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Abstract. The researcher faces several when estimating the nonparametric regression functions because the estimation 
methods depend on the data, as these estimates may be inaccurate, or they may not be suitable for the nonparametric 
model, Therefore, the aim of the research is to find the adaptive estimators in the nonparametric regression through the 
adaptive bandwidth method, which is known as "Goldenshluger-lepski" to increase the estimation efficiency in the 
nonparametric regression.. In this paper, adaptive estimations were processed in the nonparametric regression method 
through the use of kernel smoothing and spline. The adaptive "Goldenshluger-Lepski" was included, and to compare the 
estimation methods three criteria were used, namely (MSE , MAS, RMSE) to choose the best method after applying the 
procedure to the simulation in the R Package. 

Keywords: Adaptive estimation, nonparametric regression, kernel and spline smoothing, Goldenshluger-Lepski 
bandwidth. 

INTRODUCTION 

There are many problems that the researcher faces when estimating the nonparametric regression functions 
because the estimation methods depend on the data, as these estimates may be inaccurate, or they may not be 
suitable for the nonparametric model, so the aim of this study is to find the adaptive capabilities in the 
nonparametric regression using modern methods. To increase the efficiency of estimation through the use of 
adaptive estimators in nonparametric regression smoothing . We will discuss some studies that used the adaptive 
method and its use in nonparametric regression, including: 

The study (Hill and others, 1988) used two nonparametric adaptive procedures to apply multiple comparisons 
and a test of alternatives required in a one-way ANOVA model, in comparison with the parametric normal 
theoretical procedure, and the rank-based non-parametric procedure where these procedures are applied to lung 
cancer data. The results showed the superiority of the adaptive procedures Nonparametric. [6] 

Astudy (2021, page and Grunewalder) presented an Adaptive estimation using the modern Goldenshluger-Lepski 
method to choose parameters for the statistical estimator using only the available data without making strong 
assumptions about the estimation. Nucleus . This method was used to address two regression problems, the kernel 
regression was fixed in one of them and in the other an adaptation was used. [12] 

The study (Breunig and Chen, 2022) aimed to find an adaptive estimation of the minimum quadratic function in 
the model of non-parametric automatic variables (NPIV), which is an important problem in the optimal estimation of 
non-linear functions, this problem is solved through a choice based on data from Lepski type For the smoothing 
parameter, the results showed that the adaptive estimator of the quadratic function achieves the minimum optimum 
rate. [3] 

Adaptive estimator in nonparametric regression: [10][1][3][4][8][11] An adaptive estimator is defined as an 
effective estimator for only a partially specified model (“effective” meaning that it is asymptotically equivalent to a 
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non-parametric “likelihood Maximum” local probability estimator Applicable), or a model whose distribution is 
unknown, so adaptive estimation aims to build estimations entirely based on data without making strong 
assumptions about the estimation. Nonparametric regression is also a form of regression analysis and a common and 
flexible tool for data analysis and modeling of the non-linear relationship between dependent and explanatory 
variables. , that is, it depends mainly on the data, Where the objective of the nonparametric regression is to estimate 
the regression function  without dependence or having prior knowledge of its functional form , and using adaptive 
methods, Classical methods can also be modified to be as robust as non-parametric methods . Studies to build a 
method for selecting data-based smoothing parameters in order to obtain adaptive estimates. The first adaptive 
estimate was proposed by (lepski 1990) and was developed in (1992) and its goal was to build capabilities from the 
data in the best possible way and reduce the risk of estimation, the adaptive methods in regression The non-
parametric is strong in efficiency as it cannot be outweighed by any non-adaptive method, as the exact adaptive 
procedure will work well with the data. So the adaptive approach is mainly divided into two types, The adaptive 
procedure for estimating unknown parameters is such as in a nonparametric regression, or the use of Data to 
determine the appropriate statistical procedure, the adaptive non-parametric approach on the one hand is estimating 
the parameters from the sample, or data-driven methods may be the best and most,  The first to suggest this 
approach (Randles and Hogg). So the main purpose of adaptive approaches may be to provide a relatively easy 
alternative to parameterization without much effort on how to choose one from a variety of methods, and to facilitate 
the decision on the use of the appropriate technique. Adaptive approaches can perform better based on the available 
information in terms of achieving the desired combination of robustness and efficiency. over the past ten years. 
Adaptive-order tests show that adaptive actions Adaptive method can increase the power of tests, If the distribution 
of random error is abnormal, the power of classical tests is much lower than adaptive tests.  

The formula for nonparametric regression is as follows: 
  ,      =1,2,…,n  , ~N( 0, ) 

Yi: the response variable,  m (xi): the unknown function to be estimated,  xi: the explanatory variable , : the 
values of the random variable, which is white noise that is normally distributed. 

The adaptive estimator for the parameter vector is as follows [15] : 

  
 :Unknown parameter, θ is estimated based on sample observations  

KERNEL SMOOTHERS 

The positional polynomial regression smoother (LLS) is one of the best smoothing methods because it deals with 
static and random models, and it is sometimes called the weight or window function, as this function is continuous 
and symmetric, its integral is equal to the integer one, when (the bandwidth) is small very . [10] 

The formula for smoothers is as follows 

 

 

 : represents the endodontic function, : represents the weight function and one of its conditions 
is positive, h: represents the smoothing parameter (the bandwidth) in the estimator ( ( )). If its value is large, the 
function is smooth, and if its value is small, the function is not smooth.  

The Gasser-Müller (GM) smoother is one of the most widely used gradient smoothing tools. The Gasser-Müller 
estimator which is a modification of the Priestley-chao, estimator is used to construct nonparametric estimates of the 
regression function,), a new type of kernel. [4] 

Its general form is as follows. [4] 
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Also, the nearest neighbor smoother (K-NN) depends on calculating the Euclidean distance between each point 
and the point closest to it. If the data are close to each other, the distance will be small and vice versa. [9] 

So, its general form is as follows: 

 

 

:represents the Euclidean distance between x, k and : xi ,xj data points  

SPLINE SMOOTHER 

depend on the sum of the squares of the error as used when the regression line is divided into pieces, as the 
explanatory variable x with period (a,b) is divided and the lines cut are called slide nodes so that smoothing the 
slides overcomes the problem of choosing a node and from During the identification of new nodes or changing the 
existing nodes, they are divided into linear spline (SPL) and cubic spline (SPC). [2][9] 

   
Whereas 

: It represents the sum of the squares of the error, 
 , Represents the penalty factor indicating 

the width of the appropriateness quality package represented by  And the smoothing of 
appreciation represented by  

Goldenshluger-Lepski adaptive bandwidth extends Lepski's method for performing adaptation across multiple 
parameters .This method has been used in different contexts as it was used for the first time in a multidimensional 
white noise model. As it has been widely used in recent studies of non-parametric estimation, the idea of this method 
for adaptive non-parametric estimation is to choose an estimator that reduces the sum of the unknown bias factor of 
variance. [8][12] 

The Goldenshluger-lepski formula is as follows [5] :  
Ꜧ  

Ꜧ  

 

K : represent a constant that does not depend on h , function estimator , Ꜧ  : Represents a set of 
smoothing parameter (bandwidth) .  

: Represents an empirical analogue of variance ,   : Represents an approximation of the term bias  
In order to estimate the regression curve, there are several criteria that are relied upon in the differentiation, and 

among these criteria are the mean absolute error squares (MAS), the roots mean squares error (RMSE), and the 
mean squared error (MSE) standard [9][14]. The function was used Endodontic (Epanchnickov) and adaptive 
bandwidth (Goldenshluger-lepski) on the experimental side. 

…        (12)    
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STATISTICAL ANALYSIS 

The analysis of this study is carried out using simulation, as it is known as a method that includes the use of a 
theoretical mathematical model and similar to the real model that represents the studied problem.  Simulation  

experiments were carried out using three sample sizes (n = 30, 60, 100) and with a frequency of 500 for each 
experiment. The nonparametric methods will be compared, and two models were used in the simulation. 

first model      
second model    
The variables (independent and random error) were generated. The random errors are normally distributed with a 

mean of zero and variance , The nonparametric explanatory variable Xi is generated according to the standard 
normal distribution. 

TABLE 1. The first model, (RMSE, MSE, MAE) criteria for the first model according to the different sample 

RMSE 

 n ALLS AGM KNN ASPL ASPC 

 30 0.516265 0.930748 0.893772 0.928897 0.932278 
60 0.558081 0.861925 0.809613 0.842828 0.868399 
10

0 
0.51343 0.759951 0.803071 0.833716 0.818787 

 30 1.304713 1.293053 1.391125 1.297777 1.300542 
60 1.033427 1.288025 1.256423 1.277987 1.282404 
10

0 
1.134386 1.143293 1.373155 1.14562 1.155014 

 30 1.757319 1.737183 2.094056 1.742326 1.738227 
60 1.661094 1.739168 2.06102 1.716176 1.72202 
10

0 
1.540448 1.666366 1.550798 1.664799 1.680947 

MSE 

 30 0.266529 0.866292 0.798829 0.862849 0.869143 
60 0.311454 0.742915 0.655473 0.710359 0.754118 
10

0 
0.263611 0.577525 0.610768 0.695083 0.670413 

 30 1.702275 1.671985 1.93523 1.684224 1.69141 
60 1.046111 1.659008 1.067971 1.633252 1.644561 
10

0 
1.309619 1.307119 1.885555 1.312445 1.334058 

 30 3.088172 3.024758 4.385072 3.035701 3.021432 
60 2.759233 3.024707 4.247802 2.945262 2.965353 
10

0 
2.69107 2.776777 2.404973 2.771554 2.825582 

MAE 

 30 0.412093 0.718155 0.715842 0.730157 0.727187 
60 0.471807 0.651849 0.627654 0.639025 0.652287 
10

0 
0.39879 0.63034 0.601175 0.68473 0.673663 

 30 0.997865 1.001918 1.116884 1.002198 1.014442 
60 0.955424 0.963265 1.013914 0.996628 0.993963 
10

0 
0.851318 0.850425 0.826585 0.849166 0.867145 

 30 1.343314 1.409301 1.678374 1.380658 1.379656 

60 1.281802 1.288404 1.525217 1.289815 1.332256 
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sizes and levels of variation 
 
 

 
Source/ From the (R.4.1.2) Package using simulation method 
Explanation of  Table 1. for the first model 
1-The results showed, depending on the comparison criteria (RMSE) and (MSE) when the sample size is (n = 30, 

60, 100) and with a level of variance ( ) that the best adaptive estimator is (ALLS), but when the level of 
variance is ( ) and sample size (n = 30), then the best adaptive estimator is ((AGM). As for (n=60 ,

) the best adaptive estimator is (ALLS), then the adaptive estimator (ASPL) . 
2-The results showed that, depending on the comparison standard (MAE), when the sample size is (n=30,60,100) 

and with the level of variance , the estimator is (ALLS), then the estimator is (KNN), but when the 
variance level is ( ) At the sample size (n=30,60), the best adaptive estimator is (ALLS), followed by the 
adaptive estimator (AGM), and when the level of variance is at the sample size (n=30), the best 
estimator It is an adaptive estimator (ALLS), followed by an adaptive estimator (ASPC). 

 

n=30   

 
 n=60  

               
 
n=100 

FIGURE1.  The adaptive nonparametric capabilities of the first model when the sample size is (30, 60, 100) 
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TABLE 2. For the second model, (RMSE, MSE, MAE) criteria for the second model according to the different sample sizes and 
levels of variance 

Source/ From the (R.4.1.2) Package using simulation method 
Explanation of TABLE 2. for the second model 
1-The results showed, based on the comparison criteria (RMSE) and (MSE) when the sample size is (n = 30, 60, 

100) and with a level of variance that the best adaptive estimator is (ALLS), followed by the second rank 
estimator (ASPL), But when the level of variance is at the sample size (n = 30, 60), the best adaptive 
estimator is (AGM), and when the level of variance is At the sample size (n=30, 60, 100), the best 
adaptive estimator is (ALLS), followed by (ASPL) estimator. 

RMSE 

 n ALLS AGM KNN ASPL ASPC 

 30 0.903092 1.064953 0.930679 0.918608 0.907494 
60 0.813945 0.97887 0.879232 0.872201 0.878572 
100 0.626729 0.872554 0.837377 0.832611 0.833826 

 30 1.24336 1.223214 1.367458 1.252031 1.250252 
60 1.220666 1.216059 1.331066 1.218084 1.222047 
100 1.156415 1.16284 1.139285 1.157729 1.163883 

 30 1.641151 1.664737 1.97255 1.658907 1.665563 
60 1.623751 1.633353 1.82305 1.651294 1.660628 
100 1.551985 1.558501 1.680566 1.555571 1.56645 

MSE 

 30 0.815575 1.134125 0.866163 0.84384 0.823546 
60 0.662506 0.958186 0.773049 0.760734 0.77189 
100 0.39279 0.761351 0.7012 0.693241 0.695265 

 30 1.545945 1.496253 1.869941 1.567581 1.563131 
60 1.490026 1.478799 1.771737 1.483729 1.493399 
100 1.337296 1.352198 1.297971 1.340336 1.354624 

 30 2.751423 2.771349 3.890955 2.751971 2.7741 
60 2.636569 2.667842 3.32351 2.726772 2.757686 
100 2.408658 2.428925 2.824301 2.419801 2.453765 

MAE 

 30 0.682166 0.811518 0.773593 0.745982 0.729909 
60 0.620493 0.776988 0.719946 0.71007 0.714817 
100 0.506783 0.703813 0.684112 0.676382 0.677996 

 30 0.957045 0.975529 1.029926 0.964151 0.948 
60 0.940787 0.953088 0.996644 0.945239 0.946551 
100 0.918078 0.91841 0.929677 0.91755 0.924274 

 30 1.275417 1.318811 1.491913 1.271999 1.272058 

60 1.230053 1.228722 1.411986 1.236947 1.225396 

100 1.209956 1.196204 1.365384 1.215266 1.22144 
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2-The results showed that, depending on the comparison standard (MAE), when the sample size is (n=30,60,100) 
and with a level of variance the best adaptive estimator is (ALLS), followed by an estimator (ASPL), but 
when the variance level is At the sample size (n=30), the best estimator is (ASPC), followed by the 
adaptive estimator (ALLS). The level of variance is  when the size is (n=30), then the best estimator is 
(ASPL), followed by an estimator (ASPC) and the size is (n=60), the best estimator is (AGM), then the next 
estimator (ASPC). At a sample size (n=100), the best estimator is (AGM), followed by an estimator (ALLS). 

 

n=30   

n=60  

n=100  
 

FIGURES 2. The adaptive nonparametric capabilities of the second model when the sample size is (30, 60, 100) 
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CONCLUSIONS 

1. When implementing simulation experiments using three sample sizes (n = 30, 60, 100) and with a frequency 
of 500 for each experiment and depending on the comparison criteria at a level of variance ( = 0.5), it was 
found that the best estimator of the first nonparametric model is that the estimator (ALLS) is the best 
estimator, then It is followed by the estimator (KNN). 

2. But when the level of variance is ( =1.5) at the sample size (n=30), the best estimator for the first model is 
(AGM), followed by (ASPC) estimator, as the values of the criteria (RMSE), (MSE) and (MAE) are less. 
With increasing sample sizes and for all estimators used, and increasing the values of (RMSE), (MSE) and 
(MAE) for all estimators with increasing values of residual variance. 

3. As for the second model, the results showed, depending on the comparison criteria (RMSE) and (MSE), 
when the sample size (n = 30,60) at a level of variation ( = 0.5, 1) that the estimator (ALLS) is the best 
estimator, then follows 2nd place estimator (ASPL). 

4. But when the level of variance is ( =1) at the sample size (n=30), the best estimator is (ASPC), followed 
by the estimator (ALLS), and in general the best adaptive estimator for the second nonparametric model is 
(ALLS), followed by (ASPL) estimator adaptive , 

5. Finally, we can say that the best estimation adaptive method for the three criteria and by increasing the 
sample sizes at three different levels of variance was the ALLS method, which represents the smoothing of 
the adaptive local polynomial regression. 

ACKNOWLEDGMENTS 

The authors would like to thank Basra University (www.uo Basra.edu.iq) Basra - Iraq for its support in the 
present work. 

REFERENCES 

1. -Ali, Noor Abdul-Karim (2021) “Comparing some of the traditional and immunized 
nonparametriccapabilities of the nonparametric regression model with application”, Master’s thesis, 
College of Administration and Economics, University of Basra 

2. Aydin , D. & Memmedli2 , M. & Omay2, R. (2013) " Smoothing Parameter Selection for Nonparametric 
Regression Using Smoothing Spline"  EUROPEAN JOURNAL OF PURE AND APPLIED 
MATHEMATICS Vol. 6, No. 2, 222-238 ISSN 1307-5543 

3. -Breunig, C. & Chen, X. (2022) " simple adaptive estimation of quadratic functionals in nonparametric iv 
models"  mathematics statistics theory , version, v2 

4. -Fan, J. & Gijbels, L. (2017 ) " Local Polynomial Modelling and Its Applications ", MONOGRAPHS ON 
STATISTICS AND APPLIED PROHABILITY , First edition 1996, Taylor & Francis Group journal 

5. -Chagnya, G. & Roche, A. (2016) " Adaptive estimation in the functional nonparametric regression model " 
Journal of Multivariate Analysis ,Volume 146, April 

6. Hill ,N. J.  ,  Padmanabhan,  A. R.  , Puri, M. L. (1988) " Adaptive Nonparametric Procedures and 
Applications "  Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 37, No. 2,1988 

7. Lacour, C.& Massart, P. (2016)" Minimal penalty for Goldenshluger–Lepski method" Stochastic Processes 
and their  ApplicationsVolume 126, Issue 12, December 

8. Lederer, J.& YU , L.& GAYNANOVA , I. (2019) Oracle Inequalities for High-dimensional Prediction, 
Vol.25 • No. 2 Bernoulli Society for Mathematical Statistics and Probability. 

9. Matta, Nour Sabah and Al-Safawi, Safa Younes (2011) “Estimation of nonparametric regression functions 
using some improvement”, Iraqi Journal of Statistical Sciences, Vol. 2011, No. 20 

10. Muhammad, Abdul-Hussain Muhammad (2011) “Using the estimator ((Nadaraya-Watson)) kernel in 
estimating the nonparametric regression function, Al-Qadisiyah Journal for Administrative and Economic 
Sciences, Volume 13, Issue 1 

11. -O'Gorman, T. W. (2004) Applied Adaptive Statistical Methods Tests of Significance and Confidence 
Intervals , by the American Statistical Association and the Society for Industrial and Applied Mathematics. 

040029-8

 22 D
ecem

ber 2023 20:12:21

https://doi.org/10.1016/j.spa.2016.04.015
https://doi.org/10.1016/j.spa.2016.04.015


12. page, S.& grunewalder , S. ( 2021 ) The Goldenshluger–Lepski Method for Constrained Least-Squares 
Estimators over RKHSs ,  Journals Project Euclid , Bernoulli 27(4): 2241-2266 , November Volume 
27 ,  Issue 4  

13. Serdyukova , N. (2012) Adaptive estimation in regression and complexity of approximation of random 
fields , Statistics Theory (math.ST); Probability (math.PR) 

14. Tali, Nada Hussein and Taher, Ahmed Shaker Mohammed Taher (2022) “Using kernel regression in 
estimating the coefficients of the regression model with random error limits that are self-correlated with 
practical application”, Journal of Administration and Economics - Al-Mustansiriya University, issue 132, 
pages 234-247 

15. Zhang , Z. (2014) Adaptive Robust Regression Approaches in data analysis and their Applications , PhD 
thesis , University of Cincinnati ,ProQuest Publishing, 

040029-9

 22 D
ecem

ber 2023 20:12:21


