vector from ith to the jth grasshoppers: 

d̂ij =

(
Pj − Pi

)

⃒
⃒Pj − Pi

⃒
⃒

(45)  

As seen below, s represents a function that explains the strength of social 
forces: 

s= fexp
(
−

r
l

)
− exp(− r) (46)  

where the numbers l and f stand for the length scales of lustfulness and 
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attraction. In their social interactions, grasshoppers employ two 
different sorts of forces: attraction and repulsion. Repulsion takes place 
between [0, 2.079], while attraction rises between [2.079, 4] and like-
wise regularly falls. The range in which the distance is measured is 
[0,15]. The region is in its comfort zone when the distance is precisely 
2.079, which indicates that no force is operating on it. For f and l, the 
recommended values are 0.5 and 1.5, respectively. 

The definition of ith grasshoppers’ GREi (gravity force) can be 

expressed as follows; 

GREi = − gêg (47)  

where the earth’s center is indicated by gravitational constant, êg , and 
unity vector in direction of g. Wind advection of ith grasshoppers, Wi, can 
be computed as follows: 

Wi = uêw (48)  

where the wind direction and direction are represented, respectively, by 
drift constant (u) and unity vector êw . By altering the values of the 
previously mentioned components (i.e., SOi; GREi; Wi), equation (41) 
can be represented as follows: 

Pi =
∑N

j=1

j∕=i

s
( ⃒
⃒Pj − Pi

⃒
⃒
)
(
Pj − Pi

)

⃒
⃒Pj − Pi

⃒
⃒
− gêg + uêw (49) 

It should be highlighted that because the grasshopper swarm does 
not converge to a single site, Equation (48) is unable to directly solve the 
optimization problem. In order to find the best solution to the issues 
raised by equation, a revised version of equation (50) is taken into 
consideration. 

Pd
i = c

⎛

⎜
⎜
⎜
⎜
⎝

∑N

j=1

j∕=i

c
ubd − lbd

2
s
(⃒
⃒
⃒Pd

j − Pd
i

⃒
⃒
⃒

) (
Pj − Pi

)

⃒
⃒Pj − Pi

⃒
⃒

⎞

⎟
⎟
⎟
⎟
⎠

+ T̂d (50)  

where the variables ubd and lbd represent the upper and lower bounds 
inside the dth dimension. Td represents the dth dimension goal (best so-
lution identified). Parameter c moves swarm closer to target. 

The GOA algorithm’s initial adjusting parameter, the reduction co-
efficient, must be lowered in accordance with the number of iterations. 
It is updated with the following formula. 

c= cmax − t
cmax − cmin

tmax
(51)  

where maximum and minimum coefficient values of c are denoted by the 
variables cmax and cmin, respectively. The current and maximum itera-
tions are represented by the symbols t and tmax, respectively. The values 
of cmin and cmax in this investigation are 10− 5 and 1, respectively. Al-
gorithm 1 shows the pseudocode for GOA. 

3.1. An optimal load-shedding strategy derived from the GOA algorithm 

The GOA is utilized in islanded case study system to determine best 
load-shedding strategy and MATPOWER power flow. To implement the 
suggested load-shedding method, the following protocols are used.  

1) System input parameters: system parameters (such as load, line, 
and generator data) are provided to the algorithm.  

2) Particle initialization and GOA parameter setting determine GOA 
parameters by entering number of repeats, degree of attraction, 
and the shirking factor parameter (cmin, cmax). The initial pop-
ulation size is generated at random. Proceed with stages 3–14 of 
the method, setting iteration = 0.3.  

3) Configure the loop t←t+ 1. 
4) Used MATPOWER power flow to compute complete voltage sta-

bility margin system and obtain the voltage deviation and power 
loss.  

5) Fitness evaluation: Fitness function of every particle is evaluated.  
6) Set this grasshopper on top here.  
7) Adjust the variable c.  
8) Ensure that the spacing between the grasshoppers is consistent.  
9) Adjust the position Pd

i of the existing search agent.  
10) To calculate voltage stability margin system overall and to 

calculate power loss and voltage deviation using MATPOWER 
power flow.  

11) Each particle’s fitness function is assessed.  
12) If a better solution exists, update the location T̂d using the fitness 

function.  
13) Stop criteria: save the best answer if the predetermined maximum 

iteration is reached; if not, proceed to step 3. 

The flowchart for optimizing load shedding in the islanded system by 
implementing the GOA algorithm is depicted in Fig. 2. 

4. Sine cosine algorithm (SCA) 

A set of arbitrary solutions is frequently used at the start of the 
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optimization process in population-based optimization techniques. An 
optimization strategy’s core consists of a set of rules that are used to 
improve this random set during its periodic evaluation by an objective 
function. Because population-based optimization techniques look for 
optima of optimization problems in a stochastically manner, there is no 
guarantee that a solution will be found in a single run of these tech-
niques. But when there are enough random solutions and optimization 
steps (iterations), the chance of finding the global optimum increases. 
Different approaches are used in the field of stochastic population-based 
optimization, but they all split the optimization procedure into two 
stages: exploitation and exploration. An optimization method in the first 
phase connects the random solutions in the set of solutions with a high 
rate of unpredictability abruptly to find the interesting regions of the 
search space. But compared to the exploration phase, there are a lot less 

random fluctuations during the exploitation phase, and random solu-
tions gradually alter during this stage. The position update equations 
shown below are proposed for both sections of this work [96]: 

Xt+1
i =Xt

i + r1 × sin (r2) ×
⃒
⃒r3Pt

i − Xt
i

⃒
⃒ (52)  

Xt+1
i =Xt

i + r1 × cos (r2) ×
⃒
⃒r3Pt

i − Xt
ii

⃒
⃒ (53)  

where r1/r2/r3 are random integers, Pi is the destination point’s location 
in the i − th dimension, and Xt

i is the current solution’s position in the i- 
th dimension at the t-th iteration. The following is the result of 
combining these two equations: 

Xt+1
i =

{
Xt

i + r1 × sin (r2) ×
⃒
⃒r3Pt

i − Xt
i

⃒
⃒, r4 < 0.5

Xt
i + r1 × cos (r2) ×

⃒
⃒r3Pt

i − Xt
ii

⃒
⃒, r4 ≥ 0.5

(54)  

where r4 in [0,1] is a random number. 
There are four primary parameters in SCA, as the aforementioned 

equations demonstrate: r1, r2, r3, and r4. The region (or movement di-
rection) of the next location is determined by the parameter r1, and it 
might be outside the destination or inside the area between the solution 
and it. How far the movement should be in the direction of or away from 
the target is determined by the parameter r2. The destination’s impact 
on defining the distance can be stochastically emphasized (r3 > 1) or 
deemphasized (r3 < 1) by adjusting the parameter r3. Lastly, in Eq. (53), 
the parameter r4 alternates equally between the sine and cosine 
components. 

The Sine Cosine Algorithm (SCA) is the term given to this algorithm 
since it uses both sine and cosine in its formulation. Fig. 3 shows how 
Sine and Cosine affect Equations (52) and (53). This image illustrates 
how a gap between two solutions in the search space is defined by the 
suggested equations. Note that although Fig. 3 shows a two-dimensional 
model, this equation can be extended to higher dimensions. One answer 
can be repositioned around another solution using the sine and cosine 
functions’ cyclic pattern. This can ensure that the space defined between 
two solutions is exploited. The solutions should also be able to search 
outside the space between their respective targets in order to fully 
explore the search space. As seen in Fig. 4, this can be accomplished by 
adjusting the sine and cosine functions’ ranges. 

Fig. 5 shows a conceptual model of the impacts of the sine and cosine 
functions with a range of [ − 2,2]. This figure illustrates how a solution 
must update its position outside or inside the space between itself and 
another solution in order to change the range of the sine and cosine 
functions. To determine the random location, either inside or outside of 
[0,2π], define a random number for r2 in Eq. (54). As a result, this process 
ensures that the search space is explored and utilized, respectively. 

In order to locate the most promising areas of the search space and 
ultimately converge to the global optimum, an algorithm must be able to 
strike a balance between exploration and exploitation. The range of sine 
and cosine in Eqs. (52)–(54) is adjusted adaptively using the following 
equation to strike a balance between exploration and exploitation: 

r1 = a − t
a
T

(55)  

where an is a constant, T is the maximum number of iterations, and t is 
the current iteration. 

The range of the sine and cosine functions is reduced by this equation 
throughout the number of repetitions, as Fig. 6 illustrates. From Figs. 5 
and 6, one may deduce that the SCA algorithm searches the space when 
the sine and cosine function ranges are in (1,2] and [− 2,-1). But when 
the ranges fall within the interval [− 1,1], this technique takes advantage 
of the search space. 

Subsequently, the algorithm stores the optimal solutions found thus 
far, designates it as the destination, and modifies the remaining solu-
tions in light of it. As the iteration counter rises, the sine and cosine 
function ranges are updated to highlight searching the whole search 

Fig. 2. The GOA flowchart for optimizing islanding operations, or 
load shedding. 
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space. When the iteration counter exceeds the maximum number of it-
erations by default, the SCA algorithm ends the optimization process. 
Any other termination condition, such as the precision of the achieved 
global optimum or the maximum number of function evaluations, can be 
taken into consideration, nevertheless. 

4.1. Improved sine cosine algorithm (ISCA) framework 

Similar to the traditional SCA, the suggested ISCA begins with an 

identical set of uniformly distributed solutions (referred to as the pop-
ulation) inside the search space in order to evaluate how well the search 
procedure works in ISCA. The population of solutions is initialized, and 
then the process of looking for the problem’s optima begins. The 
following is the updated search equation that ISCA introduced [97]: 

vi,t+1 =

⎧
⎪⎪⎨

⎪⎪⎩
xi,t + A sin(r1)

⃒
⃒Cxi,pBest − xi,t

⃒
⃒+ r2

(
xBest − xi,t

)Social Component ifr

< 0.5xi,t + A cos (r1)
⃒
⃒Cxi,pBest − xi,t

⃒
⃒

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Cognitive Component

+ r2
(
xBest − xi,t

)

⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟
Social Component

O.W

(56)  

where r2 is a uniformly distributed random number between 0 and 1, xi,t 
is the solution at iteration t, xi,pBest is the best position within the pop-
ulation of solutions, and xi,pBest is the current best position acquired thus 
far of the solution. As in traditional SCA, all other parameters, including 
A, r1, C, and r, are the same. 

The search process’s cognitive component is contributed by the 
second term on the right in Eq. (56) and its social component is 
contributed by the third term. Conducting both local and worldwide 
searches when conducting the search has the advantage of addressing 
these two factors. By merging the directions along the best possible path 
for both the population and the solution, the cognitive and social com-
ponents provide the current solution an effective and hopeful direction. 

When the search area supplied by the coefficient A is sufficiently 
large, there is a possibility that the solution updated with the aid of 
Equation (56) will deviate from the present state of the solution. 

Fig. 3. The next location is affected by the sine and cosine in equations (3.1) and (3.2).  

Fig. 4. The range of sine and cosine is [− 2,2].  

Fig. 5. A solution can go around (within the space between them) or beyond (outside the space between them) the target when using sine and cosine with ranges 
in [− 2,2]. 
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Therefore, the updated solution vi,t+1 is crossed with the current best 
solution xi,pBest of solution xi in order to deal with such a circumstance 
and to integrate the own best aspects of a solution. 

Following the crossover mechanism, a greedy selection process is 
carried out between the found solution (ui) and the current best solution 
xi,pBest. This process maintains the equilibrium between exploration and 
exploitation during the search phase. The flowchart in Fig. 7 provides a 
concise summary of all the steps mentioned above. Fig. 8: The suggested 
load shifting algorithm’s flow chart. 

5. Using probabilistic optimality to plan storage system capacity 

The next subsections propose a two-stage strategy consisting of an 
outer optimal sizing phase and a nested dispatch optimization loop for 
the coordinated, system-level design and dispatch co-optimization of 
storage systems integrated into grid-connected MGs. 

5.1. When to use operational scheduling at its best 

In light of the day-ahead, local generation, load demand, and 

Fig. 6. Pattern of decreasing sine and cosine (a = 3).  

Fig. 7. An improved sine cosine algorithm (ISCA) flow chart is proposed.  
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wholesale energy pricing, the optimal time to charge and discharge the 
hybrid storage system was determined. This paragraph explains the 
hourly-basis rule-based operational planning approach that was devised. 
In order to optimally regulate the functioning of the hybrid storage 
system, the operational strategy is designed to use linear programming 
formulas, assuming that the wholesale pricing, local generation, and 
demand for the next 24 h will be accessible. It is interesting to note that 
the storage follows the widely accepted arbitrage idea of “dis-
respectively discharging at a cheap cost”. The following equations 
describe the day-ahead profit maximization problem in day-ahead en-
ergy management. Bold characters indicate 24-h column vectors [98]. 

maxPr=Pex FiTTΔt − PimπTΔt − 10− 6‖ u‖1, (57) 

Subject to: 

Pim − Pex =PL − PRE + Pch,B − Pdch,B + Pch,SC − Pdch,SC (58)  

E B
SC
(t)=E B

SC
(t − 1) ⋅

(

1 − σ B
SC

⋅ Δt
)

+ η
ch, B

SC
⋅ P

ch, B
SC
(t)⋅Δt −

P
dch, B

SC
(t)⋅Δt

η
dch, B

SC

∀t

(59)  

Cmin
B
SC

≤E B
SC
(t) ≤ C B

SC
( cycle )∀t (60)  

0≤P
ch, B

SC
(t) ≤ uch(t)⋅Pmax

ch, B
SC

∀t (61)  

0≤P
dch, B

SC
(t) ≤ udch(t)⋅Pmax

dch, B
SC
∀t (62)  

uch(t)+ udch(t) = 0∀t (63)  

0≤Pim(t)≤ uim(t)⋅
(
NI ⋅ PI,r +Pl,ins

)
∀t (64)  

0≤Pex(t)≤ uex(t)⋅
(
NI ⋅ PI,r +Pl,ins

)
∀t (65)  

uim(t)+ uex(t) ≤ 1 ∀t (66)  

where Pim stands for imported power, Pex for exported power, PL for load 
power, PRE for renewable energy generation, FiT for feed in tariff, and π 
for wholesale electricity price. Pr is the day − ahead profitś 24 −

hour vector. Pch,B and Pdch,B indicate the battery bank’s charging and 
discharging power, respectively, and Pch,SC and Pdch,SC indicate the SC 
bank’s charging and discharging power. Battery/SC bank’s energy 
content is represented by E B

SC
, its self-discharge rate is represented by 

σB/SC, its charging and discharging efficiencies are indicated by η
ch, B

SC 
and η

dch, B
SC

, respectively, and its charging and discharging powers are 

represented by P
ch, B

SC 
and P

dch, B
SC

, respectively. Pmax
ch, B

SC 
and Pmax

dch, B
SC

, 

respectively, reflect the battery/SC bank’s maximum power for charging 
and discharging. The binary variables uch and udch are used to make sure 
that charging and discharging don’t happen simultaneously, and uim and 
uex ensure that importing and exporting don’t happen simultaneously. 
NI is the optimal inverter size to be installed, PI,r is inverter’s rated 
power to be installed, and Pl,ins is the inverter’s capacity that is now 
installed 

The energy content of the battery at each time step in Equation (58) 
is defined by the energy storage devices’ charging and discharging 
power components, onsite renewable power generation, load power, 
imported and exported power, and overall power balance, as stated 
above. This establishes the power balance constraint. The last part of the 

Fig. 8. Diagram illustrating the suggested load shifting algorithm.  
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objective function, 10 − 6‖ u‖1, penalizes solutions involving unprofit-
able cycling in day-ahead operational scheduling optimization by 
considering net present cost (NPC) of storage deterioration brought on 
by cycling. L-1 norm of storage schedules serves as its foundation, and it 
can be found using the formula ‖ u‖1 =

∑t1+24
t=t1

(
Pch,B(t) + Pdch,B(t) +

Pch,sc(t) + Pdch,SC(t)
)
. Additionally, note that Equation (16) establishes a 

lower bound on the energy stored in the battery bank, which is 1 −

DODB)× CB(cycle), where DODB is the corresponding DOD of the bat-
tery. Additionally, the lowest limit on the energy content of the energy 
storage bank is set at zero because the EDLC SCs under consideration in 
this study may be constantly discharged to 100 % DOD without expe-
riencing any long-term consequences. Additionally, by using two binary 
control variables, the constraint ensures that storage is not in both 
charging and discharging modes at the same time step. Furthermore, the 
maximum capacity of the bidirectional inverter—which encompasses 
both installed and newly added capacity—limits the quantity of elec-
tricity that may be exchanged with the grid. 

5.2. The ideal stage of capacity planning 

Using the ideas of net present cost (NPC) and net present value 
(NPV), an objective function is built to assess the economic worth of 
investing in energy storage systems. NPC linked to every recently 
installed part, such as the inverter and battery, can be acquired as: 

NPC=Nc ×

(

CC+RC× SPPW+
O&M

CRF(ir, PL)
− SV

)

(67)  

SPPW=
∑N

i=1

1
(1 + ir)CL×i (68)  

N=

⎧
⎪⎪⎨

⎪⎪⎩

⌊
PL
CL

⌋

− 1 if PLmodCL = 0
⌊

PL
CL

⌋

if otherwise
(69)  

CRF(ir, PL)=
ir(1 + ir)PL

(1 + ir)PL
− 1

(70)  

SV =RC ×

CL −

(

PL − CL ×

⌊
PL
CL

⌋)

CL
(71)  

where the notations CC, RC, and O&M stand for capital, replacement, 
and operation and maintenance expenses, and Nc is the optimum ca-
pacity of component c. The notations CC,RC, and O&M stand for capital, 
replacement, and operation and maintenance expenses, and Nc is opti-
mum capacity of component c. CRF stands for capital recovery factor, 
and SPPW is for single-payment present-worth factor, project lifespan 
(PL), component lifetime (CL), and interest rate (ir) are represented by 
the acronyms. 

The cycle life of the storage components can easily be converted to 
calendar life using the following equation: 

RS =
NS × Qlife

Qthr
(72)  

where Qlife and Qthr stand for the storage component’s lifetime and 
annual storage, respectively, and NS is its ideal capacity. Additionally, 
the net present value (NPV) of total power exchanged with grid over 
project’s lifetime can be calculated using the formula below. 

NPVexch =
∑PL

i=1

Ci
exch

(1 + ir)i (73)  

where Ci
exch , which may be derived as follows; 

Cexch =
∑T

t=1
Pim(t)⋅π(t) − Pex(t)⋅FiT (74) 

As a result, the optimal hybrid storage sizing problem’s objective 
function is specified as: 

minTNPC=NPCB + NPCI + NPVexch + c (75)  

where NPVexch is net present value of power exchanges, NPCB, NPCSC, 
and NPCI stand for battery, NPVexch for inverter, respectively. A penalty 
factor, c, is added to the objective function’s returned value if any of the 
imposed constraints are broken. 

5.2.1. Limitations 
The following conditions must be met by the nested optimal dispatch 

optimization step: the restrictions on battery and SC bank energy con-
tent and charging/discharging power. 

5.2.1.1. The store’s initial energy limitations. To ensure an efficient 
feeding of the peaks that occur early in the 24-h scheduling period, the 
battery and SC banks are programmed to be full in the first iteration, as: 

EB,SC(0)=N B
SC

⋅C B
SC
(0) (76)  

5.2.1.2. Limitations on in-store terminal energy. The energy contents of 
battery and SC banks at conclusion of operational analysis period must 
be equal to or higher than their beginning energy contents in order to 
provide balanced research: 

E B
SC
(T) ≥ E B

SC
(0) (77)  

5.2.1.3. The least amount of independence. A minimal self-sufficiency 
ratio (SSR), or the percentage of load satisfied by onsite distributed 
energy resources (DERs) during energy scheduling, is used to address the 
optimal sizing problem: 

SSR ≥ SSRmin (78)  

SSR=

∑T

t=1
PL(t) − Pim(t)

∑T

t=1
PL(t)

(79)  

where PL is local load, Pim is imported power, and SSRmin is pre-defined 
minimum SSR imposed. 

5.2.1.4. Constraints on energy resilience. The minimum autonomy hour 
of the energy storage system and the minimum grid outage survivability, 
which are respectively defined as the ratio of the storage size to the 
mean total annual load demand and the ratio of the storage size to the 
mean total annual net load demand (load minus local generation), are 
the two energy resilience constraints that the capacity planning opti-
mization must meet: 

AH B
SC

≥ AHmin
B
SC

(80)  

AH B
SC
=

(
NB⋅PB,r + NSC⋅PSC,r

)

(
∑T

t=1
PL(t)

)

T

(81)  

GOSMG ≥ GOSmin
MG (82)  
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GOSMG =

(
NB⋅PB,r + NSC⋅PSC,r

)

(
∑T

t=1
PL(t)− PRE,ins(t)

)

T

(83)  

where PB,r and PSC,r respectively denote the rated power of the battery 
and SC banks; T is the final time-step of the operational analysis period; 
AHmin

B/SC is the minimum autonomy hour of the battery/SC imposed; 
GOSmin

MG is the minimum grid outage survivability imposed; and NB and 
NSC respectively denote the optimal capacity of the battery and SC 
banks. 

5.2.1.5. Maximum power supply loss. A maximum loss of power supply 
probability (LPSP) reliability requirement must be satisfied by the outer 
design optimization problem’s optimal solution: 

LPSP ≤ LPSPmax (84)  

LPSP=

∑T

t=1
(LPS(t) × Δt)

∑T

t=1
(PL(t) × Δt)

(85)  

LPS(t)=
{

PL(t) − PG(t) if PL(t) > PG(t)
0 if otherwise (86)  

PG(t)=PPV(t) + PWT(t) + Pdch,B (t) + Pdch,SC(t) + Pim(t) ∀t (87) 

The total power available for supplying local loads via on-site gen-
eration, discharging storage components, and importing power from the 
grid is measured by the auxiliary variable PG. The amount of power 
supply loss is represented by LPS. where LPSPmax represents the highest 
power supply probability loss that is enforced. 

5.2.1.6. Limits on decision variables. The non-negative choice variables 
are also upper constrained due to computer cost considerations, which 
helps to limit the search space: 

0≤NB ≤ Nmax
B (88)  

0≤NI ≤ Nmax
I (89)  

0≤NT ≤ Nmax
T (90)  

where Nmax
B , Nmax

I , and Nmax
T stand for battery, inverter, and trans-

former’s respective maximum capacities. 

5.2.2. A technique for optimization 
The moth-flame optimization algorithm (MFOA), a cutting-edge 

metaheuristic optimizer, is used to optimize the objective function 
[99]. MFOA emulates the swarm behavior of moths around flames to 
maximize a problem-solving method. In particular, equations are used to 
update moth positions in design space. 

Mi = S
(
Mi, Fj

)
(91)  

S
(
Mi, Fj

)
=Dijebt cos(2πr) + Fj (92)  

Dij =
⃒
⃒Fj − Mi

⃒
⃒ (93)  

where Dij is the Euclidean distance between moth i and flame j, S
(
Mi, Fj

)

is the spiral function of moth i and flame j, and b is a constant that de-
fines the shape of the logarithmic spiral. 

5.3. Synopsis of the proposed two-phase energy storage system design 
paradigm 

The two-stage stochastic solution approach based on meta-heuristics 

created for hybrid storage capacity optimization model is shown in 
Figs. 9 and 10. As seen in Fig. 9, the issue is split into two parts: an outer 
loop storage sizing problem and a nested optimal energy scheduling 
challenge. A vector of choice variables (here-and-now design variables) 
is provided to an inner loop optimal scheduling problem by an outer 
loop optimal sizing problem. 

Wait-and-see options result from the optimal scheduling problem, 
whose solution considers choice factors as parameters. Every 24 h dur-
ing the baseline year, the optimal scheduling problem is resolved, and 
the solutions to the optimal design problem are given in order to eval-
uate the fitness of each design (total NPC). 

The operational planning model is expressed as a linear program-
ming issue and is solved using the built-in MATLAB linear programming 
optimizer, whilst the long-term investment planning problem is handled 
by the MFOA. Each search agent in the MFOA is represented by a vector 
that shows the investment decision variables to be made throughout the 
study period. Every iteration, the MFOA creates an investment portfolio 
with the best DER asset sizes and cost-effective dispatch schedules, 
subject to operational limitations. The associated indices are then 
computed by feeding the optimized variables into the evaluation blocks 
for the grid outage survivability, energy storage system autonomy hour, 
LPSP, and SSR. Once maximum number of iterations is achieved, 
MFOA’s search and selection procedure is subject to a set of planning- 
level limitations that are established based on the previously specified 
indices. 

6. Results and analysis 

In this section, the suggested SUBs simulation results are displayed. 
This program’s main objectives are to minimize PAR, reduce the cost of 
using electricity, and improve User Comfort (UC) by shortening wait 
times. It has been claimed in this research that a 24-h schedule strikes a 
good balance between these goals. The outcomes of Unscheduled, 
Grasshopper Optimization Algorithm (GOA), Improved sine cosine al-
gorithm (ISCA) are compared using RTP in order to verify the accuracy 
of the system. 

Fig. 11 shows the photovoltaics power curve, Fig. 12 shows the wind 
turbine power curve. 

6.1. Pricing tariffs 

The retail company’s expenditure has been used to compute the 
overall electricity cost. In order to do this, a variety of flexible pricing 
techniques are employed in an effort to reduce the overall cost of energy 
that consumers use, hence improving the PAR and protecting the UC. 
When utilizing electric gadgets, researchers use a range of pricing stra-
tegies to persuade people to switch from expensive to inexpensive mo-
ments. According to the RTP costing view, the price of the signals varies 
in accordance with different instances, but the expense is constant for 
each session (based on the per-hour consumption of power). The 
appropriate steps must be followed whenever an energy provider re-
cords prices that are too high compared to the market or encounters an 
emergency. Fig. 13 depicts the price tariffs in terms of RTP. 

6.2. Load consumption 

This section looked at the power consumption of several methods, 
including as the proposed ISCA algorithm, unscheduled, and GOA. 
Fig. 14 contrasts these methods. 

6.3. RTP based pricing 

When compared to other methods, the suggested hybrid ISCA strat-
egy likewise shows an incredibly successful energy usage plan. The cost 
of electricity when taking RTP into account is shown in Fig. 15. . 
Considering RTP, the total cost of power is displayed in Fig. 16. One way 
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to achieve this is through the use of Demand Side Management (DSM), 
an essential component of both micro-grid and Smart Grid technology. 
Maintaining client confidence and enforcing strict regulations are two 
ways to achieve DSM. Most of the DS Initiatives that are the subject of 
this paper are designed to help Smart Urban Buildings better manage 
their power plan. The suggested framework employed in this study is 
based on Real-Time-Price (RTP) payment procedures. Two operational 
instances (24 h) are considered in order to evaluate customer demands 
and conduct in accordance with the recommended course of action. 
Simulation findings show that the proposed method arranges the devices 
in the best possible way, minimizing energy consumption without 
compromising user comfort (UC). Customers may have to pay extra for 
the highest level of comfort due to waiting times for gadgets. Conse-
quently, the suggested model’s superiority is greater. 

6.4. RTP based PAR 

The PAR curves for RTP are displayed in Fig. 17, which suggests that 
the suggested method outperforms alternative approaches in terms of 
results. 

6.5. Waiting time 

UC is established by the length of time a user waits for gadgets. 
Therefore, there is always a trade-off between lowering PAR and EC or 
lowering power usage and device wait times. Due of gadget waiting 
periods, customers may pay more for the greatest level of comfort. In an 
unforeseen circumstance, there is almost never any waiting time 
because equipment is activated based on user comfort. In Fig. 18, the 
waiting duration for RTP is displayed. 

The proposed system is evaluated by comparing it with the Grass-
hopper Optimization Algorithm (GOA) and unscheduled cases. Without 
applying an optimization algorithm, the total electricity cost, carbon 
emission, PAR and waiting time are equal to 1703.576 ID, 34.16664 
(kW), and 413.5864s respectively for RTP. While, after applying GOA, 
the total electricity cost, carbon emission, PAR and waiting time are 
improved to 1469.72 ID, 21.17 (kW), and 355.772s respectively for RTP. 
While, after applying the ISCA Improves the total electricity cost, PAR, 
and waiting time by 1206.748 ID, 16.5648 (kW), and 268.525384s 
respectively. According to the results, the created ISCA algorithm per-
formed better than the unscheduled case and GOA scheduling situations 

in terms of the stated objectives and was advantageous to both utilities 
and consumers. 

Where after applying GOA, the total electricity cost, PAR, and 
waiting time are improved to 13.72 %, 38.00 %, and 13.97 % respec-
tively. And after applying proposed method, the total electricity cost, 
PAR, and waiting time are improved to 29.16 %, 51.51 %, and 35.07 % 
respectively. 

7. Conclusion 

In this study, an Improved Sine Cosine Algorithm (ISCA)-based Smart 
Urban Buildings (SUBs) architecture is proposed to minimize total daily 
electricity costs, minimize peak to average ratio (PAR), and minimize 
the waiting time in SUBs by facilitating optimal DR and self- 
consumption. The proposed algorithm schedules tasks of all types of 
manageable electrical loads. The proposed system is evaluated by 
comparing it with the Grasshopper Optimization Algorithm (GOA) and 
unscheduled cases. Without applying an optimization algorithm, the 
total electricity cost, carbon emission, PAR and waiting time are equal to 
1703.576 ID, 34.16664 (kW), and 413.5864s respectively for RTP. 
While, after applying GOA, the total electricity cost, carbon emission, 
PAR and waiting time are improved to 1469.72 ID, 21.17 (kW), and 
355.772s respectively for RTP. While, after applying the ISCA Improves 
the total electricity cost, PAR, and waiting time by 1206.748 ID, 16.5648 
(kW), and 268.525384s respectively. According to the results, the 
created ISCA algorithm performed better than the unscheduled case and 
GOA scheduling situations in terms of the stated objectives and was 
advantageous to both utilities and consumers. 

Where after applying GOA, the total electricity cost, PAR, and 
waiting time are improved to 13.72 %, 38.00 %, and 13.97 % respec-
tively. And after applying proposed method, the total electricity cost, 
PAR, and waiting time are improved to 29.16 %, 51.51 %, and 35.07 % 
respectively. 

The life-cycle cost of the SUBs can be considerably decreased by up to 
25 % by deploying energy storage systems incorporated into grid- 
connected MGs using an efficient scheduling design framework with 
24-h look-ahead periods. A regulation-based energy dispatch strategy 
based on greed is the antithesis of this. By maximizing the utilization of 
the energy resources that are currently available, this technique reduces 
costs. 

Future works will be conducted by introducing energy storage 

Fig. 9. Layered optimum scheduling issue with optimal stochastic storage.  
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Fig. 10. Stochastic energy storage system planning framework.  
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Fig. 11. Photovoltaics power curve.  

Fig. 12. Wind turbine power curve.  

Fig. 13. Tariffs on prices expressed in RTP.  
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Fig. 14. Consumption of energy.  

Fig. 15. The cost of electricity for RTP.  

Fig. 16. Total electricity cost using different technologies.  
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devices (e.g electric vehicles) to reconstruct the distributed energy 
generation from the perspective of energy conservation and carbon 
reduction, and combining big data and artificial intelligence automatic 
analysis through intelligent technology to form a model of “Smart Urban 
Buildings photovoltaic + Smart Urban Buildings energy storage +
electric vehicles". 
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[1] A.C. Duman, H.S. Erden, Ö. Gönül, Ö. Güler, A home energy management system 
with an integrated smart thermostat for demand response in smart grids, Sustain. 
Cities Soc. 65 (2021) 102639, https://doi.org/10.1016/j.scs.2020.102639. 

Fig. 17. PAR using different technologies.  

Fig. 18. Waiting time using different technologies.  

B. Naji Alhasnawi et al.                                                                                                                                                                                                                       

https://doi.org/10.17633/rd.brunel.26049436.v1
https://doi.org/10.17633/rd.brunel.26049436.v1
https://doi.org/10.1016/j.scs.2020.102639


Energy Strategy Reviews 54 (2024) 101461

21

[2] S. Dixit, P. Singh, J. Ogale, P. Bansal, Y. Sawle, Energy management in microgrids 
with renewable energy sources and demand response, Comput. Electr. Eng. 110 
(2023) 108848, https://doi.org/10.1016/j.compeleceng.2023.108848. 

[3] G.R. Aghajani, H.A. Shayanfar, H. Shayeghi, Presenting a multi-objective 
generation scheduling model for pricing demand response rate in MG energy 
management, Energy Convers. Manag. 106 (2015) 308–321, https://doi.org/ 
10.1016/j.enconman.2015.08.059. 

[4] B. Dey, F. Pedro García Márquez, A. Bhattacharya, Demand side management as a 
mandatory inclusion for economic operation of rural and residential microgrid 
systems, Sustain. Energy Technol. Assessments 54 (2022) 102903, https://doi.org/ 
10.1016/j.seta.2022.102903. 

[5] N.R. Babu, T. Chiranjeevi, L.C. Saikia, D.K. Raju, Optimization solutions for 
demand side management, in: H. Malik, A. Iqbal, P. Joshi, S. Agrawal, F.I. Bakhsh 
(Eds.), Metaheuristic and Evolutionary Computation: Algorithms and Applications, 
Studies in Computational Intelligence, vol 916, Springer, Singapore, 2021, https:// 
doi.org/10.1007/978-981. 

[6] Md Juel Rana, Forhad Zaman, Tapabrata Ray, Ruhul Sarker, Real-time scheduling 
of community microgrid, J. Clean. Prod. 286 (2021) 125419. 

[7] A. Khajehzadeh, M. Jahromi, M. Mahmoudian, E. Rodrigues, R. Melicio, Novel 
control framework for optimal scheduling in microgrid with demand response 
support under contingency events, Cleaner Energy Systems 3 (2022) 100019, 
https://doi.org/10.1016/j.cles.2022.100019. 

[8] Fahad R. Albogamy, Yasir Ashfaq, Ghulam Hafeez, Sadia Murawwat, Sheraz Khan, 
Faheem Ali, Farrukh Aslam Khan, Khalid Rehman, Optimal demand-side 
management using flat pricing scheme in smart grid, Processes 10 (6) (2022) 1214, 
https://doi.org/10.3390/pr10061214. 

[9] Faran Asghar, Adnan Zahid, Muhammad Imtiaz Hussain, Furqan Asghar, 
Waseem Amjad, Jun-Tae Kim, A novel solution for optimized energy management 
systems comprising an AC/DC hybrid microgrid system for industries, 
Sustainability 14 (14) (2022) 8788, https://doi.org/10.3390/su14148788. 

[10] Bilal Naji Alhasnawi, Basil H. Jasim, Arshad Naji Alhasnawi, Bishoy E. Sedhom, Ali 
M. Jasim, Azam Khalili, Vladimír Bureš, Alessandro Burgio, Pierluigi Siano, 
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