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A B S T R A C T

This paper focuses on studying the robust stability of linear descriptor systems with perturba-
tions in the state matrix under rank-deficient and unmatched conditions. In fact, there are three
main steps in this study. The first is constructing an equivalent optimal control to design a robust
control. The second step is to solve the Riccati equation to find the optimal control solution.
The third step is to implement the cost function of the equivalent optimal control to define the
candidate Lyapunov function in order to verify the stability conditions. The proposed control
method is verified through simulations. Our results demonstrate that the proposed approach
can guarantee robust stability under uncertain and perturbed conditions.

. Introduction

Recently, control theory has played a fundamental role in life science [1–3]; in particular, descriptor control systems are widely
sed in various fields, including control engineering, signal processing, and system modelling [4]. Meanwhile, stability theory is
powerful tool to investigate the behaviour of dynamical systems [5,6]. In real-life problems, perturbations and randomness are

ommon occurrences. Perturbations refer to small disturbances or changes that can affect a system or process. Randomness, on the
ther hand, refers to the inherent unpredictability or variability of certain phenomena. can be compromised under uncertain and
erturbed conditions [7–10]. However, the state matrix perturbations with deficient rank and unmatched conditions can significantly
ffect the system’s stability. Also, the role of initial values in determining the behaviour of the perturbations system can be significant,
s small changes in the initial conditions can lead to large differences in the behaviour of the system over time [11–15].

System behaviour through feedback loops is crucial in many behavioural disciplines, including those dealing with light and
ound, nanotechnology and materials science, quantum technologies, scanning, and sensing. By employing closed-loop operation, it
s possible to improve the system’s stability, speed up transient operations, and reduce the impact of disturbances [16]. The generic
ormula for the optimal control problem (OCP) consists of the performance index and the state space equations [17,18]. The analysis
nd synthesis of robustly stable systems under conditions of uncertainty are one of the most pressing issues in the fields of system and
ontrol theory [19–27]. Preserving stability is often the most challenging aspect of control. The stability criteria for the equilibrium
oint of an ordinary differential equations are derived using the well-known Lyapunov direct approach. Also, previous research has
nvestigated the stability of linear descriptor systems under various perturbations. For example, Yen et al. [28]. Recent research
as focused on the use of advanced control techniques, such as adaptive and robust control, to address the challenges posed by
isturbances in input matrices. For example, the authors proposed a novel approach to adaptive control that enables a robot arm
o maintain precision control despite disturbances in its input matrix Huang [29–31]. In another study, Zhao [32], has developed a
obust control strategy to mitigate the impact of disturbances in an input matrix for a microgrid system. Furthermore, recent studies
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have explored the use of machine learning and artificial intelligence techniques to improve control performance in dynamic systems
affected by disturbances. Also, a hybrid control strategy combining model predictive control and deep reinforcement learning to
address the challenge of disturbance in input matrices for a wind turbine system has been developed in [33].

The novelty of this paper is that it offers several advantages over existing methods. First, it provides a unified framework for
andling uncertain and perturbed systems with deficient rank and unmatched conditions. Second, it leverages the equivalence
rinciple to derive efficient, systematic solutions that guarantee stability. Finally, it offers a practical and effective approach to
esigning robust controllers for real-world applications.

This paper is organized as follows: the fundamental concepts and problem formulation are given in Section 2. In Section 3,
e will discuss the robust descriptor control problem (RDCP). Section 4 proposes a new approach to construct an optimal control
quivalent problem (OCEP). Finally, some concluding remarks are given in the last section.

. Preliminaries and problem formulation

Consider the linear following descriptor systems:

𝐸�̇� = 𝐴(𝑞)𝑧 + 𝐵𝑢, ∀𝑞 ∈ [𝑎, 𝑏], 𝑎𝑛𝑑 𝑧(𝑡0) = 𝑧0, (2.1)

here 𝐸,𝐴(𝑞) ∈ 𝑅𝑚×𝑚, rank{𝐸} = 𝑚1, 0 < 𝑚1 ≤ 𝑚, 𝑧 ∈ 𝑅𝑚, 𝑢 ∈ 𝑅𝑟, and 𝐵 ∈ 𝑅𝑚×𝑟. In fact, A(q) represent the uncertainty of the
system and has the following form:

𝐴(𝑞) = 𝐴(𝑞0) + (1 − 𝐵1𝐵
𝑇
1 )𝛥𝐴(𝑞), for some nominal 𝑞0 ∈ [𝑎, 𝑏], (2.2)

nd satisfy the following upper bound condition:

𝛼−2𝐵𝑇
1 𝛥𝐴(𝑞)

𝑇 𝛥𝐴(𝑞)𝐵1 ≤ ℎ, (2.3)

here 𝛼 > 0 is the design parameter.

efinition 2.1 ([34]). The pencil of the system (2.1) is regular if |𝑠𝐸 − 𝐴(𝑞)| ≠ 0, for some 𝑠 ∈ 𝐶

Lemma 2.1. If the system (2.1) is regular, then it is equivalent to the following system:

�̇�1 = 𝐴1(𝑞)𝑧1 + 𝐴2(𝑞)𝑧2 + 𝐵1𝑢 (2.4)

0 = 𝐴3(𝑞)𝑧1 + 𝐴4(𝑞)𝑧2 + 𝐵2𝑢, (2.5)

here 𝑧1 ∈ 𝑅𝑚1 , and 𝑧2 ∈ 𝑅𝑚2 .

ssumption 2.1 ([35]). Assume there exist on open set ℏ𝑧 ⊂ 𝐷 such that for all
𝑧1 ∈ ℏ𝑧 it is possible to solve 𝐴3(𝑞)𝑧1 + 𝐴4(𝑞)𝑧2 = 0 for 𝑧2, we define the corresponding solution manifold as

ℏ = {𝑧1 ∈ ℏ𝑧, 𝑧2 ∈ 𝑅𝑚−𝑚1 ,
(

𝑧1(𝑡)
𝑧2(𝑡)

)

∈ ℵ
(

𝐴3(𝑞) 𝐴4(𝑞)
)

, 𝑡 ≥ 0} (2.6)

lso consider the manifold M ⊆ 𝑅𝑚 determined by 𝑀 = ℵ
[

𝐴3(𝑞) 𝐴4(𝑞)
]

, where ℵ(.) denotes the kernel.

emma 2.2 ([36]). If 𝐴4(𝑞) is of the rank deficient matrix i.e, rank 𝐴4(𝑞) < (𝑚−𝑚1), then there exist a matrix L of dimension (𝑚−𝑚1)×𝑚1
uch that the system (2.4)–(2.5) will be in the reduced form.

efinition 2.2 ([37]). For any nonlinear system 𝑑𝑥
𝑑𝑡 = 𝑓 (𝑥(𝑡)), 𝑥 ∈ 𝑅𝑛, the equilibrium 𝑥𝑒 is stable if, and only if, for any 𝜖 > 0 there

exists a 𝛿(𝑡, 𝜖) such that ‖

‖

𝑥(0) − 𝑥𝑒‖‖ < 𝛿, then for any 𝑡 > 0 we have ‖

‖

𝑥(𝑡) − 𝑥𝑒‖‖ < 𝜖. Moreover, 𝑥𝑒 is asymptotically stable: if it is
stable and it is locally attractive.

Definition 2.3 ([37]). For any nonlinear system 𝑑𝑥
𝑑𝑡 = 𝑓 (𝑥(𝑡)), 𝑥 ∈ 𝑅𝑛, the equilibrium 𝑥𝑒 is globally asymptotically stable if, and

only if, there exist a real value function 𝑉 (𝑥) ∶ 𝑅𝑛 → 𝑅 satisfy the following:

• 𝑉 (𝑥𝑒) = 0
• 𝑉 (𝑥) > 0,∀𝑥 ∈ 𝑅𝑛 − {𝑥𝑒}
• �̇� (𝑥) < 0,∀𝑥 ∈ 𝑅𝑛

• �̇� (𝑥) < 0 does not equal to zero along any 𝑥 ∈ 𝑅𝑛, other than the trivial solution 𝑥(𝑡) = 0

3. Robust descriptor control problem

The aim of this section is to find a feedback control 𝑢 = −𝐾𝑧 such that the closed-loop system of

�̇� = (𝐴 (𝑞) + 𝐴 (𝑞)𝐿)𝑧 + 𝐵 𝑢, (3.1)
2

1 1 2 1 1
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𝑧2 = 𝐿𝑧1, (3.2)

s asymptotically stable.
Now, if we substitute (3.2) in (3.1), we have

�̇�1 = (𝐴1(𝑞) + 𝐴2(𝑞)𝐿 − 𝐵1𝐾)𝑧1 (3.3)

The system (3.1) can be written in an equivalent form

�̇�1 = (𝐴1(𝑞0) + 𝐴2(𝑞0)𝐿)𝑧1 + 𝐵1𝑢 + 𝛼(1 − 𝐵1𝐵
𝑇
1 )𝑣 + (1 − 𝐵1𝐵

𝑇
1 )𝛥𝐴(𝑞) (3.4)

Finding an appropriate matrix 𝐾 is necessary to ensure that the feedback is linear and dynamical Eq. (3.3). Our approach is to
ranslate Eq. (3.3) into the following problem.

. Optimal control equivalent problem

The OCP becomes the following linear quadratic regulator problem (LQR). For the nominal system

�̇�1 = (𝐴1(𝑞0) + 𝐴2(𝑞0)𝐿)𝑧1 + 𝐵1𝑢 + 𝛼(1 − 𝐵1𝐵
𝑇
1 )𝑣 (4.1)

Find a feedback control low 𝑢 = −𝐾𝑧, 𝑣 = −𝑙𝑧 that minimizes the following cost function where 𝐻 = ℎ𝐼 ,

𝐽 (𝑢(.)) = ∫

∞

𝑜
(𝜌2𝑧𝑇1 𝐻𝑧1 + 𝑢𝑇𝑅𝑢 + 𝜌2𝑣𝑇𝑊 𝑣 + 𝛽2𝑧𝑇1 𝑄1

𝑧1)𝑑𝑡

The necessary condition for optimality for the equivalent OCP. when, the necessary condition for the existence of optimal control
(OC) is that 𝐽 (𝑧1) must satisfy the Hamilton–Jacobi–Bellman (HJB) equation [38].

Theorem 4.1. The solution of Robust Control Problem (RCP) Eq. (2.1) is the solution OCP if one can choose parameter design 𝛼, 𝜌 and
𝛽 such that the solution to the OCP denoted by (𝑢(𝑧), 𝑣(𝑧)), exists and the condition is satisfied 𝜌2‖𝑣‖2𝑤 ≤ 𝛽2‖𝑧1‖2𝑄1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧1 ∈ ℏ𝑧 and
for some 𝛽 such that ‖𝛽‖ ≤ ‖𝛽‖. Then u-component of the solution to the OCP is the solution of the RCP Eq. (2.1).

Proof. The OCP finds the minimum of the cost function. Define

𝐽 (𝑧1) = ∫

∞

𝑜
(𝜌2𝑧𝑇1 𝐻𝑧1 + 𝑢𝑇𝑅𝑢 + 𝜌2𝑣𝑇𝑊 𝑣 + 𝛽2𝑧𝑇1 𝑄1

𝑧1)𝑑𝑡 (4.2)

Which is subject to the system (4.1), since 𝐽 (𝑧1) satisfied HJB then:

0 = min
𝑢,𝑣∈△

(𝜌2𝑧𝑇1 𝐻𝑧1 + 𝑢𝑇𝑅𝑢 + 𝜌2𝑣𝑇𝑊 𝑣 + 𝛽2𝑧𝑇1 𝑄1
𝑧1) + 𝐽𝑇 (𝑧1)[(𝐴1(𝑞0)

+ 𝐴2(𝑞0)𝐿)𝑧1 + 𝐵1𝑢 + 𝛼(1 − 𝐵1𝐵
𝑇
1 )𝑣] (4.3)

Where, 𝐽𝑧1 = 𝜕𝐽∕𝜕𝑧1
Therefore, if 𝑢 = −𝐾𝑧, 𝑣 = −𝑙𝑧 (with 𝐾𝑇𝐾, 𝑙𝑇 𝑙 are negative definite) are the solution of the 𝑂𝐶𝑃 then

0 = (𝜌2𝑧𝑇1 𝐻𝑧1 + 𝑢𝑇𝑅𝑢 + 𝜌2𝑣𝑇𝑊 𝑣 + 𝛽2𝑧𝑇1 𝑄1
𝑧1) + 𝐽 (𝑧1)𝑇 [(𝐴1(𝑞0)

+ 𝐴2(𝑞0)𝐿)𝑧1 + 𝐵1𝑢 + 𝛼(1 − 𝐵1𝐵
𝑇
1 )𝑣] (4.4)

𝜕𝐽∕𝜕𝑢 = 2𝑢𝑇𝑅 + 𝐽 (𝑧1)𝑇𝐵1, 𝜕𝐽∕𝜕𝑢 = 0 (4.5)

𝜕𝐽∕𝜕𝑣 = 2𝜌2𝑣𝑇𝑊 + 𝐽 (𝑧1)𝑇 𝛼(1 − 𝐵1𝐵
𝑇
1 ), 𝜕𝐽∕𝜕𝑣 = 0 (4.6)

The goal of the OCP is to steer 𝑧1 to 0 in Eq. (3.4) is globally asymptotically stable for all admissible uncertain to do so, we
show that 𝐽 (𝑧1) is a Lyapunov function of the system (3.4). Since 𝑢(0) = 0, 𝑣(0) = 0. and 𝑧𝑇1 𝑄1𝑧1 > 0, 𝑢𝑇𝑅𝑢 > 0, 𝑣𝑇𝑊 𝑣 > 0
∀𝑧 = (𝑧1, 𝐿𝑧1) ≠ (0, 0), then 𝐽 (𝑧1) > 0, ∀𝑧1 ≠ 0

�̇� (𝑧1) = 𝐽𝑇
𝑧1
𝑧1

= 𝐽𝑇
𝑧1
[(𝐴1(𝑞0) + 𝐴2(𝑞0)𝐿)𝑧1 + 𝐵1𝑢 + (1 − 𝐵1𝐵

𝑇
1 )𝛥𝐴(𝑞)𝑧1]

= 𝐽𝑇
𝑧1
[(𝐴1(𝑞0) + 𝐴2(𝑞0)𝐿)𝑧1 + 𝐵1𝑢 + 𝛼(1 − 𝐵1𝐵

𝑇
1 )𝑣 − 𝛼(1 − 𝐵1𝐵

𝑇
1 )𝑣

+ (1 − 𝐵1𝐵
𝑇
1 )𝛥𝐴(𝑞)𝑧1]

Substitution Eqs. (4.4), (4.5) and (4.6), yields Then

= −𝜌2𝑧𝑇1 𝐻𝑧1 − 𝛽2𝑧𝑇1 𝑄1𝑧1 − 𝑢𝑇 𝑢 + 𝜌2𝑣𝑇𝑊 𝑣 − 2𝛼−1𝜌2𝑣𝑇𝑊𝛥𝐴(𝑞)𝐵1𝑧1

Then

�̇� (𝑧1) = −𝜌2𝑧𝑇1 𝐻𝑧1 − 𝛽2‖𝑧1‖
2
𝑄1

− ‖𝑢‖2𝑅 + 𝜌2‖𝑣‖2𝑤 + 𝜌2‖𝑣‖2𝑤
−2 2 2
3

+ 𝛼 𝜌 ‖𝛥𝐴(𝑞)𝐵1𝑧1‖𝑤
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= (−𝜌2𝑧𝑇1 𝐻𝑧1 − 𝛼−2‖𝛥𝐴(𝑞)𝐵1𝑧1‖
2
𝑤) − ‖𝑢‖2𝑅 + 2𝜌2‖𝑣‖2𝑤

− 𝛽2‖𝑧1‖
2
𝑄1

�̇� (𝑧1) ≤ ‖𝑧1‖
2
𝑄1

< 0

. Illustrated example and dissections

In this section we serve as a bridge between theoretical insights and real-world applications. They enhance understanding,
acilitate analysis, and promote active learning.

xample 5.1. Consider the robust descriptor system

𝐸�̇� = 𝐴(𝑞)𝑧 + 𝐵𝑢, ∀𝑞 ∈ [−6, 6]

here

𝑧 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑧1(𝑡)
𝑧2(𝑡)
𝑧3(𝑡)
𝑧3(𝑡)

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐸 =

⎛

⎜

⎜

⎜

⎜

⎝

0 2 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐴(𝑞) =

⎛

⎜

⎜

⎜

⎜

⎝

2 + 2𝑞 1 2𝑞 0
1 0 1 0
𝑞 0 𝑞 𝑞
𝑞 0 𝑞 𝑞

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑎𝑛𝑑 𝐵 =

⎛

⎜

⎜

⎜

⎜

⎝

0
1
0
0

⎞

⎟

⎟

⎟

⎟

⎠

Now, applying Lemma 2.1 for the system above, we have

�̇�1 = 𝐴1(𝑞)𝑧1 + 𝐴2(𝑞)𝑧2 + 𝐵1𝑢,

0 = 𝐴3(𝑞)𝑧1 + 𝐴4(𝑞)𝑧2.

By using Assumption 2.1, and Lemma 2.2, we find a nonsingular matrix 𝐿 such that 𝑧2 = 𝐿𝑧1 with 𝐴3(𝑞) +𝐴4(𝑞)𝐿 = 0. Here, we

ind 𝐿 =
(

1 0
−1 −1

)

. So, the reduced system is

�̇�1 =
(

1∕2 + 𝑞 1 + 𝑞
1 1

)

𝑦1 + 𝐵1𝑢

et 𝜌 = 1, 𝛽 = 1, 𝛼 = 0.04 then the corresponding OCP and let 𝑞0 = 0 be the nominal uncertainties in the [−6, 6] then we get from
q. (4.1)

𝑦1 =
(

1∕2 1
1 1

)

𝑦1 +
(

0
1

)

𝑢 +
(

0.04 0
0 0

)

𝑣

ind the FBC Low 𝑢 = −𝑘𝑧 and 𝑣 = −𝑙𝑧 that minimize the cost function

∫

∞

0
(𝑌 𝑇

1 [
(

22500 0
0 22500

)

+
(

1 0
0 1

)

]𝑌1 + 𝑢𝑇 𝑢 + 𝑣𝑇 𝑣)𝑑𝑡

olve Riccati equation in 𝑀𝑎𝑡𝑙𝑎𝑏 we get 𝑆 =
(

4.0203𝑒 + 03 26.7210
26.7210 151.1809

)

and

𝑢 = −
(

26.7210 151.1809
)

y, 𝑣 = −
(

160.8128 1.0688
)

y Stability is being checked by using the eigenvalues of the
oefficient matrix (−6.1034–150.0100) Therefore, the system is stable.

Now, we draw some dissection in this example. Here, the uncertainty range is [−6, 6] and the solution behaviour is illustrated
n Figs. 4, and 5 which are not asymptotically stable because of the small change in the initial values, while Figs. 1, 2 and 3 show
he robust and optimal solution with consistent initial conditions where the uncertain parameters are in the given range [−6, 6].
ig. 6 represents the non-smoothness and unconvergence of the robust control within the class of consistent initial conditions and
ncertain parameters when the uncertain parameters are not in the given range [−6, 6].

. Conclusions

This paper introduces a mathematical analysis, including the theoretical framework, design methodology, and implementation
rocedures. In this line, we design robust controllers for linear descriptor systems under state matrix perturbations with deficient rank
nd unmatched conditions. Indeed, the approach offers several advantages over existing methods, including a unified framework
or handling uncertain and perturbed systems, leveraging the equivalence principle to derive efficient and systematic solutions,
nd providing a practical and effective approach for real-world applications. Additionally, extensive simulation results have been
rovided to validate the effectiveness of the approach. The findings obtained have helped to understand the function of consistent
equirements in maintaining the stability of the system. Even when the eigenvalues in the reality portion are negative, the system
4

s not asymptotically stable because of the small change in the initial values.
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Fig. 1. Robust solution asymptotically stable q=1 ∈ [−6, 6]
(𝑦1,0 , 𝑦2,0 , 𝑦3,0 , 𝑦4,0) = (1, 2, 1,−3) ∈ 𝑃𝑘.

Fig. 2. Robust solution asymptotically stable q=-6 ∈ [−6, 6]
(𝑦1,0 , 𝑦2,0 , 𝑦3,0 , 𝑦4,0) = (1, 2, 1,−3) ∈ 𝑃𝑘.
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Fig. 3. Robust solution asymptotically stable q=6 ∈ [−6, 6]
(𝑦1,0 , 𝑦2,0 , 𝑦3,0 , 𝑦4,0) = (1, 2, 1,−3) ∈ 𝑃𝑘.

Fig. 4. solution not asymptotically stable q=6 ∈ [−6, 6]
(𝑦1,0 , 𝑦2,0 , 𝑦3,0 , 𝑦4,0) = (3, 2, 1,−3) ∉ 𝑃𝑘.
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Fig. 5. Robust solution not asymptotically stable q=6 ∈ [−6, 6]
(𝑦1,0 , 𝑦2,0 , 𝑦3,0 , 𝑦4,0) = (1, 2, 0,−4) ∉ 𝑃𝑘.

Fig. 6. Robust control(unstable) q=10 ∉ [−6, 6]
(𝑦1,0 , 𝑦2,0𝑦3,0 , 𝑦4,0) = (1, 2,−1,−3) ∈ 𝑃𝑘.
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