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ABSTRACT
This paper addresses the challenge of quality characteristics that 
follow an exponential distribution, which can significantly 
impact decision-making in various fields. Existing approaches 
rely on approximations to convert exponential distributions to 
normal distributions, upon which control charts are constructed. 
However, such conversions introduce errors that can lead to 
incorrect outcomes, particularly for highly sensitive characteris-
tics. To address this limitation, we propose the development of 
control charts specifically designed for exponential characteris-
tics, without relying on approximations. Our objective is to 
introduce four different schemes for constructing these control 
charts: a statistical scheme, an economic scheme, an economic- 
statistical scheme combined with Taguchi’s loss function, and 
an economic-statistical scheme without the application of a loss 
function. To determine optimal design parameter values for 
each scheme, we employ the artificial bee colony algorithm. 
Additionally, we conduct a sensitivity analysis to investigate 
the impact of design parameters on each proposed design. To 
illustrate the practical implementation of these control charts, 
we provide a numerical example that demonstrates their effec-
tiveness. By addressing the limitations of existing approaches 
and offering novel control chart designs, this paper contributes 
to enhancing decision-making accuracy and reliability in scenar-
ios involving exponentially distributed quality characteristics.
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Introduction

Due to the competition of markets for customer satisfaction, more sales, and 
higher profits, quality has become one of the most important issues under 
consideration in industries. Among the various control tools, statistical pro-
cess control (SPC) is of great importance to the improvement of quality. 
Among the diverse statistical methods, control charts are important tools 
which monitor and control processes. Today, these tools are widely used in 
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industries. For this reason, researchers are constantly looking for optimal 
(accurate, low-cost, and fast) control charts.

In the construction of control charts, the distribution of quality character-
istics is usually considered normal. However, in many cases, this assumption is 
not true. This happens for quality characteristics whose probability plots are 
highly skewed. For example, we can refer to qualitative characteristics with 
lifetime nature.

Among the well-known statistical distributions, the exponential distribu-
tion has a good fit for most of the skewed data (Santiago and Smith 2013) 
such as:

(1) Waiting times or inter-arrival times: When studying the time between 
consecutive events (e.g., customer arrivals, phone calls, or requests), the 
exponential distribution can be appropriate if the underlying process 
exhibits randomness and no memory, commonly known as the mem-
oryless property.

(2) Survival analysis: In certain cases, the exponential distribution can be 
employed to model the survival times of a population when the hazard 
rate (probability of an event occurring at a given time) remains constant 
over time. This assumption is often referred to as an exponential 
survival function.

(3) Reliability analysis: When analyzing the lifetime or failure rate of 
systems or components, the exponential distribution can be utilized if 
the failure rate remains constant or exponentially decreasing over time. 
It assumes that the failure events are independent and do not depend on 
prior events.

(4) Queueing systems: In some queueing configurations, where the service 
times follow an exponential distribution and the arrival process satisfies 
certain assumptions (e.g., Poisson arrivals), the exponential distribution 
can be used to model the waiting times in the system accurately.

One of the reasons for using the exponential distribution for the distribution 
of a time characteristic is when the defect rate in a process is very low. In this 
case, instead of using C-charts and U-charts for the number of defects, they 
consider the times between the occurrence of two consecutive defects and plot 
a control chart for these times (Kumar 2022). If the defect rate in the process is 
low, for example, less than 1000 defects per million, the time between obser-
ving defective products will be long. Under such conditions, most samples will 
be defect-free, and a control chart that constantly plots a statistic at zero does 
not provide much useful information. Therefore, when the defect rates are 
expressed as parts per million (PPM), traditional C and U-charts are not 
effective. One way to address this issue is to use a new variable such as the 
time between consecutive defect observations (Kumar, Chakraborti, and 
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Castagliola 2022). The control chart for time between observations is one of 
the most successful methods for controlling processes with very low defect 
rates. Suppose defects or observations of interest follow a Poisson distribution. 
The choice of the Poisson distribution is commonly made in situations where 
we expect rare events to occur independently over a specific time or space 
interval. In our study, we have chosen to assume a Poisson distribution for 
defects or observations of interest based on the nature of the phenomena 
under investigation and previous research in the field. By assuming the 
Poisson distribution, we aim to simplify the analysis and make reasonable 
approximations that align with existing knowledge in the field. In this case, the 
time between observations will have a probability distribution. In such con-
ditions, designing a control chart for time between observations involves 
a variable that follows an exponential distribution. However, the exponential 
distribution has high skewness, resulting in a highly asymmetric control chart 
(Montgomery 2020).

The exponential distribution is used in many fields, including reliability 
engineering (time-to-failure of components), queueing theory (inter-arrival 
times of customers in a queue), telecommunications (time between successive 
arrivals of messages or packets), physics (decay of radioactive materials), 
finance (time to default of bonds and financial instruments), biology (waiting 
time between cell divisions, mutations, and evolutionary events), and epide-
miology (time between infections during an epidemic).

Many researchers have focused on control charts for skewed type of quality 
characteristic. For example, Bai and Choi (1995) studied �X and R control 
charts for skewed qualities, while Choobineh and Ballard (1987) developed 
a control chart for skewed data using weighted variance. Also Morales and 
Arturo Panza (2022) and Figueiredo and Ivette Gomes (2013) presented 
control charts for skewed data following a skew-normal distribution, while Al- 
Nuaami, Akbar Heydari, and Jabbari Khamnei (2023) proposed control charts 
specifically for counting data with overdispersion.

Santiago and Smith (2013) investigated the t-chart assuming exponentially 
distributed quality characteristics and time until the first deviation. They 
approximated the quality characteristic distribution to a normal distribution 
using Nelson’s approximation (Nelson 1994) and constructed the appropriate 
control chart based on conventional 6σ (Shewhart) methods. Aslam et al. 
(2015) used a variable sampling model and the same approximation to nor-
malize feature distribution. Tavakoli and Akbar Heydari (2021) built an 
exponential control chart using Nelson’s approximation and integrated eco-
nomic statistical design with a loss function.

However, it is important to acknowledge that such approximations can 
introduce errors in the obtained results. With our research, we aim to address 
this issue by directly constructing a control chart for exponentially distributed 
quality characteristics, thereby circumventing the need for such 
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approximations. By eliminating the intermediate step of approximating to 
a normal distribution, we expect our proposed method to provide more 
accurate results. Thus, this paper proposes directly constructing a control 
chart for exponentially distributed features.

Control charts may have different purposes depending on the 
designer’s strategy and the type of design. These designs may focus on 
statistical or economic aspects, or both. Thus, control charts can be 
designed in three ways: statistical design (SD), economic design (ED), 
and/or statistical-economic design (ESD). Statistical designs have desirable 
statistical properties, but ignore the cost of production, which can be high 
in some situations. On the other hand, some designers try to minimize 
production costs in production processes. Such a design is referred to as 
ED design. Statistical design, however, produces charts that have a high 
power and a low probability of type Ӏ error, but the cost is disregarded 
and is higher compared to economic design. On the other hand, EDs 
focus only on the cost and ignore statistical features. In economic design, 
the cost of all factors of production and control is applied to a cost 
function, and then the design parameters are obtained so that this func-
tion is minimized.

Paying attention to each of these two schemes without considering the other 
makes the controller away from an optimal model and a correct decision. To solve 
this problem, economic-statistical design (ESD) was proposed. In ESD, some 
statistical restrictions are applied to the economic model to minimize the average 
cost per unit of time under these conditions. These limitations depend on the 
opinion and needs of the process designer. Also, combining the optimal features of 
control charts from an economic dimension, with statistical advantages which are 
considered in the statistical-economic design, while saving the costs, can also take 
into account the statistical requirements to maintain product quality.

Duncan (1956) conducted the first study on the economic design of �X 
control charts. Many researchers, such as (Duncan 1971; Lorenzen and 
Vance 1986), and (Banerjee and Rahim 1988), followed this approach in 
their research. But, none of the mere statistical or economic designs was 
optimal. The former approach had a high cost and the latter lacked 
statistically desirable features. To solve this problem, Saniga (1989) pre-
sented the economic-statistical design (ESD) for �X and R charts. Later on, 
many researchers, such as (Faraz, Kazemzadeh, and Saniga 2010; Prabhu, 
Montgomery, and Runger 1997; Yang and Rahim 2005; Zhang and Berardi  
1997), and (Tavakoli, Pourtaheri, and Moghadam 2017) applied this design 
to control charts. Recently (Ghanaatiyan, Amiri, and Sogandi 2017), pro-
posed a modified multivariate weighted moving average control chart based 
on ESD. Khadem and Bameni Moghadam (2019) studied the economic- 
statistical design of the �X control chart according to a modification of 
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Banerjee and Rahim’s cost model. To learn about the latest articles on the 
economic-statistical design of control charts, please refer to (Taji, Farughi, 
and Rasay 2022; Wan 2020), and (Heydari, Tavakoli, and Rahim 2023).

In conventional economic models, only the fixed values of costs of the 
process are usually considered and monitored. However, the higher the devia-
tion of the quality characteristic from the target value, the higher the cost of 
rework or defective product. Combining a loss function with the economic 
model leads to the conclusion that the greater the deviation from the ideal 
value, the higher the cost (loss), and the better the decision to continue or stop 
the process.

Safaei, Baradaran Kazemzadeh, and Niaki (2012) used Taguchi’s loss func-
tion in their economic models. They showed the unrealistic results of the no- 
loss models in the control chart under consideration. In addition, Pasha et al. 
(2017) examined the effect of the distribution of quality characteristics on the 
economic model of Banerjee and Rahim, which was combined with Taguchi’s 
loss function. Also, Pasha et al. (2018)examined the previous study under the 
economic model of Lorenzen and Vance. In the �X control chart (Celano, 
Faraz, and Saniga 2014), proposed an on-line scheme to monitor the process 
losses under Taguchi’s approach (Taguchi 1979, 1986; Taguchi, Elsayed, and 
Hsiang 1988).

Although control charts for exponential characteristics that do not rely on 
approximations have been studied by Chakraborti et al. (2014; Xie, Ngee Goh, 
and Ranjan 2002; Zhang, Megahed, and Woodall 2014), and others, but the 
economic and economic-statistical designs of an exponential-based control 
chart are not introduced yet. Therefore, in this paper, we aim to construct 
these types of control charts. This construction is carried out using four 
different schemes: statistical, economic, economic-statistical combined with 
Taguchi’s loss function, and economic-statistical without the application of 
a loss function. We anticipate that our new methodology, which involves 
constructing control charts directly using the exponential distribution, will 
outperform traditional approximation-based methodologies for quality char-
acteristics that follow the exponential distribution.

This paper introduces a novel approach to address the challenge of quality 
characteristics that follow an exponential distribution, which has significant 
implications for decision-making in various fields. Unlike existing approaches 
that rely on approximations, this manuscript proposes the development of 
control charts specifically designed for exponential characteristics without the 
need for conversions. This departure from traditional methods is a key inno-
vative insight of this research.

The manuscript presents four different schemes for constructing these 
control charts: a statistical scheme, an economic scheme, an economic- 
statistical scheme combined with Taguchi’s loss function, and an economic- 
statistical scheme without the application of a loss function. The utilization of 

APPLIED ARTIFICIAL INTELLIGENCE e2322362-5



the artificial bee colony algorithm to determine optimal design parameter 
values for each scheme further contributes to the novelty of this work.

Additionally, a sensitivity analysis is conducted to investigate the impact of 
design parameters on each proposed control chart design. The practical 
implementation of the control charts is demonstrated through a numerical 
example, showcasing their effectiveness in enhancing decision-making accu-
racy and reliability in scenarios involving exponentially distributed quality 
characteristics.

By addressing the limitations of existing approaches and offering new 
control chart designs tailored to exponential characteristics, this manuscript 
provides valuable insights and contributes to advancing the field of decision- 
making in quality control.

Since in each approach we aimed to find the optimal values of the design 
parameters to meet the desired conditions, the optimization problems were 
coded in MATLAB by using the artificial bee colony (ABC) algorithm.

In the next section, we obtain control limits for exponentially distributed 
quality characteristics. In Section 3, we introduce and present the economic 
design as well as Taguchi’s loss function integrated with the economic model. 
In the fourth section, we determine the optimal design parameters based on 
the four considered schemes.

Statistical, Economic, and Economic-Statistical Designs of Control Charts 
for Exponentially Distributed, Individual Quality Characteristics

Most of the studies conducted on the development of economic models for 
control charts have assumed the normality of quality characteristics. However, 
many quality characteristics such as longevity, chemical characteristics, etc., 
are exponentially distributed. Incidentally, characteristics with these features 
are important.

The symbols and abbreviations used in this paper are summarized in 
Table 1.

The region between the upper control limit (UCL), abbreviated as k2, and 
the lower control limit (LCL), represented by k1, is known as the control 
region. Out of this region is referred to as the out-of-control (action) region. 
At each period of sampling, a sample of size 1 is taken from the production 
process at h units of time, which is then compared with the control limits. If 
the value of the quality characteristic (X) (the taken sample) is located in the 
control range, the process is considered in the in-control state. Otherwise, the 
process is considered in the out-of-control state, and the search for the cause of 
deviation begins. These control limits are obtained by considering the expo-
nential distribution for the quality characteristic X.

Thus, it is assumed that X has an exponential distribution with the probability 
density function (pdf) given by 
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f xð Þ ¼ θe� θx; θ> 0; x> 0 ;

which can be represented as X~E θð Þ. In the in-control state, X~E θ0ð Þ, and in the 
out-of-control state, X~E θ1ð Þ, where θ1 ¼ δθ0. The parameters θ0 and δ > 0 are 
assumed to be known, while the control limits and sampling intervals should 
be obtained based on the considered design. In addition, it is assumed that the 
assignable cause occurs based on a Poisson process with an average of λ 
observations per hour. In other words, assuming that the process starts in 
the in-control mode, the length of time the process remains in this state will be 
an exponential random variable with an average of 1=λ hours.

Table 1. Symbols and abbreviations used in the content.
Symbol or 
abbreviation Description

n The sample size
h The time interval between each sample
k1 Lower control limit (LCL)
k2 Upper control limit (UCL)
X The distribution of quality characteristic
θ0 The exponential distribution parameter desired for X , in the in-control state
θ1 The exponential distribution parameter desired for X , in the out-of-control state
λ The average of assignable cause occurrence rate based on a Poisson process
δ The rate of change in parameter θ, when the process goes from in-control to out-of-control 

state.
ABC Artificial Bee Colony
ARL0 The average number of samples required to receive an alarm when the process is in-control.
ARL1 The average number of samples required to receive an alarm when the process is out-of- 

control.
α The type Ӏ error of control charts
β The type ӀӀ error of control charts
T The time of the occurrence of an assignable cause
τ The expected time length of being in control state, in the sampling interval that shift from 

in-control to out-of-control state occurs.
g The time required to review and interpret an individual sample
d The expected time to detect a deviation in the out-of-control state and correct the process
V0 The average income per hour as long as the process is in-control
V1 The average income per hour as long as the process is out-of-control
b The fixed sampling cost
c The cost per sampling unit
y The cost of each false alarm
W The expected cost of process repair and correction
E Tð Þ The expected time of production cycle
E Cð Þ The expected cost of production cycle
C0 The average costs of the process when the process is in the in-control state
C1 The average costs of the process when the process is in the out-of-control state
E CHð Þ The average cost of the process per hour
k The cost of reworking in the Taguchi loss function
L0 The average costs of production of each defective product in the in-control state
L1 The average costs of production of each defective product in the out-of-control state
n� The number of products produced per hour
� The target value for a quality characteristic
Δ The tolerance limit of the quality characteristic
A The cost of reworking or scrapping a product unit
NIC The expected net income
NIH The expected net income per hour
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Statistical Design Based on the Average Run Length (ARL) Approach

In order to statistically compare different control charts, it is common to 
use the ARL average length criterion. In fact, ARL is the average number of 
samples required to receive an alarm that the process is out of control. It is 
clear that when the process is in the in-control state, we expect a large ARL. 
But when the process is in the out-of-control state, we obtain a more 
powerful chart that has a smaller ARL compared to the other methods. 
Accordingly, one of the statistical control methods of the process is the 
control of ARL. In this method, the in-control ARL (ARL0) is usually fixed 
(for example, 370) and the controller seeks to find the design parameters so 
that the out-of-control ARL (ARL1) is minimized. By definition, when the 
process is in the in-control state, the ARL value can be obtained using the 
following relation: 

ARL0 ¼
1
α 

where α is the type Ӏ error. In the exponential control chart with an individual 
sample, this is equal to 

α ¼ P ½X< LCL� [½X >UCL�jθ ¼ θ0ð Þ ¼ 1 � e� θ0 LCLð Þ þ e� θ0 UCLð Þ:

When the process is in the out-of-control state, ARL is equal to 

ARL1 ¼
1

1 � β
: (1) 

Here, β is the type ӀӀ error that can be obtained as follows: 

β ¼ Pð½LCL<X<UCL�jθ ¼ θ1Þ ¼ e� θ1 LCLð Þ � e� θ1 UCLð Þ:

Based on this, the level of the type Ӏ error is usually considered to be 0:0027, 
which yields ARL0 ¼ 370. Also, in similar problems, we seek to maintain the 
type ӀӀ error at the level of .75, and as a result, ARL1 ¼ 4. Therefore, the 
statistical design of the control chart will be such that ARL0 ¼ 370 is fixed, 
and the design parameters (n, h, k1 and k2) are obtained so that ARL1 is less 
than a preset desired value. Therefore, the optimization process can be written 
as follows. 

Min ARL1 

s:t:

ARL0 ¼ 370 

β � 0:75: (2) 
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This optimization problem was coded in MATLAB and the results were 
obtained for different values of the input parameters and process shift using 
the ABC algorithm. The results are presented in Table 3.

In order to compare the results of statistical design with other methods 
of designing control charts, such as economic design and economic- 
statistical, both with and without the presence of Taguchi loss function, it 
is necessary to explain that we have provided all the numerical results in 
Section 4.

A Modified Version of Duncan’s Economic Model

In this section, we discuss one of the most widely studied economic models. In 
1956, Duncan published a paper titled “The Economic Design of �X Charts 
used to Maintain Current Control of a Process.” This article was the main 
motivator for most of the subsequent research conducted in this field. Duncan 
found that the selection of parameters such as sample size, control limits, and 
sampling interval varied at different costs.

If we consider the control chart based on Duncan’s model, then we need to 
assume that the process starts in the in-control state with the parameter θ0, 
and that an assignable cause which occurs randomly, changes the distribution 
of the parameter of quality characteristic (X) from θ0 to θ1 ¼ δθ0.

In this model, the cost of eliminating an assignable cause and repairing the 
process is not deducted from the net income and the process is continuous. This 
means that the process continues as long as the search for the assignable cause is 
in progress. Figure 1 shows the quality cycle in Duncan’s economic model.

This quality cycle consists of two periods, namely, the period when the 
process is in the in-control state, and the period when the process is in the out- 
of-control state. The process is assumed to be in the in-control state from the 
beginning of production and continues until an assignable cause occurs, and 
after this occurrence, the process enters the out-of-control state. This latter 
state in turn consists of three periods, namely, the time it takes for a reason 
deviation to occur until the alarm time, the time it takes to sample and check 
the chart, and the time it takes to detect a reason deviation and correct it. The 
last two times are shown together in Figure 1.

The Expected Time of the Quality Cycle in Duncan’s Economic Model
The expected time of the quality cycle for this process is equal to the mathe-
matical expectation of the sum of the four cycles expressed in the quality cycle. 
In this regard, the expected time for each period can be described as follows.

a- The expected time of the in-control period

Since the time of the in-control state follows the exponential distribution, 
the expected time of the in-control phase or the average duration of the 
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process in the in-control state is equal to the average exponential distribution, 
which is equal to 1=λ.

b- The time expected to receive an alarm

Assume that the random variable T represents the time of the occurrence of 
an assignable cause. In this case, if the samples are taken from the process once 
every h hour and an assignable cause occurs between the ith and iþ 1ð Þth 
samples, the average time to observe this reason deviation at this distance is 
equal to 

τ ¼ E T � ihjih<T < iþ 1ð Þhð Þ

¼ ò
iþ1ð Þh

ih t � ihð Þf tjih<T < iþ 1ð Þhð Þdt:

For more information, see Figure 1. According to the definition of the condi-
tional probability density function: 

f tjih<T < iþ 1ð Þhð Þ ¼
f tð Þ

ò
iþ1ð Þh

ih f tð Þdt
:

According to the hypotheses of Duncan’s model, T has an exponential dis-
tribution with an average of 1=λ. Therefore, the exact denominator of the 

Figure 1. Quality cycle in Duncan’s economic model.
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above fraction is e� λ ihð Þ � e� λ iþ1ð ÞhÞ, which does not depend on t and can be 
taken out of the integral in the calculation of τ. Therefore, 

τ ¼
ò

iþ1ð Þh
ih e� λ ihð Þλ t � ihð Þdt

ò
iþ1ð Þh

ih e� λ ihð Þλdt
¼

1 � 1þ λhð Þe� λh

λ 1 � e� λhð Þ
�

h
2
�

λh2

12
:

When an assignable cause occurs, the probability of finding it in the next 
sample is 

p ¼ P X< LCL[>UCLjθ ¼ θ1ð Þ:

If the parameter of quality characteristic changes from θ0 to θ1, then it is 
X,E θ1ð Þ. So, in this case, 

p ¼ P X< LCLjθ1ð Þ þ P X >UCLjθ1ð Þ

¼ P X< LCLjθ1ð Þ þ 1 � P X<UCLjθ1ð Þ

¼ 1 � e� θ1 LCLð Þ þ 1 � 1 � e� θ1 UCLð Þ
� �

¼ 1 � e� θ1 LCLð Þ þ e� θ1 UCLð Þ:

Therefore, the number of samples expected to observe an assignable cause is 
a geometric random variable with an average of 1=p. So, the expected time to 
receive an alarm (the average time when the process is in the out-of-control 
state) is equal to 

h
p
�

h
2
�

λh2

12

� �

¼ h
1
p
�

1
2
þ

λh
12

� �

:

c- The expected time for sample selection and interpretation of the results

The time required to review and interpret an individual sample (single 
observation) is considered to be g. Therefore, for any process with 
a sample size of n, the expected time to select a sample and interpret is 
equal to gn.

d- The expected time for repair

The expected time to detect a deviation in the out-of-control state and 
correct the process is considered to be d.

Therefore, using the above discussion, the expected time of a cycle can be 
obtained as follows. 

E Tð Þ ¼
1
λ
þ h

1
p
�

1
2
þ

λh
12

� �

þ gnþ d: (3) 
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The Expected Cost of the Quality Cycle in Duncan’s Economic Model
Duncan expressed a simple economic principle for his model: the average net 
income equals total income minus total cost, in which total income is divided 
into two parts, namely, income as long as the process is under control V0ð Þ, 
and income as long as the process is out of control V1ð Þ. It also divides the total 
cost into three parts: the cost of sampling, the false alarm and, process 
correction and repair. Sampling cost is determined according to the type of 
product and the number of samples taken at each sampling interval. The cost 
of a false alarm is the cost of searching for a deviation when no one exists. The 
cost of correction is the cost of finding a reason for a deviation when there is 
a deviation. Also, the cost of repair is a cost that, after discovering the cause of 
the deviation, tries to correct the process and return it to the in-control state. 
Therefore, net income can be considered as the algebraic sum of income and 
deduction of costs:
a- The expected income as long as the process is in the in-control state

Since the expected time that the process is under control is equal to 1=λ, the 
expected income as long as the process is in the in-control state is equal 
to V0=λ.

b- The expected income as long as the process is out of control

Since the expected time during the out-of-control state for each cycle is 

h
1
p
�

1
2
þ

λh
12

� �

þ gnþ d:

the expected income in the out-of-control period is as follows 

V1 h
1
p
�

1
2
þ

λh
12

� �

þ gnþ d
� �

:

c- The expected cost of sampling

Since the expected number of sampling times per cycle is equal to E Tð Þð Þ=h, 
and the expected cost per sampling time is equal to bþ cnð Þ, where b is the 
fixed sampling cost, c is the cost per sampling unit, and n is the number of 
samples taken each time, the expected cost of sampling in each period can be 
obtained as follows. 

E Tð Þ
h

bþ cnð Þ

d- The expected cost of false alarms

This value is equal to the expected number of false alarms per period multi-
plied by the cost of the false alarm. The expected number of false alarms in each 
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period is calculated by multiplying the probability of false alarms by the 
expected number of sampling times before the process gets out of control. 
The expected number of sampling times before the process gets out of control is 

X1

i¼0
iPðih<T < iþ 1ð ÞhÞ:

By considering the exponential distribution for the out-of-control times, this 
can be calculated as follows. 

X1

i¼0
ò

iþ1ð Þh
ih iλe� λtdt ¼

X1

i¼0
i e� ihλ � e� iþ1ð Þhλ
� �

¼ 1 � e� λh� �X1

i¼0
ie� ihλ

¼
e� λh

1 � e� λh 

As shown by the numerical results of Duncan (1956), if one can ignore 
expressions with a degree of λ2h2 or higher, the above expression is approxi-
mately equal to 1

λh. The probability of a false alarm is the probability of the type 
Ӏ error (αÞ, which can be calculated as follows: 

α ¼ P ½X< LCL� [½X >UCL�jθ ¼ θ0ð Þ ¼ 1 � e� θ0 LCLð Þ þ e� θ0 UCLð Þ:

Therefore, the expected number of false alarms in each period is equal to α=λh. 
Since the cost of each false alarm is y, the expected cost of false alarms is equal 
to αy=λh.

e- The expected cost of process repair and correction

This value is considered equal to W.
As a result, the expected net income is equal to 

E NICð Þ ¼
V0

λ
þ V1 h

1
p
�

1
2
þ

λh
12

� �

þ gnþ d
� �

�
E Tð Þ

h
bþ ncð Þ �

αy
λh
� W:

(4) 

In addition, the net income per hour can be obtained as follows: 

E NIHð Þ ¼
E NICð Þ

E Tð Þ
¼ V0 � l: (5) 

Here, l is a cost loss function that can be obtained using equations (3–5) as follows: 

l ¼
bþ cn

h
þ

λMBþ αy
h λW

1þ λB
:

Herein, 

B ¼ h
1
p
�

1
2
þ

λh
12

� �

þ gnþ d 

APPLIED ARTIFICIAL INTELLIGENCE e2322362-13



and 

M ¼ V0 � V1:

Since in the next section we seek to combine the economic model with 
the loss function, and for this purpose the economic model should be 
expressed based on the cost and not income, we modified Equation (4) as 
follows 

E Cð Þ ¼
C0

λ
þ C1 h

1
p
�

1
2
þ

λh
12

� �

þ gnþ d
� �

þ
E Tð Þ

h
bþ ncð Þ þ

αy
λh
þW:

(6) 

Here, C0 and C1 are the average costs of the process when the process is in the 
in-control and out-of-control phases, respectively. Therefore, the average cost 
of the process per hour is equal to 

E CHð Þ ¼
E Cð Þ
E Tð Þ

: (7) 

Accordingly, to perform the economic design of the considered control charts 
based on Duncan’s economic model, we determine the design parameters in 
such a way that the cost function E CHð Þ is minimized. According to the above 
discussion, the input parameters of the economic design based on Duncan’s 
economic model are λ, C0, C1, g, d, c, b, y and W.

This optimization problem was coded in MATLAB and the results for 
different values of the input parameters and process shift were obtained 
using the ABC algorithm. The results are shown in Table 4.

The Economic-Statistical Design

As expressed in the first section, in the definition of economic-statistical 
design (ESD), if some statistical restrictions are applied to the economic 
design, the process design is considered as economic-statistical. In this sub-
section, we present an economic-statistical design by using the last two sub-
sections: the average run length approach (which is a statistical feature) and 
a modification of Duncan’s economic model. To do so, we apply the con-
straints considered in the statistical design to the economic model. This 
optimization problem can be written as follows: 

Min E CHð Þ

s:t:

ARL0 ¼ 370 
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β � 0:75: (8) 

The optimization problem was coded in MATLAB and the results were 
obtained for different values of the input parameters and process shift using 
the ABC algorithm. The results are shown in Table 5.

The Loss Function and Its Combination with the Cost Model

As seen in the previous section, the cost function was considered based on some 
fixed values. However, many hidden factors and unforeseen costs may arise 
during the process. On the other hand, the cost of a defective product depends 
on how defective it is, which may be remedied with a brief rework or it may 
turn into waste, which is also variable. To address this weakness, a loss function 
is selected according to the process and combined with the economic model.

One of the most common loss functions is Taguchi’s loss function, 
which is based on Taguchi’s definition. In (Taguchi 1986), Taguchi put 
a cost factor (k) in the quadratic loss function called the cost of 
reworking and scrap cost.

The method of combining the loss function with the cost model is that if we 
consider L Xð Þ as the desired loss function and define L0 and L1 as the average 
costs of production of each defective product in the in-control and out-of- 
control conditions, then C0 and C1 in relation (4) become C0 ¼ n�:L0 and 
C1 ¼ n�:L1; respectively:Here, n� equals the number of products produced 
per hour, L0 ¼ Eθ0 L Xð Þð Þ) and L1 ¼ Eθ1 L Xð Þð Þ.

According to Taguchi’s philosophy of loss function, the greater the degree of 
deviation of the quality characteristic from the ideal value, the higher the social 
cost of quality. In other words, if we consider the target value for a quality 
characteristic as �, the quality loss becomes zero when the value of the quality 
characteristic is equal to �, and it is clear that the distance from � increases the cost.

With this description, Taguchi’s loss function was defined as 
L Xð Þ ¼ k x � �ð Þ

2. Herein, k is the loss coefficient which is equal to A=Δ2, 
wherein Δ is the tolerance limit of x, and A is the cost of reworking or scrapping 
a product unit. Given that the quality characteristics in the in-control and out-of 
-control states are exponentially distributed with the probability density func-
tion f xð Þ ¼ θe� θx and the parameters θ0 and θ1 ¼ δθ0, respectively, we obtain 

L0 ¼ ò
1

0 k x � �ð Þ
2f xð Þdx 

¼ k ò
1

0 x �
1
θ0

� �

þ
1
θ0
� �

� �� �2

f xð Þdx 

¼ k Var Xjθ0ð Þ þ
1
θ0
� �

� �2

þ 2
1
θ0
� �

� �

E X �
1
θ0

� �" #
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¼ k Var Xjθ0ð Þ þ
1
θ0
� �

� �2
" #

¼ k
1

θ0
2 þ

1
θ0
� �

� �2
" #

Similarly, under the opposite assumption, 

L1 ¼ k Var Xjθ1ð Þ þ
1
θ1
� �

� �2
" #

¼ k
1

θ1
2 þ

1
θ1
� �

� �2
" #

:

According to what we discussed so far, by rewriting relation (4) based on L0 
and L1 we obtain 

E ICð Þ ¼
n�:L0

λ
þ n�:L1 h

1
p
�

1
2
þ

λh
12

� �

þ gnþ d
� �

þ
E Tð Þ

h
bþ ncð Þ þ

αy
λh

þW:

(9) 

Now, the optimization problem can be written as follows: 

MinE ICð Þ

s:t:

ARL0 ¼ 370 

β � 0:75: (10) 

This optimization problem was coded in MATLAB and the results were 
obtained for different values of the input parameters and process shift using 
the genetic algorithm. The results are presented in Table 5.

Sensitivity Analysis and Numerical Results

In this section, we will examine the effect of each input parameter on the 
designs, particularly focusing on the rate of process shift and its impact on the 
results. Additionally, we will demonstrate how to implement the designs using 
a real numerical example.

Optimization Method

The optimization problem of Equations 2, 7, 8, and 10 can be formulated as 
a nonlinear constrained optimization problem, which is solved using the 
Artificial Bee Colony (ABC) algorithm to obtain optimal design parameters. 
In metaheuristic algorithms, only a range of input parameters is considered, 
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and within those ranges, the algorithm seeks to find the best solution for the 
objective. The algorithm randomly selects values within the specified range 
and calculates the objective parameter based on those values. Karaboga (2005) 
introduced ABC, which is inspired by the intelligent behavior of honeybee 
swarms. ABC consists of different types of bees: employed bees, onlooker bees, 
and scout bees. Employed bees remain on a food source and store information 
about its neighborhood. Onlooker bees receive information from employed 
bees and choose a food source to gather nectar from. Scout bees are respon-
sible for discovering new food sources. The ABC algorithm follows the 
following procedures:

(1) Initialization by moving the scouts.
(2) Movement of the onlookers.
(3) Scouts move only when the counters of employed bees reach their 

limits.
(4) Updating the memory.
(5) Checking the termination condition.

For more information on this topic, refer to the works of (Karaboga 2005; 
Karaboga and Akay 2009; Karaboga and Basturk 2008).

In this article, to solve the optimization problem, the parameters that should 
be determined in the algorithm are as follows;

The number of colony size (employed bees+onlooker bees) = 20,
The number of food sources equals the half of the colony size = 10,
The number of cycles for foraging (stopping criteria) = 30,

Sensitivity Analysis

To study the effect of each design parameter (c, b, W, g, d, λ, θ0, δ, k, C0, C1, 
and y) on the designs introduced in the previous sections (statistical, eco-
nomic, economic-statistical with Taguchi’s loss function, and without a loss 
function), we considered 48 different combinations of levels for the design 
parameters. These values are presented in Table 2.

In rows 1 to 26 of Table 2, different values of input parameters are given. 
According to these scenarios, statistical and economic results are determined 
based on statistical design (the average run length approach), economic design 
(Duncan’s modified economic model), economic-statistical design (based on 
combining the average run length approach and modified Duncan’s economic 
model), and the economic-statistical approach integrated with the loss func-
tion (Taguchi’s loss function). In rows 27 to 33, we examine the effect of more 
cases of θ0 values on the results. In rows 34 to 42, several cases of process shift 
(different values of the process shift coefficient δ) are examined to evaluate the 
performance of each method under different shifts. In rows 43 to 48, the effect 
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of the cost coefficient of the loss function (k) on the outputs is investigated. In 
the three initial designs that are not integrated with the loss function, rows 43 
to 48 are not evaluated.

It should be noted that in the first row, which is considered as a control, 
the fixed cost coefficients of the economic model (C0 and C1) and the cost 

Table 2. Different scenarios considered for the input parameters of the design.
Row c b W g d λ θ0 δ k C0 C1 y

1 5 50 500 50 80 0.01 1 1 500 500 2000 100
2 5 50 500 50 80 0.01 1 1.2 500 500 2000 100
3 2.5 50 500 50 80 0.01 1 1.2 500 500 2000 100
4 10 50 500 50 80 0.01 1 1.2 500 500 2000 100
5 5 25 500 50 80 0.01 1 1.2 500 500 2000 100
6 5 100 500 50 80 0.01 1 1.2 500 500 2000 100
7 5 50 250 50 80 0.01 1 1.2 500 500 2000 100
8 5 50 1000 50 80 0.01 1 1.2 500 500 2000 100
9 5 50 500 25 80 0.01 1 1.2 500 500 2000 100
10 5 50 500 100 80 0.01 1 1.2 500 500 2000 100
11 5 50 500 50 40 0.01 1 1.2 500 500 2000 100
12 5 50 500 50 160 0.01 1 1.2 500 500 2000 100
13 5 50 500 50 80 0.005 1 1.2 500 500 2000 100
14 5 50 500 50 80 0.02 1 1.2 500 500 2000 100
15 5 50 500 50 80 0.1 1 1 500 500 2000 100
16 5 50 500 50 80 10 1 1 500 500 2000 100
17 5 50 500 50 80 50 1 1 500 500 2000 100
18 5 50 500 50 80 100 1 1 500 500 2000 100
19 5 50 500 50 80 200 1 1 500 500 2000 100
20 5 50 500 50 80 0.01 0.5 1.2 500 500 2000 100
21 5 50 500 50 80 0.01 2 1.2 500 500 2000 100
22 5 50 500 50 80 0.01 1 0.6 500 500 2000 100
23 5 50 500 50 80 0.01 1 2.4 500 500 2000 100
24 5 50 500 50 80 0.01 1 1.2 250 500 2000 100
25 5 50 500 50 80 0.01 1 1.2 1000 500 2000 100
26 5 50 500 50 80 0.01 1 1.2 500 250 2000 100
27 5 50 500 50 80 0.01 1 1.2 500 1000 2000 100
28 5 50 500 50 80 0.01 1 1.2 500 500 1000 100
29 5 50 500 50 80 0.01 1 1.2 500 500 4000 100
30 5 50 500 50 80 0.01 1 1.2 500 500 2000 50
31 5 50 500 50 80 0.01 1 1.2 500 500 2000 200
32 5 50 500 50 80 0.01 0.2 1.2 500 500 2000 100
33 5 50 500 50 80 0.01 0.6 1.2 500 500 2000 100
34 5 50 500 50 80 0.01 0.8 1.2 500 500 2000 100
35 5 50 500 50 80 0.01 1.4 1.2 500 500 2000 100
36 5 50 500 50 80 0.01 1.6 1.2 500 500 2000 100
37 5 50 500 50 80 0.01 1.8 1.2 500 500 2000 100
38 5 50 500 50 80 0.01 2 1.2 500 500 2000 100
39 5 50 500 50 80 0.01 1 0.2 500 500 2000 100
40 5 50 500 50 80 0.01 1 0.4 500 500 2000 100
41 5 50 500 50 80 0.01 1 0.8 500 500 2000 100
42 5 50 500 50 80 0.01 1 1 500 500 2000 100
43 5 50 500 50 80 0.01 1 1.5 500 500 2000 100
44 5 50 500 50 80 0.01 1 1.8 500 500 2000 100
45 5 50 500 50 80 0.01 1 2 500 500 2000 100
46 5 50 500 50 80 0.01 1 4 500 500 2000 100
47 5 50 500 50 80 0.01 1 6 500 500 2000 100
48 5 50 500 50 80 0.01 1 1.2 100 500 2000 100
49 5 50 500 50 80 0.01 1 1.2 200 500 2000 100
50 5 50 500 50 80 0.01 1 1.2 400 500 2000 100
51 5 50 500 50 80 0.01 1 1.2 700 500 2000 100
52 5 50 500 50 80 0.01 1 1.2 1000 500 2000 100
53 5 50 500 50 80 0.01 1 1.2 2000 500 2000 100
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coefficient of the loss function (k) were determined in such a way that when 
no changes were made in the process (δ ¼ 1), the cost of the process was 
equal in the two approaches (the integrated and non-integrated economic 
models).

Table 3. The optimal values, statistical and economic parameters 
under the statistical design.

Row h k1 k2 MinARL1

1 31 3.22 3.259 1.001530592
2 17 3.805 3.844 1.000475709
3 42 3.922 3.961 1.00041337
4 7 3.61 3.649 1.000601202
5 40 3.493 3.532 1.000691886
6 22 3.727 3.766 1.00052241
7 46 3.922 3.961 1.00041337
8 6 3.688 3.727 1.000547453
9 42 3.532 3.571 1.000660231
10 9 3.922 3.961 1.00041337
11 9 3.922 3.961 1.00041337
12 12 3.922 3.961 1.00041337
13 47 3.649 3.688 1.000573698
14 34 3.688 3.727 1.000547453
15 31 3.688 3.727 1.000957991
16 24 3.454 3.493 1.001210865
17 8 3.805 3.844 1.000852124
18 44 3.454 3.493 1.001210865
19 5 3.766 3.805 1.000886043
20 30 3.922 3.961 1.002203529
21 38 3.493 3.532 1.000020433
22 13 3.688 3.727 1.002536518
23 19 3.493 3.532 1.000020433
24 22 3.688 3.727 1.000547453
25 44 3.766 3.805 1.000498512
26 43 3.922 3.961 1.00041337
27 32 3.883 3.922 1.000433184
28 18 3.844 3.883 1.000453948
29 14 3.883 3.961 1.000846912
30 47 3.805 3.883 1.000930089
31 32 3.883 3.922 1.000433184
32 14 3.649 3.688 1.003895793
33 37 3.727 3.766 1.001895541
34 14 3.922 3.961 1.000851982
35 28 3.844 3.883 1.000099455
36 37 3.766 3.805 1.000052236
37 31 3.688 3.727 1.000028038
38 25 3.883 3.922 1.000008014
39 18 3.61 3.649 1.003788642
40 12 3.922 3.961 1.003234617
41 45 3.142 3.181 1.002493654
42 15 3.922 3.961 1.000757966
43 15 3.922 3.961 1.000158354
44 28 3.727 3.805 1.000159881
45 34 3.805 3.844 1.000037179
46 42 3.883 3.961 1.000000048
47 35 3.727 3.766 1
48 32 3.649 3.688 1.000573698
49 13 3.649 3.688 1.000573698
50 42 3.922 3.961 1.00041337
51 40 3.727 3.766 1.00052241
52 24 3.688 3.727 1.000547453
53 45 3.922 3.961 1.00041337
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Using the ABC algorithm for Equations 2, 7, 8, and 10, we computed 
the optimal values of statistical, economic, and economic-statistical 
combined with Taguchi’s loss function, both with and without applying 

Table 4. The optimal values, statistical and economic parameters 
under the economic design.

Row h k1 k2 LOSS

1 6 3.844 3.883 1368.327
2 6 3.727 3.805 1368.33
3 6 3.922 3.961 1367.904
4 6 3.805 3.844 1369.155
5 4 3.727 3.766 1363.612
6 8 3.727 3.766 1375.316
7 6 3.103 3.142 1367.259
8 6 3.883 3.922 1370.466
9 5 3.61 3.649 1291.251
10 7 3.649 3.688 1481.27
11 5 3.922 3.961 1235.17
12 8 3.61 3.649 1531.536
13 6 3.922 3.961 1110.787
14 7 3.571 3.61 1602.568
15 11 3.766 3.805 1906.239
16 50 0.1 3.961 2001.234
17 50 0.1 3.961 2001.143
18 50 0.1 3.961 2001.123
19 50 0.1 3.961 2001.112
20 6 3.727 3.766 1368.354
21 6 3.337 3.376 1368.314
22 6 3.454 3.493 1368.362
23 6 3.883 3.922 1368.314
24 6 3.766 3.805 1368.322
25 6 3.454 3.493 1368.326
26 6 3.454 3.493 1261.045
27 7 3.532 3.571 1582.625
28 10 3.805 3.844 796.0891
29 4 3.61 3.649 2507.852
30 6 3.922 3.961 1367.973
31 6 3.844 3.883 1369.016
32 6 3.922 3.961 1368.374
33 6 3.922 3.961 1368.341
34 6 3.532 3.571 1368.334
35 6 3.922 3.961 1368.315
36 6 3.571 3.61 1368.315
37 6 3.883 3.922 1368.314
38 6 3.727 3.766 1368.314
39 6 3.766 3.805 1368.374
40 6 3.922 3.961 1368.367
41 6 3.454 3.493 1368.346
42 6 3.766 3.805 1368.328
43 6 3.883 3.922 1368.316
44 6 3.844 3.883 1368.315
45 6 3.883 3.922 1368.314
46 6 3.688 3.727 1368.314
47 6 3.844 3.883 1368.314
48 6 3.415 3.454 1368.326
49 6 3.571 3.61 1368.324
50 6 3.103 3.142 1368.332
51 6 3.805 3.844 1368.321
52 6 3.688 3.727 1368.323
53 6 3.922 3.961 1368.32

e2322362-20 M. TAVAKOLI ET AL.



a loss function, for each row of Table 2. The results are presented in 
Tables 3–6, respectively.

Table 5. The optimal values, statistical and economic parameters under the economic- 
statistical design.

Row h k1 k2 ARL1 LOSS

1 6 3.883 3.922 1.000788134 1368.326562
2 6 3.883 3.922 1.000433184 1368.320705
3 6 3.766 3.805 1.000498512 1367.905117
4 6 3.298 3.337 1.000874458 1369.16132
5 4 3.727 3.766 1.00052241 1363.61177
6 8 3.415 3.454 1.000759826 1375.321125
7 6 3.922 3.961 1.00041337 1367.247567
8 6 3.922 3.961 1.00041337 1370.466002
9 5 3.571 3.61 1.000630025 1291.251865
10 7 3.22 3.259 1.000960342 1481.27528
11 5 3.532 3.571 1.000660231 1235.17519
12 8 3.805 3.844 1.000475709 1531.534747
13 6 3.883 3.922 1.000433184 1110.78772
14 7 3.454 3.493 1.00072506 1602.569162
15 11 3.532 3.571 1.001119906 1906.240543
16 50 1.348 2.362 1.19836211 2001.25627
17 50 1.621 3.454 1.199158659 2001.144442
18 50 1.621 3.454 1.199158659 2001.123104
19 50 1.66 3.727 1.19914725 2001.111775
20 6 3.883 3.922 1.002255817 1368.350778
21 6 3.844 3.883 1.0000088 1368.313703
22 6 3.844 3.883 1.002309349 1368.351661
23 6 3.688 3.727 1.000012796 1368.313769
24 6 3.883 3.922 1.000433184 1368.320705
25 6 3.61 3.649 1.000601202 1368.323478
26 6 3.922 3.961 1.00041337 1261.039196
27 7 3.142 3.181 1.001054671 1582.630174
28 10 3.688 3.727 1.000547453 796.0897756
29 4 3.688 3.727 1.000547453 2507.85076
30 6 3.493 3.532 1.000691886 1367.977385
31 6 3.766 3.805 1.000498512 1369.016964
32 6 3.805 3.844 1.003752094 1368.375463
33 6 3.493 3.532 1.002244162 1368.350585
34 6 3.922 3.961 1.000851982 1368.327616
35 6 3.649 3.766 1.000388433 1368.319967
36 6 3.571 3.61 1.000075959 1368.314811
37 6 3.571 3.61 1.000036099 1368.314153
38 6 3.61 3.649 1.000015431 1368.313812
39 6 2.908 2.947 1.004362211 1368.385528
40 6 3.922 3.961 1.003234617 1368.366926
41 6 3.532 3.571 1.00182409 1368.343655
42 6 3.532 3.571 1.001119906 1368.332036
43 6 3.766 3.805 1.000200112 1368.31686
44 6 3.922 3.961 1.000058246 1368.314519
45 6 3.571 3.61 1.000059369 1368.314537
46 6 3.571 3.883 1.000000446 1368.313565
47 6 3.649 3.727 1 1368.313558
48 6 3.571 3.61 1.000630025 1368.323953
49 6 3.844 3.883 1.000453948 1368.321048
50 6 3.532 3.571 1.000660231 1368.324452
51 6 3.337 3.376 1.000834443 1368.327326
52 6 3.727 3.766 1.00052241 1368.322178
53 6 3.922 3.961 1.00041337 1368.320378
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In Table 3, MinARL1 is calculated using Equation 2, and the parameter 
values of the model for which ARL1 is minimized (i.e., ArgMin h;k1;k2ð ÞARL1) are 
also given in Table 3.

Table 6. The optimal values, statistical and economic parameters under the economic- 
statistical design integrated with Taguchi’s loss function.

Row h k1 k2 ARL1 LOSS

1 24 1.27 2.167 1.199487998 506.9344079
2 50 1.348 2.869 1.199614967 421.1441162
3 50 1.387 3.142 1.199416645 421.0963045
4 50 .841 1.348 1.199236679 421.2482904
5 50 1.426 3.532 1.199354586 420.6469893
6 50 1.348 2.869 1.199614967 422.1441162
7 50 1.387 3.142 1.199416645 420.2101648
8 50 1.426 3.532 1.199354586 423.0192904
9 50 1.426 3.532 1.199354586 427.234122
10 50 1.348 2.869 1.199614967 411.8505682
11 50 1.426 3.532 1.199354586 431.5298305
12 50 1.348 2.869 1.199614967 407.5597649
13 50 .685 1.075 1.196574287 446.8798337
14 50 1.387 3.142 1.199416645 399.262937
15 50 1.27 2.167 1.199487998 504.3429771
16 50 1.621 3.454 1.199158659 501.3229817
17 50 1.27 2.167 1.199487998 501.1472771
18 50 1.27 2.167 1.199487998 501.1238179
19 50 1.621 3.454 1.199158659 501.1119543
20 50 1.855 3.025 1.198658257 1660.533444
21 32 .49 .802 1.194180111 111.1069625
22 7 3.181 3.22 1.003441455 1146.199871
23 50 .724 1.933 1.199438752 355.9850523
24 50 1.348 2.869 1.199614967 214.5856463
25 50 1.387 3.142 1.199416645 834.2651754
26 50 1.348 2.869 1.199614967 421.1441162
27 50 1.426 3.532 1.199354586 421.1469893
28 50 1.348 2.869 1.199614967 421.1441162
29 50 .997 1.66 1.198836875 421.1527025
30 50 1.426 3.532 1.199354586 418.6193828
31 50 1.348 2.869 1.199614967 426.1990828
32 50 2.44 3.922 1.199966709 10335.8646
33 50 1.738 2.947 1.199478623 1155.578096
34 50 1.738 3.961 1.199356919 653.5266555
35 50 1.036 2.791 1.199384749 218.8025676
36 50 .88 2.089 1.199725361 169.400418
37 38 .763 1.66 1.197173189 135.4578227
38 33 .763 3.961 1.190684295 111.1136232
39 2 3.727 3.766 1.003700693 11872.29182
40 4 3.883 3.922 1.00328564 2650.175521
41 12 3.883 3.922 1.0013769 688.234142
42 24 1.66 3.727 1.19914725 506.9345615
43 50 1.036 2.05 1.197907566 369.0431025
44 50 .919 2.05 1.199433371 353.5717817
45 50 .841 1.972 1.199948676 351.6313872
46 50 .451 3.961 1.197087078 390.7715684
47 50 .334 3.961 1.155795478 421.6315976
48 31 1.387 3.142 1.199416645 90.29367881
49 50 1.348 2.869 1.199614967 173.2739523
50 50 1.348 2.869 1.199614967 338.5207283
51 50 1.387 3.142 1.199416645 586.3938528
52 50 1.426 3.532 1.199354586 834.2664644
53 50 1.387 3.142 1.199416645 1660.502917
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Table 4 displays the values of LOSS ¼ MinE CHð Þ for economic design, 
which is calculated using Equation 7. Furthermore, this table also provides 
the values of economic design parameters for which E CHð Þis mini-
mized (i.e.,ArgMin h;k1;k2ð ÞE CHð ÞÞ.

In Tables 5 and 6 the value of ARL1 is calculated using Equation 1.
Table 5 displays the values of LOSS ¼ MinE CHð Þ for economic-statistical 

design, which is calculated using Equation 8. Furthermore, this table also 
provides the values of the design parameters for which E CHð Þis mini-
mized (i.e.,ArgMin h;k1;k2;ARL1ð ÞE CHð ÞÞ.

Table 6 displays the values of LOSS ¼ MinE ICð Þ for economic-statistical 
design integrated with Taguchi’s loss function, which is calculated using 
Equation 10. Furthermore, this table also provides the values of the design 
parameters for which E ICð Þis minimized (i.e.,ArgMin h;k1;k2;ARL1ð ÞE ICð ÞÞ.

According to the obtained values, by drawing the results of the four 
considered approaches against each other, we compared the performance of 
these approaches.

Figure 2 shows the values obtained for the statistical parameter (ARL1) in 
the statistical, economic and economic-statistical schemes. As can be seen, the 
value of ARL1 in the statistical design (which was about one, and indeed very 
desirable) was less than the economic and statistical-economic designs in all 
the 42 studied cases. This means that in the first step, after the shift to out of 
control, an alarm will be received. The value of ARL1 in the economic- 
statistical design was close to the considered limit (equal to 4), a desirable 
value in control charts. This statistical feature was close to 9 in the economic 
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Figure 2. Values obtained for the statistical parameter (ARL1) in the statistical, economic and 
economic-statistical designs.
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design, which changed in cases related to the different values of θ0. It will be 
decreased by decreasing θ0.

In Figure 3, we compare the amount of cost in the three considered designs. 
As can be seen, unlike Figure 2, the economic design had a better performance 
than the statistical design. The decrease and increase of costs in points 23 and 
24 were related to the decrease and increase of in-control costs in the two cases 
examined in Table 1. The amount of cost in the economic-statistical design in 
almost all cases was consistent with the values of the economic design. This 
means that there is no significant difference between the economic and 
statistical-economic designs in terms of economic characteristics.

Therefore, considering the acceptable statistical results in the economic- 
statistical design and the desirable economic results in this plan, the economic- 
statistical design can be a desirable design for constructing the desired control 
chart, which is recommended.

Figures 4 and 5 compare the statistical and economic performance of the 
economic-statistical design combined with Taguchi’s loss function with those 
of the non-integrated design.

As can be seen in Figure 4, the difference between the statistical perfor-
mance of the two cases under study is not considerable, and the results are 
almost identical. Therefore, as expected, the application of the loss function 
does not change the statistical property of the control chart.

Figure 5 compares the economic performance of the two approaches, and 
reveals a significant difference in this property. At almost all levels, the cost of 
the process was reduced by applying the loss function, and in a small number 
of cases, the cost was increased.
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Figure 3. Values obtained for the economic parameter (cost) in the statistical, economic and 
economic-statistical designs.
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Our prediction is that the increase in costs is due to changes in the rate 
of process shift (the shift coefficient δ) and the value of the distribution 
parameter (θ0). To investigate this issue and find the main causes of these 
changes, we drew the economic results in the two cases (the economic- 
statistical design combined with Taguchi’s loss function and the design 
without application of the loss function) against different values of δ and 
θ0 in Figure 6.
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3.70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

ARL1 Comparison

Economic-Statistical (with Taguchi loss) Economic-Statistical (non-loss)

Figure 4. Values obtained for the statistical parameter (ARL1) in the economic-statistical design 
combined with Taguchi’s loss function and the design without application of the loss function.
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Figure 5. Values obtained for the economic parameter (cost) in the economic-statistical design 
combined with Taguchi’s loss function and the design without application of the loss function.
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First, it was observed that the economic-statistical design without application 
of the loss function was insensitive to changes in the parameters of quality 
characteristic distribution (θ0) and process shift (δ). However, in practice, what 
is expected and desirable is a direct relationship between the cost and the 
deviation of the quality characteristic from a target. This was considered in 
the definition of the loss function (L0 and L1) and Equation (5). In the 
integrated model, increasing θ0 and δ had a direct effect on the cost of the 
process.

An Illustrative Example

Lifetime may be regarded as a quality characteristic that requires control. An 
instance of this is when the occurrence of defects in a process is small. In such 
scenarios, the C-chart and U-chart could not be used for defect counts. 
Therefore, instead of employing them, the intervals between successive defect 
occurrences are taken into account, and a control chart is constructed for these 
durations (for further examination, refer to (Montgomery 2020)). To fit such 
data, one of the best distributions that can be considered is the exponential 
distribution.

In this section, a distinct illustration of lifetime (regarded as a quality 
characteristic) is introduced. The durability of certain items like car seats, 
office chairs, and baby inflatable chairs relies on the applied pressure. As 
weight increases, which is linked to pressure, the lifespan of a seat cushion 
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Figure 6. The effect of changes in θ0 and δ on the values obtained for the economic parameter 
(cost) in the economic-statistical design combined with Taguchi’s loss function and the design 
without application of the loss function.
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decreases. The subsequent data pertains to the duration of child’s inflatable 
seats produced in a workshop, measured in hours for weights exceeding 80 kg 
(Table 7).

We performed the Anderson–Darling goodness-of-fit test on the Lifetime 
dataset from Table 7. Based on the Anderson–Darling statistic and p-values of 
the goodness-of-fit test, it can be observed that, at a significance level of .05, 
the values conform to an Exponential distribution (Anderson–Darling test 
statistic = .512, for N = 30, and p-value = .473 > .05). However, the assumption 
of Normality is rejected (Anderson–Darling test statistic = 1.116, for N = 30, 
and p-value = .005 < .05). Therefore, for these data, using conventional control 
charts that are based on the assumption of a normal distribution of the quality 
characteristic is by no means appropriate. Hence, it is better to use the 
proposed designs in this article for this purpose.

Given that the mean and standard deviation of the lifetime values are nearly 
1 and .87, respectively, we can proceed to fit an Exponential distribution to the 
data using a mean of θ0 ¼ 1.

If we assume that the values of the model parameters are as follows: c ¼ 2:3, 
b ¼ 30, W ¼ 400, g ¼ 20, d ¼ 50, λ ¼ 0:01, θ0 ¼ 1, δ ¼ 0:8, k ¼ 100, 
C0 ¼ 50, C1 ¼ 1000, and y ¼ 100, according to this information, the statisti-
cal, economic, economic-statistical with Taguchi’s loss function, and control 
charts without a loss function designed on an exponential base would be as 
follows (refer to Table 8).

Based on Table 8, if a person does not want to use economic design for 
any reason, then the alternative is to use statistical design. The best option 
in this case would be to take samples of size 27 from the process every 
5.35 hours, assuming the LCL = .11 and the UCL = 1.54. In this scenario, if 
the process distribution parameter (θ0), changes from 1 to .8, this chart 
will detect the change on average after approximately 1.03 sampling 
iterations.

Also, if a person wants to use economic design, in this case, considering that 
the economic statistical design with the Taguchi loss function has the mini-
mum LOSS compared to other designs, the best option is to take 36 samples of 
the process every 7.92 hours. Consider LCL equal to .18 and UCL equal to 2.44. 
In this case, if θ0 changes from 1 to .8, this chart will detect the change after an 

Table 8. Results obtained for numerical example.
method h k1 k2 ARL1 LOSS

statistical design 21.31 3.12 3.74 1.0002 -
economic design 5.78 3.21 3.94 - 1351.18
economic-statistical 

design
6.28 3.01 3.68 1.18 1351.21

economic-statistical 
design integrated with Taguchi’s loss function

41.15 2.17 3.09 1.18 412.85
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average of 4 sampling rounds, and the average cost per hour of the process will 
be $554.29.

Conclusion

In the construction of control charts, the distribution of quality characteristics 
is usually considered to be normal. However, this assumption is not valid for 
many datasets, especially those with high skewness. In such cases, a suitable 
alternative is the exponential distribution. This distribution is used in many 
fields, including reliability engineering, queueing theory, telecommunications, 
physics, finance, biology, and epidemiology.

Therefore, given the importance and applications of the subject, contrary to 
what has been done in the past (using approximations to normalize the char-
acteristics, which leads to errors), this paper constructs a control chart based on 
economic-statistical design directly, without using any approximations.

According to the useful results of applying loss functions to economic models, 
Taguchi’s loss function was combined with the economic model and the output 
parameters were obtained under four approaches, namely, statistical, economic, 
economic-statistical integrated with the aforementioned loss function, and eco-
nomic-statistical without application of the loss function. The utilized statistical 
design was based on controlling the average run length of the process, and 
Duncan’s modified economic model was used to construct the economic and 
economic-statistical designs. The results showed that the economic-statistical 
design had quite favorable economic and at the same time statistically acceptable 
results. Additionally, the results confirmed the initial assumption that the applica-
tion of the loss function makes the calculation of cost in the control chart more 
accurate and actual, as it is clear that the greater the offset of the quality char-
acteristic from the ideal value, the higher the cost of the process. This feature can 
be established only by applying the loss function. Utilizing the contents of this 
article and building a control process based on it can be useful for industries with 
exponential characteristics.

Also, there are other distributions that can be considered for further 
improvements. Some of these distributions include:

● Gamma distribution: This distribution is often used to model the time 
between events or the size of certain objects.

● Log-normal distribution: This distribution is often used to model vari-
ables that are positive and skewed, such as income or prices.

● Weibull distribution: This distribution is often used to model failure times 
in reliability analysis.

● Beta distribution: This distribution is often used to model proportions or 
probabilities.
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By considering these different distributions, one may be able to improve the 
accuracy of control charts and better detect any deviations from the expected 
process behavior. However, it is important to note that selecting the appro-
priate distribution requires careful consideration of the underlying process 
and the characteristics of the data being analyzed.
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