Basrah Journal of Science

The Operator $_{r}\Phi_{s}$ and the Polynomials K_{n}

Husam L. Saad¹

Sadeq M. Khalaf²

Department of Mathematics, College of Science, Basrah University, Basra, Iraq

¹hus6274@hotmail.com Doi 10.29072/basjs.20190103 ²sadeqalshawi0@gmail.com

Abstract

Based on basic hypergeometric series, a new generalized q-operator ${}_{r}\Phi_{s}$ has been constructed and obtained some operator identities. Also, a new polynomial $K_{n}(a_{1}, ..., a_{r}, b_{1}, ..., b_{s}, c; a; q)$ is introduced. The generating function and its extension, Mehler's formula and its extension and the Rogers formula for the polynomials $K_{n}(a_{1}, ..., a_{r}, b_{1}, ..., b_{s}, c; a; q)$ have been achieved by using the operator ${}_{r}\Phi_{s}$. In fact, this work can be considered as a generalization of Liu work's by imposing some special values of the parameters in our results. Therefore the q^{-1} -Rogers-Szegö polynomials $h_{n}(a, b|q^{-1})$ can be deduced directly.

Keywords: *q*-operator, generating function, Mehler's formula, Rogers formula, the q^{-1} -Rogers-Szegö polynomials.

AMS Classification: 05A30, 33D45

1. Introduction

Through this paper, the notations in [2] will be used here and assuming that |q| < 1.

Definition 1.1. [2] . Let a be a complex variable. The q-shifted factorial is defined by

$$(a;q)_0 = 1, \qquad (a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k), \qquad (a;q)_\infty = \prod_{k=0}^\infty (1 - aq^k).$$

The compact notation for the multiple q-shifted factorial will be adopted here

$$(a_1, ..., a_r; q)_n = (a_1; q)_n ... (a_r; q)_n$$

where *n* is an integer or ∞ .

Definition 1.2. [2]. The basic hypergeometric series ${}_r\phi_s$ is defined by