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Abstract: This study proposed applying artificial intelligence (AI) to predict the actual electrical con-
ductivity (EC) of raw and pasteurized milk using moderate electric field (MEF) based on the electric
field strength (EFS) and mass flow rate (MFR) along with modeling moisture content (MC) based on
the EC. To this end, an artificial neural network (ANN) was implemented for conventionally (CP)
and non-thermally (NP) pasteurized milk. The findings indicated no significant difference (p > 0.05)
between the experimental and predicted data for EC and MC. The MFR and EFS affected the actual
EC. The raw milk samples had an EC of 0.468812–0.46913 S/m and MC of 87.3218–87.35941%, while
these values in NP pasteurized milk were 0.457441–0.638224 S/m and 87.33986–87.40851%. With cor-
relation coefficients (R) of 0.736478106–0.951840323 and mean square errors (MSE) of 0.005539–0.0064,
the ANN accurately predicted the raw and pasteurized milk MC based on the EC using the sixth-order
polynomial model and the EC based on the EFS and MFR using a quadratic model. The EC of pas-
teurized milk by NP was significantly (p < 0.05) lower than that of CP and raw dairy by 15.44% and
11.30%, respectively. The results show that the EFS and MFR might be used for the online assessment
of milk’s physical attributes (e.g., EC), followed by using the assessed parameter to determine other
properties (e.g., MC) by developing AI approaches based on optimized models. These observations
showcase the innovative use of ANN-based AI to predict milk’s EC and MC accurately. Integrating
such AI platforms into non-thermal food processing could eventually develop more sustainable
food production and enhance food security and quality through process innovation and sustainable
manufacturing, contributing to the industrial revolution and sustainable development goals.

Keywords: emerging technologies; electrical conductivity; moisture content; milk; ANN; moderate
electric field; dairy processing; non-thermal technologies; food production

1. Introduction

Milk is a water-based fluid containing dissolved protein aggregates, carbs, and minerals.
It is an emulsion or colloid of butterfat globules [1]. Milk is nature’s most comprehensive food,
providing energy, protein, vitamins, and minerals in nutrient-dense meals and milk prod-
ucts [2,3]. Milk’s resistance to the passage of electricity is measured by its electric conductivity,
which depends on the concentration and presence of specific ions, mainly sodium, potassium,
and chloride ions [4]. Foods’ physical properties are of enormous importance regarding
consumer acceptance [5,6]. Electrical conductivity is needed for accurate electrical heating
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process modeling, electrical tomography research, and quality assurance [7], especially for
electrical-based food processing, as it might be affected by temperature and composition [8].

In nonlinear optimization, neural networks are utilized to tackle complicated problems.
The biological inspiration comes from the procedures employed, which are based on how
neurons function in the brains of humans and animals. Currently, most ANN applications
in food science allow problem-solving or assistance with problem-solving, improved
design processes, and machine learning design limits [9]. This originated from research
on artificial intelligence (AI) that focused on applying the proper training method and
providing adequate data to effectively describe multivariate nonlinear processes [10].

An artificial neural network (ANN) typically consists of an output layer (the output),
hidden layers (neurons), and an input layer (the input variables). Because ANNs are stable,
effective, and uniquely able to explain nonlinear relationships between independent and depen-
dent variables through input–output system training and retraining, they are typically used in
complex systems [10]. The main advantage of artificial neural network modeling—essentially a
black box—is that it uses several input variables to predict output variables even without prior
knowledge about the links between the processes [11]. Furthermore, an ANN in agriculture
engineering is a better alternative to traditional empirical modeling based on linear and poly-
nomial regressions [12]. ANNs have gained popularity and are essential to the advancement
of modern technology. Due to the growth in industrial automation and the Internet of Things,
gathering data and monitoring food drying, extrusion, sterilization, and other processes are
more accessible than ever. In the modern industrial revolution, ANNs have proven helpful in
food processing tasks such as food grading, safety, and quality inspection [13].

Artificial neural networks (ANNs) are gaining popularity in food process engineering be-
cause they can model large datasets with complexity and nonlinear relationships. Compared
to other perdition methodologies, such as Multiple Linear Regression (MLR) and Decision
Trees, ANNs can capture complex patterns and interactions more than conventional tech-
niques [14]. ANNs can predict food quality parameters more accurately than MLR, which
assumes linear connections [15]. At the same time, although the Decision Tree methodology is
easier to understand and train, it frequently needs to improve in dealing with highly variable
data [16]. However, ANNs may show limitations in situations with little data because they
necessitate significant computing power and larger training datasets than Decision Trees,
where the correlations between variables are more prominent; its “black box” character also
makes it difficult to interpret the results. Combining AI and ANN could boost the capability
of this perdition methodology, which has been assessed in a present study for milk processing.

Leveraging AI-based ANNs is new to emerging food processing research, especially
those aimed at the industrial scale. A previous work applied AI-based modeling for non-
thermally processed milk to optimize color during storage [17]. Another recently published
study explored the possibility of using AI to predict the aroma of dairy [18]. There is also a
published manuscript on utilizing machine learning algorithms to predict clinical mastitis
in dairy cows according to the electrical conductivity of milk [19]. Moreover, sesame milk
yield was predicted using an ANN [20]. However, AI could provide further benefits to
food processing by providing online data on other physical properties of products, such as
electrical conductivity, which is a crucial parameter in electrical-based processing. There
are no published papers on modeling electric conductivity based on the electrical field and
mass flow rate for non-thermal pasteurized milk and the prediction of moisture content of
milk based on electric conductivity using ANNs.

This study aimed to model the electric conductivity of pasteurized milk based on the
electrical field and mass flow rate using ANNs. It also predicted the moisture content of
non-thermal pasteurized milk based on electric conductivity using ANNs.

2. Materials and Methods
2.1. Milk

Fresh whole bovine milk was procured from Breeding and Market Beef in Kadhemia
Town (Baghdad, Iraq) and refrigerated at 5 ◦C until further use.
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2.2. Non-Thermal and Conventional Pasteurization

The milk pasteurizer systems (NP and CP) were the same as those reported in a
previous study [17]. The milk was homogenized when the mixer was present in the milk
tank. A mass flow rate (MFR) of 0.0167–0.0333 kg/s and electric field strength (EFS) of
25–35 V/cm were the process variables. Conventional milk pasteurization was performed
at 63 ◦C for 0.5 h for 0.25 L sample in a 0.26 L stainless steel cylinder. The sample was then
cooled to 5 ◦C and refrigerated until the upcoming analysis.

2.3. Electrical Conductivity

The movement of charges across a material is known as EC. EC during NP pasteuriza-
tion is given by the following equation, according to the literature [21]:

EC =
I L

U A
(1)

In Equation (1), EC is the electrical conductivity (S/m), I is the current (A), L is the
distance between the electrodes (m), U is the voltage (V), and A is the cross-section area of
the electrodes (m2).

The EC of milk after pasteurization by NP and CP was measured at a temperature of
25 ◦C using a conductivity meter (model 3510, Jenway Co., Chelmsford, UK).

2.4. Moisture Content

The MC of treated and fresh milk was determined using an ultrasonic analyzer
(LAC-SA–50 Milk Analyzer, BOECO company, Hamburg, Germany). At 25 ◦C, the samples
were examined. The milk analyzer was calibrated for the milk according to the supplier’s
protocol to ensure the accuracy and dependability of the results. Testing was carried out on
each sample, which was three replicates.

2.5. Artificial Neural Network Modeling

The matrix laboratory (MATLAB)’s artificial neural network fitting (R2014a, Math-
Works Inc., MA, Portola Valley, CA, USA) was utilized to model experimental data gener-
ated by the ANNs during the non-thermal milk pasteurization using a moderate electric
field. Multilayer perception comprised the feedforward backpropagation of the algorithm
input layer (moderate electric field and mass flow rate in case of electrical conductivity
prediction, and electrical conductivity in case of moisture content prediction) in the neural
network, ten hidden layers for training on data, and an output layer (electrical conductivity
(case 1) (Figure 1a), moisture content of pasteurized milk (case 2) (Figure 1b), and moisture
content of raw milk (case 2) (Figure 1c)). The training function was TRAUNLM, the adap-
tion learning function was LEARINGDM, and the performance function was mean square
error (MSE). Two layers, ten neurons, and the transfer function of TANSIG (used between
input and hidden layers and between the hidden layer and output layer) were used [22].

The ANN models were trained until the error between the predicted and experimental
response values was as small as possible. The Levenberg–Marquardt training algorithm was
used for the dataset. The neural network parameters were all the weights and bias together.
The experimental data were split into three groups to create the ANN model: 70% for train-
ing, 15% for testing, and 15% for validation. The total number of data points used for ANN
training and testing was 33 for every property (99 for all properties). The generated ANN
model’s performance was evaluated using the coefficient of correlation. The correlation
coefficient and MSE were calculated from the following equations (Equations (2) and (3)):

R =

√√√√∑n
i=1

(
xp − xp

)2

∑n
i=1(xe − xe)

2 (2)
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MSE =
∑n

i=1
(
xp − xe

)2

n
(3)

where R is the correlation coefficient, xp is the predicted data, xe is the experimental data,
MSE is the mean square error, and n is the observation number.
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Figure 1. The feedforward neural network with multilayers: (a) prediction of electrical conductivity,
(b) prediction of moisture content of pasteurized milk, (c) prediction of moisture content of raw milk.
EFS: electric field strength, MFR: mass flow rate, EC: electric conductivity.

3. Results and Discussion
3.1. Experimental Electrical Conductivity

Table 1 shows the effect of the EFS and MFR on the EC during milk pasteurization
by NP at 35 ◦C. The results reveal that the EC increased as the MFR decreased. When the
MFR was reduced from 0.0333 to 0.0167 kg/s, the EC rose from 0.457441 to 0.638224 S/m,



Processes 2024, 12, 2507 5 of 13

respectively. This is because of the increase in the residence time due to the decreased
speed of milk at a lower MFR, which permits the passage of higher current, leading to a
rise in EC according to Equation (1). The residence period of milk in the MEF was found to
be significantly shortened with an increase in MFR at all EFS values [23]. The researchers
also found that this result was associated with increased milk speed at a higher MFR. EC
changed with the increasing EFS. For instance, EC increased from 0.457441 to 0.503529
when the EFS rose from 25 to 31 V/cm at a 0.0333 kg/s MFR, and then decreased to 0.501187,
0.497532, and 0.49191 S/m at 32, 33, and 34 V/cm, respectively. The maximum value of EC
reached 0.596071 at an EFS of 35 V/cm and MFR of 0.0167 kg/s. The change in EC with the
EFS is because pasteurized milk’s conductivity can rise as the strength of the electric field
increases because of temperature effects and increased ionic mobility.

Table 1. Effect of EFS and MFR on EC and MC during milk pasteurization by MEF at 35 ◦C.

EFS (V/cm) MFR (kg/s)
EC (S/m)

Experimental Predicted (ANN)

25 0.0333 0.457441 0.461948

25 0.025 0.550797 0.550661

25 0.0167 0.638224 0.637768

26 0.0333 0.465563 0.466968

26 0.025 0.51969 0.519654

26 0.0167 0.628994 0.635771

27 0.0333 0.479948 0.480037

27 0.025 0.492711 0.492596

27 0.0167 0.614899 0.626663

28 0.0333 0.491014 0.491003

28 0.025 0.473658 0.472494

28 0.0167 0.604849 0.611522

29 0.0333 0.496947 0.496733

29 0.025 0.46098 0.461157

29 0.0167 0.598337 0.597816

30 0.0333 0.500368 0.500604

30 0.025 0.458289 0.458693

30 0.0167 0.587987 0.586851

31 0.0333 0.503621 0.503529

31 0.025 0.459238 0.458872

31 0.0167 0.585201 0.584777

32 0.0333 0.501187 0.501768

32 0.025 0.46421 0.462115

32 0.0167 0.587152 0.585988

33 0.0333 0.497532 0.49737

33 0.025 0.479747 0.474522

33 0.0167 0.588196 0.588431

34 0.0333 0.49191 0.491741

34 0.025 0.499972 0.499811

34 0.0167 0.593931 0.593675

35 0.0333 0.479895 0.479877

35 0.025 0.52742 0.527145

35 0.0167 0.59541 0.596071

SSE * 0.01011

R 0.9546

RMSE 0.01935
* SSE: sum of square error; RMSE: root mean square error; EFS: electric field strength; R: correlation coefficient;
and MFR: mass flow rate.
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On the other hand, it may drop due to desalination procedures that reduce ionic con-
centration and the presence of fat, which obstructs ionic mobility. The interaction of these
variables results in a complex correlation between pasteurized milk’s conductivity and the
strength of the electric field, and the mean EC of milk ranged between 4.66 and 4.90 mS/m
(0.466–0.490 S/m) [4,24,25]. Hwang et al. [26] depicted that the electric conductivity of raw
milk was 0.45 S/m.

3.2. Modeling Electrical Conductivity Using Artificial Neural Network

The results in Table 1 reveal that the experimental and predicted ANNs converged,
the SSE and RMSE were reduced, and the value of R2 was high (0.9114). For the ANN
performance (Figure 2), the best validation performance was 1.2292 × 10−7 at epoch zero,
and the R values for training, validation, and testing all ranged between 0.99687 and
0.99992. Because ANNs can correlate various nonlinear relationships without requiring
the specification of an appropriate fitting function beforehand, they hold great promise for
modeling various applications of developing technologies in the food processing indus-
try [22]. Therefore, EC can be predicted using the quadratic model based on the EFS and
MFR as illustrated in Equation (4):

EC = 2.547− 64.1MFR− 0.07916EFS+ 868MFR2 + 0.461MFR×EFS + 0.001101EFS2 (4)Processes 2024, 12, x FOR PEER REVIEW 7 of 15 
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Figure 2. ANN performance: (a) mean square error (MSE) and (b) correlation coefficients (R) for training,
validation, test, and all while the target and the output are the experimental and predicted EC, respectively).
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Here, EFS is the electric field strength, MFR is the mass flow rate, and EC is the electric
conductivity.

The three-dimensional plot in Figure 3a and the contour in Figure 3b depict the effect
of the EFS and MFR on the predicted EC by the ANNs. The EC was reduced as the MFR
increased at all EFS values. For example, when the MFR rose from 0.0167 to 0.0333 kg/s,
the EC decreased from 0.596071 to 0.479877 S/m, respectively, at an EFS of 35 V/cm. The
residence time decreases due to increased milk velocity at a higher MFR, allowing for lower
current passage and a decline in EC. The change in EC during the increase in EFS was
limited. For example, the EC declined from 0.588431 at an MFR of 0.0167 kg/s and EFS
of 34 V/cm to 0.491741 at an MFR of 0.00333 kg/s and EFS of 34 V/cm. The MFR is of
higher importance in the EC’s effect than EFS. Sun et al. [27] stated that at 15 ◦C, milk had
an electrical conductivity of 0.409–0.431 S/m. It grew practically linearly from 15 ◦C to
around 80 ◦C, then sharply decreased at 83 ◦C. The increase in ionic mobility brought on
by the rise in temperature and the decrease in viscosity may cause a surge in electrical
conductivity [28].
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3.3. Modeling Moisture Content of Pasteurized and Raw Milk Using Artificial Neural Network

The results are shown in Table 2. They reveal that the MC changed with a changing
EC. The maximum experimental MC was 87.40851% at an EC of 0.588196 S/m—higher
electrical conductivity results from more free ions being available for conduction when
moisture rises. Also, Table 2 depicts that the experimental and predicted MCs using ANNs
converged, and the SSE and RMSE were inclined. The ANN is superior to other modeling
methods because it uses experimental data to create a highly accurate model and address
issues associated with the food processing industry [22]. At the same time, an R2 value of
0.906 was observed. For the ANN performance (Figure 4), the best validation performance
was 2.1437 × 10−5 at epoch one, and the R values for training, validation, and testing all
ranged between 0.8402 and 0.99452. Therefore, the MC of pasteurized milk can be predicted
by a sixth-order polynomial model based on the EC as given in Equation (5):

MC = −0.0001034EC6 − 0.0002869EC5 − 0.0006483EC4 + 0.001566EC3+
0.004171EC2 + 0.002973EC + 87.34

(5)
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where EC is the electrical conductivity (S/m), and MC is the moisture content (%).

Table 2. Correlations between EC and MC during NP and raw milk pasteurization.

NP * Pasteurized Milk Raw Milk

EC (S/m)
MC (%)

EC (S/m)
MC (%)

Experimental Predicted (ANNs) Experimental Predicted (ANNs)

0.457441 87.36405 87.38058445 0.469055 87.35254 87.35257

0.550797 87.37655 87.38484013 0.469035 87.35223 87.35161

0.638224 87.38905 87.38836818 0.469172 87.35141 87.35136

0.465563 87.35521 87.38096934 0.468955 87.33368 87.33983

0.51969 87.36921 87.38346795 0.469101 87.35001 87.34997

0.628994 87.38321 87.3880219 0.468855 87.3218 87.3264

0.479948 87.34838 87.38164526 0.469016 87.34387 87.34446

0.492711 87.36388 87.3822382 0.468987 87.34827 87.34011

0.614899 87.37937 87.38748033 0.469008 87.32943 87.34182

0.491014 87.34354 87.38215975 0.468912 87.35541 87.35531

0.473658 87.36054 87.38135066 0.469032 87.35555 87.35091

0.604849 87.37754 87.38708506 0.468898 87.34207 87.34651

0.496947 87.3407 87.38243349 0.468981 87.35032 87.34005

0.46098 87.3592 87.38075243 0.468996 87.34166 87.34036

0.598337 87.3777 87.38682502 0.469092 87.32527 87.32712

0.500368 87.33986 87.38259062 0.468962 87.33915 87.33997

0.458289 87.35986 87.38062474 0.468979 87.33819 87.34004

0.587987 87.37986 87.38640558 0.46913 87.35807 87.35872

0.503621 87.34102 87.38273956 0.469129 87.35941 87.35887

0.459238 87.36252 87.3806698 0.469003 87.35455 87.34095

0.585201 87.38402 87.38629141 0.468987 87.32812 87.34011

0.501187 87.34419 87.38262816 0.468865 87.35374 87.33886

0.46421 87.36719 87.38090538 0.468862 87.3364 87.3364

0.587152 87.39018 87.38637142 0.468866 87.33104 87.3395

0.497532 87.34935 87.38246039 0.468963 87.34581 87.33998

0.479747 87.37385 87.38163587 0.468979 87.32842 87.34004

0.588196 87.39835 87.38641412 0.468812 87.33366 87.33366

0.49191 87.35651 87.38220119 0.468916 87.33057 87.3306

0.499972 87.38251 87.38257246 0.469183 87.34883 87.34885

0.593931 87.40851 87.38664738 0.468972 87.33272 87.34001

0.479895 87.36567 87.38164279 0.469091 87.32882 87.32699

0.52742 87.39317 87.38381379 0.468961 87.35346 87.33996

0.59541 87.386707 87.38670716 0.468824 87.34658 87.34743

SSE 0.0007977 0.0011

R 0.951840323 0.736478106

RMSE 0.005539 0.0064

* NP: non-thermal pasteurization; SSE: sum of square error; RMSE: root mean square error; R: correlation
coefficient; EC: electric conductivity; MC: moisture content.
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Figure 4. Visual representation of ANN performance; (a): mean square error (MSE) of pasteurized
milk; (b): correlation coefficients (R) of pasteurized milk; (c): MES of raw milk; (d): R of raw milk.
The target is the experimental MC, and the output is the predicted MC.

Figure 5 presents the relationship between EC and MC. The MC changed as the
EC changed. This change is attributed to the milk’s moisture content, which affects its
electrical conductivity since it contains dissolved ions. Higher conductivity is usually the
result of a rise in the concentration of these ions with increasing moisture content [29].
Understanding the correlation between EC and MC measurements is crucial for food quality
evaluation, enhancing processing conditions, quality control, shelf-life management, and
manufacturing, thereby improving consumer satisfaction and safety [24,29,30].

For raw milk, the sixth-order polynomial model was used to predict MC as given
in Equation (6):

MC = −0.0001034EC6 − 0.0002869EC5 − 0.0006483EC4 + 0.001566EC3+
0.004171EC2 + 0.002973EC + 87.34

(6)

where EC is the electrical conductivity (S/m), and MC is the moisture content (%).
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3.4. Effect of the Pasteurization Method on the Milk’s Electrical Conductivity and Moisture Content

Table 3 illustrates the mean values of the EC and MC of pasteurized milk (after
pasteurization) by NP, CP, and raw milk at laboratory temperature. The results reveal that
NP’s EC of pasteurized milk was significantly (p < 0.05) lower than that of the CP and
raw milk by 15.44, and 11.30%, respectively. Hwang et al. [26] stated that the milk EC
reached 0.505 and 0.806 S/m for raw milk at 5 and 20 ◦C temperatures, respectively. A
previous study [31] revealed that the electric conductivity of raw milk reached 5.39 mS/cm
(0.539 S/m). It was reported that the EC of an evaporated milk sample by ohmic heating
(MEF) ranged between 0.41 and 1.89 S/m [32]. The differences between MC treatments
were insignificant (p > 0.05). Also, a report [33] stated that the MC of raw cow milk
was 87.392%.

Table 3. Electric conductivity and moisture content of pasteurized milk samples at laboratory
temperature compared to raw milk.

Sample Type EC (S/m) MC (%)

NP * 0.416 ± 0.003 a 87.37 ± 2.01 a

CP 0.492 ± 0.001 c 87.39 ± 5.23 a

Raw milk 0.469 ± 0.005 b 87.32 ± 3.28 a

* NP: non-thermal pasteurization, CP: conventional pasteurization, EC: electric conductivity, MC: moisture content.
Different letters in the rows refer to significant differences at 0.05.
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There are also recent studies on the effects of electrical-based non-thermal pasteuriza-
tion on the EC of other foods. For example, researchers applied electrical field-induced beef
tenderization and observed an increase in EC [34]. The authors explained that the observed
rise in EC could be linked to electricity-induced changes in cells’ permeability and drip
loss, allowing ions to move more freely and increase current flow. Similarly, in non-thermal
milk pasteurization based on a moderate electric field, which is explored in the present
study, electricity could alter electrical conductivity by affecting the permeability of milk
components, possible electricity-induced protein denaturation, or component precipitation,
promoting ion transport and potentially influencing the milk’s physical properties. The
above hypothesis needs further verifications in future “mechanism-focused studies”.

4. Limitations

While the present study demonstrated the effectiveness of ANN applications in raw
and pasteurized milk with potential contributions to sustainable development goals (e.g.,
enhancing food security, process innovation, and sustainable manufacturing), it also helped
identify some of ANN’s limitations. An ANN integrated with machine learning can be a
valuable alternative to regression for milk data or design and control space data interpola-
tions. Still, it requires careful evaluation due to potential overfitting. An ANN is valid for
the regression of model parameters in manufacturing digital twin data adjustments, but it
cannot prove root causes mathematically, making it unsuitable in regulatory environments.
High data amounts are required, and hybrid models with isothermal ANNs can circumvent
this but still require mechanistic models. Applications based on EC and MC are the most
efficient. Standard operation mode data may not provide the necessary information for
training ANNs, and relying on validated mechanistic models is often used with prejudice in
industry. Standard control methods can fulfill computationally demanding tasks in process
control, leading to economical business case-derived decisions. However, the benefits and
effort of machine learning must be evaluated individually at each application and project
step, as they are not general problem solvers and require expert knowledge for result
evaluation. Also, it should be mentioned that the present study indicated the possibility
of applying AI integrated with ANN for MC and EC of milk samples, while larger data
sizes are required to be considered in future consecutive studies for practical contribution
to industrial revolution.

5. Conclusions

The findings illustrate the successful application of artificial neural network (ANN)
modeling in predicting EC and MC in raw and pasteurized milk samples, with the electric
field strength and mass flow rate identified as key influencing factors. According to the ob-
servations, non-thermal pasteurization significantly reduced EC compared to conventional
pasteurization and raw milk, while differences in MC between treatments were insignifi-
cant. ANN models effectively predicted EC and MC with minimal error, underscoring the
potential for integrating AI into the real-time monitoring and optimization of non-thermal
processing. This approach can be assessed for possible extension beyond EC and MC,
including other quality indicators such as microbial activity, total soluble solids, and fraud
detection. Future research should further focus on using deep machine learning to enhance
the estimation of milk’s quality attributes, building a broader database by examining milk
from diverse sources. This work signals a shift toward more sustainable, efficient, and
data-driven approaches in food production to achieve a more sustainable production based
on emerging non-thermal processing technologies. Future studies might use adaptive
neuro-fuzzy inference systems (ANFISs) to predict raw and pasteurized milk’s EC, MC,
and other properties. Moreover, ANNs can predict raw and non-thermal pasteurized milk
fraud—practical applications. For practical applications, the prediction of EC and MC
using ANNs can be used in food industries to determine EC and MC to detect milk fraud
(e.g., adding water).
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