ORIGINAL ARTICLE

Evaluation and Characterization of some Properties of Glass Ionomer Cement Reinforced by Novel Boron Nitride Nanoplatelets

Hasanein A. AlNamel 1* 🔎 , Rafid M. AlBadr ², Farah Abdul Razzaq ³

¹ Department of Prosthetic Dentistry, College of Dentistry, University of Basrah, Basrah, Iraq

² Department of Basic Sciences, College of Dentistry, University of Basrah, Basrah, Iraq

³ Department of Conservative and Aesthetic Dentistry, College of Dentistry, University of Basrah, Basrah, Iraq

*Corresponding Author: Hasanein A. AlNamel Received: 07 December 2023 / Accepted: 06 January 2024 Email: Hasanen.muhsen@uobasrah.edu.iq

Abstract

Purpose: This study characterized and incorporated a novel Boron Nitride Nanoplatelet (BNNP) into conventional cement known as Glass Ionomer Cement (GIC) with changed ratios (range from 1%, 3%, 5%, and 7%wt) Subsequently.

Materials and Methods: The study examined the impact of adding BNNP on the mechanical characteristics of GIC, including its Flexural Strength (FS), Diametral Tensile Strength (DTS), water sorption/solubility, and setting times. The BNNP was characterized using Physio-Chemical Characterization, and Brunauer-Emmett-Teller (BET) testing, and density was also measured. In addition to showing considerably greater DTS (16.34 \pm 1.26MPa) and FS (24.037 \pm 0.816 MPa), the results showed that 3% wt. BNNP-modified GIC specimens decreased in water sorption/solubility 19.358 \pm 2.40 and 2.979 \pm 0.65 µg/mm³, respectively, compared with traditional GIC.

Results: In this work, a novel BNNP containing GIC was created, resulting in a 15% reduction in water sorption. When compared to commercial GIC, the demonstrated GIC can quadruple the DTS and FS.

Conclusion: For water-based cement types, the glass-ionomer formulations including BNNP exhibit equivalent and acceptable working qualities.

Keywords: Boron Nitride Nanoplatelets; Glass Ionomer Cement; Flexural Strength; Diametral Tensile Strength; Physical Properties; Water Sorption.

