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A B S T R A C T

Osteoarthritis (OA) is the most common and prevalent degenerative disorder of the joints. To manage OA using a
dietary approach, it is crucial to have accurate knowledge of the nutritional content and bioavailability of OA-
related foods. However, the increasing dominance of food processing techniques and technologies in the food
sector is a significant concern for nutrition, disease, health, and well-being, leading to imprecise nutrient intake
estimation. Increased consumer health awareness regarding the therapeutic potential of diet modification in OA
management has led to the requirement to assess the effect of food processing approaches on nutritional quality.
This review aims to provide a comprehensive understanding of the existing evidence of the effect of different
food technologies on OA-related modifiable factors like bioavailability, nutritional and bioactive content, weight
management, and inflammation. Scientific evidence supports the effectiveness of nonthermal food technologies
over conventional food technologies, specifically ultrasound processing, irradiation, high-pressure, carbon di-
oxide, electric field, microwave processing, high hydrostatic pressure, and cold plasma; and other food tech-
nologies, including food fortification, biofortification, decaffeination processing, nanotechnology, fat replacers,
and food excipients, have a tremendous potential to significantly improve diet-based OA management after
overcoming their limitations and health-related safety concerns. Specifically, nanotechnology and food excipi-
ents are two rapidly emerging technologies that can improve OA management by improving bioavailability and
providing sustained nutrient delivery. However, further randomized controlled trials in humans are needed to
understand the effects of novel food processing technologies on OA-related foods and their effectiveness for
treating and/or preventing OA.

1. Introduction

Osteoarthritis (OA), the most prevalent degenerative joint disorder,
characterized by excessive synovial inflammation, sclerosis cartilage,

degradation, and abnormal bone growth, is a leading cause of disability
worldwide among older adults. Inflammatory cytokines, particularly
interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-α), are
involved in OA onset and progression (Shahid, Inam-ur-Raheem, Aadil,
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& Israr, 2022.). Over 560 million people worldwide suffer from OA,
which places an enormous financial and health burden on the global and
national healthcare systems (Liem et al., 2020). About 18% of women
and 9.6% of men over 60 years old suffer from OA symptoms, with a
quarter of these people unable to do basic daily tasks (Thomas et al.,
2018). Its prevalence is expected to increase globally, leading to a
greater burden on the world economy and health system by 2050
(Steinmetz et al., 2023). Australia’s annual OA-related medical expenses
exceed $2.1 billion (Cooper et al., 2022). OA has no effective cure; its
treatment mainly focuses onmanaging the symptoms. Although OA is an
age-related disorder, obesity, diet, and nutrition are modifiable risk
factors (Thomas et al., 2018). Clinical guidelines recommend exercise
and diet therapy, including weight loss, as the first line of OA treatment
(Lim et al., 2022). Evidence suggests that losing 5%–10% of body weight
can improve OA-related symptoms and function (Chu et al., 2018).
Many pieces of research elucidated that a diet rich in antioxidants,
polyphenols, flavonoids, specific minerals, vitamins, and fatty acids may
play a crucial role in attenuating the OA onset and progression (Cooper
et al., 2022; Thomas et al., 2018). Moreover, Thomas et al. (2018)
summarized the dietary interventions related to OA. They concluded
that weight reduction in obese or overweight patients, dietary man-
agement of cholesterol and fat, and achieving an adequate level of vi-
tamins E, C, A, K, and D from dietary sources (vegetables, fruits, nuts,
and milk) may be beneficial in OA management (Thomas et al., 2018).
However, numerous food processing methods decrease the nutritional
quality of food, as most fruits and vegetables are not often eaten raw.
Food undergoes various processing stages, commercially or domesti-
cally, that alter its composition, bioaccessibility, and bioavailability
(Zheng & Xiao, 2022).

Food processing procedures primarily convert raw materials into
food or other products appropriate for human or animal consumption.
Some other specific goals include preserving nutrient composition or
improving nutrient bioavailability, increasing the availability of foods
not typically available during certain seasons, and enabling food pro-
duction with a broader range of aromas, flavors, or textures. Another
objective of food processing is to extend the shelf life of food and
products by killing or inhibiting the growth of pathogens or contami-
nating microorganisms (Ifie & Marshall, 2018). Growing evidence has
revealed that food processing can alter food’s polyphenol and nutrient
content, either positively or negatively (Zheng & Xiao, 2022). Different
processing methods affect the quality, quantity, bioavailability, and
bioaccessibility of treated food samples’ vitamins, minerals, antioxi-
dants, and polyphenols. While many food processing methods can cause
phenolic compounds to degrade, others can increase their bioavail-
ability and absorption. The demand for safe and high-quality food items
has led to the development of numerous novel food processing tech-
nologies during the past few decades. Consumers today have high
standards for sensory quality, usability, and nutritional value (Arfaoui,
2021). Because conventional thermal processing has unfavorable effects
on quality metrics, the need for minimally processed, high-nutrition
quality, and fresh-like foods can be satisfied via nonthermal technolo-
gies. Nonthermal processing techniques are considered safe and
environment-friendly because they cause no or minimal loss to nutri-
tional or sensory attributes of food. However, these nonthermal food
processing techniques have limitations (Jadhav et al., 2021).
Ultra-processed food consumption is associated with higher energy
intake and weight gain (Crimarco et al., 2021). Another prospective
observational study concluded that a higher intake of ultra-processed
food is associated with a high gain in body mass index and an
increased risk of weight gain and obesity (Beslay et al., 2020).

Since the weight loss and nutritional content of food, such as vita-
mins, minerals, fatty acids, and polyphenols, play an important role in
OA onset and progression as well as management; it is imperative to
contemplate the effect of food processing on nutritional quality, quan-
tity, and bioavailability. In addition to food processing, it is also crucial
to consider the effect of other food technologies (ingredient-modified

processing, food fortification, food enrichment, preservatives, and ad-
ditives) on OA management by exploring their impact on OA-related
modifiable factors such as weight, inflammation, nutritional content,
and bioavailability of bioactive compounds. The recent review focuses
on summarizing the impact of household and industrial food processing
methods on dietary content, bioaccessibility, and bioavailability of
beneficial nutrients in OA management. For data collection, keywords
like ‘osteoarthritis’ AND ‘innovative food processing techniques, osteo-
arthritis dietary guidelines’ AND ‘osteoarthritis-related bioactive com-
pounds’ OR ‘OA-related food and food processing’ were searched in
various search engines such as Science Direct, Wiley, Scopus, and Google
Scholar. All possible research and review articles from the past ten years
were collected and extended back to 2000 to get information on OA,
obesity, and food processing technologies like food replacers or thermal
processing, which have been collected and thoroughly studied. To the
best of our knowledge, this is the first manuscript that focuses on how
food-processing technologies affect OA-related factors and how these
innovative food-processing techniques can be used to improve OA-
related diet therapy that can be helpful to attenuate OA. This compre-
hensive review can pave the way for the effective use of food processing
technologies to manage or attenuate OA. Before introducing the topic, a
glance at the pathophysiology of OA and the role of a diet-based
approach in OA is provided.

2. Pathogenesis of OA

OA is a disorder that involves the entire joint, including the joint
capsule, chondral menisci, synovium, cartilage, and bone. OA is gener-
ally understood as a non-inflammatory arthropathy involving the
remodeling of bone and cartilage. However, certain investigations have
consistently shown some degree of inflammation in this disease
(Korotkyi et al., 2020; Steves et al., 2016). OA synovial fluid contains
chemokines, cytokines, and other inflammatory mediators produced
locally by chondrocytes and synovium. It is evident that the elevated
levels of cytokines such as matrix metalloproteinases (MMPs), IL-1, IL-6,
TNF-α, and other y-chain cytokines like IL-2, IL-7 and IL-15, as well as
chemokines, are involved in the pathogenesis of OA (Arican et al.,
2022). Another group of cytokines (IL-4, IL-10, and IL-13) is known for
its anti-inflammatory nature and plays a pivotal role in OA pathogenesis
(Shahid, Inam-ur-Raheem, Aadil, & Israr, 2022). The role of inflamma-
tory and anti-inflammatory cytokines in OA pathogenesis via intracel-
lular and extracellular signaling pathways is still under investigation
(Kapoor et al., 2011; Korotkyi et al., 2020; Wojdasiewicz et al., 2014).
The molecular signaling pathways in the pathogenesis of OA are delin-
eated in Fig. 1.

3. Evidence of the therapeutic effects of nutrients and
phytochemicals in OA

A diet enriched with nutrients, antioxidants, polyphenols, and
bioactive compounds has a strong positive association with OA pro-
gression and onset (Table 1). Understanding the chemical and nutri-
tional constituents of food (fruits, vegetables, meat, and other foods) and
how bioactive compounds in a typical diet affect joint health could
provide a novel strategy to attenuate the onset and progression of OA.
The antioxidant-enriched diet is receiving more attention in OA man-
agement due to its anti-inflammatory, chondroprotective, and cartilage-
protective properties. The vast body of literature suggested that anti-
oxidants such as vitamins C, D, and E, β-cryptoxanthin, ellagic acid,
epigallocatechin 3-gallate, ferulic acid, quercetin, vitamins and min-
erals, eicosapentaenoic acid, docosahexaenoic acid, gingerol, anthocy-
anins, and curcumin can alleviate OA symptoms and attenuate its
progression (Davidson et al., 2016; Hung et al., 2017; Shahid,
Inam-ur-Raheem, Aadil, & Israr, 2022). The presumptive mechanism of
action of a high intake of polyphenols against OA is delineated in Fig. 2.
The Mediterranean and DASH diets, rich in fruits, vegetables, whole
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Fig. 1. Contextual molecular signaling pathways in the pathogenesis of OA.
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Table 1
Therapeutic potential of anti-OA nutrients, phytochemicals, and foods in OA.

Anti-OA
agents

Bioactive
compound

Food Model Duration Dose Outcomes Mechanism/signal
pathway

References

Polyphenols Sulforaphane Cruciferous
vegetables

H2O2-induced OA
mouse
chondrocytes

24 h
48 h

0.0, 12.5, 25.0,
50.0, 100, and
200 μM) of
sulforaphane for
24 h and 48 h

Sulforaphane
activated the
SIRT1 signaling
pathway in vivo,
which had an anti-
apoptotic effect on
chondrocytes and
mitigated OA

Inhibited chondrocyte
apoptosis
Down-regulation of
Bax, Bcl-2, 78-kDa
glucose-regulated
protein, C/EBP
homologous protein,
and cleaved caspase 3
Endoplasmic
reticulum stress and
apoptosis in H2O2-
exposed chondrocytes
were alleviated

Chen et al.
(2021)

Ellagic acid Berries,
pomegranates,
and nuts

OA-induced human
chondrocytes

24 h 12.5, 25, or 50 μM
Penetrated for 24
h

Ellagic acid may
have therapeutic
potential for OA
treatment

IL-1β-induced
expression of
prostaglandin E2
(PGE2), inducible
nitric oxide
cyclooxygenase-2
(COX-2), synthase
(iNOS), tumor
necrosis factor-alpha
(TNF-α), nitric oxide
(NO), and interleukin-
6 (IL-6) were down-
regulated by ellagic
acid

Lin et al.
(2020)

Ellagic acid Fruits and nuts IL-1β induced OA
in C28/I2 human
chondrocytes

24 h Cell cultured with
different
concentrations of
ellagic acid

Ellagic acid may
reduce oxidative
stress and provide
a protective effect
on chondrocytes

Ellagic acid up-
regulated the nuclear
factor erythroid 2-
related factor 2 (Nrf2)
expression.
Targeted the heme
oxygenase-1
attenuated the OA

Zhu et al.
(2022)

Ellagic acid Berries,
pomegranates,
and nuts

Rats 8 weeks 40 mg/kg Ellagic acid
prevents the OA
progression

Attenuated the PGE2,
NOS, NO, COX-2
induced expression of
IL-1β

Lin et al.
(2020)

Curcumin Turmeric Surgery-induced
OA mice

8 weeks Daily 50 mM
curcumin injected
intraperitoneally
after surgery

Curcumin exerts
protection on OA

Suppressed the
expression of TNF-a,
and IL-1b, at both
RNA and protein
levels

Sun et al.
(2017)

Quercetin Fruits and
vegetables

OA inducted by
surgery of rats

12 weeks 50 and 100 mg/kg
intraperitoneally

Quercetin blocks
the IRAK1/NLRP3
signaling pathway
to attenuate IL-1-
induced cartilage
degradation and
inflammation and
in OA

Both doses down-
regulated the
expression of IL-1β,
TNF-α, NLRP3, IL-18,
and caspase 3
IRAK1, NLRP3, and
caspase-3 expression
suppressed only in the
high-dose group

Li et al.
(2021)

Epigallocatechin
3-gallate (EGCG)

Green tea Surgically induced
OA in mice

4–8 weeks 25 mg/kg
intraperitoneally

EGCG showed a
palliative effect
and considerably
reduced the
progression of OA
illness

MMP-13, MMP-8,
MMP-3, MMP-1,
ADAMTS5, and pain
expression decrease

Leong et al.
(2014)

Vitamins Ascorbic acid – Chondrosarcoma
cell line (SW1353)

24 h 100 μM Treatment with
vitamin C
effectively shields
cells from MIA-
induced cell death

Attuentated the
expression of MMP-
13, MMP-1, MMP-3,
IL-17A, IL-6, TNF-α,
Bax, and cytochrome
c.
Increase the
procaspase-9 and
Procaspase-3
expression

Chiu et al.
(2017)

Ascorbic acid – Monosodium
iodoacetate
induced OA rat
model

2 weeks 100, 200 and 300
mg/kg

100 mg/kg dose is
more suitable for
the prevention of
OA progress than

MMP-13 IL-6, TNF-α,
and levels reduced

Chiu et al.
(2017)

(continued on next page)
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Table 1 (continued )

Anti-OA
agents

Bioactive
compound

Food Model Duration Dose Outcomes Mechanism/signal
pathway

References

the 200 or 300
mg/kg dosages

Vitamin D – 400 subjects
having both
vitamin D
deficiency and
symptomatic knee
OA

2 years 50,000 IU
compounded
vitamin D3
capsule monthly

These capsules
can significantly
lengthen the
amount of time
needed to develop
end-stage OA

The deficiency of
vitamin D can lower
the rate of cartilage
loss

Cao et al.
(2012)

Vitamin E – Seventy-two
patients with late-
stage knee OA

2 months 400 IU of vitamin These vitamins
help lessen
oxidative stress
and alleviate
clinical symptoms
in late-stage
osteoarthritic
patients

Down-regulate the
expression of nitric
oxide macrophages,
protein kinase C,
nitrotyrosine
Stain and decrease the
swelling and
inflammation

Tantavisut
et al. (2017)

Food – Apple Surgically induced
OA model of rats

4 weeks
and 8
weeks

480, 300 mg/kg
body weight/day

Apple
polyphenols may
improve synovial
conditions in OA
and suppress OA
progression

Down regulated the
expression of matrix
metalloproteinase
(MMP)-13, and tumor
necrosis factor (TNF)-
α
Superoxide dismutase
(SOD) activity was
enhanced

Kobayashi
et al. (2022)

– Strawberry Obese humans with
knee OA

12 weeks 50 g/day beverage
of freeze-dried
strawberries

Dietary
strawberries may
offer significant
analgesic and
anti-inflammatory
benefits in obese
people with
developed knee
OA.

MMP-3, IL-6, and IL-
1β were significantly
diminished

Schell et al.
(2017)

– Blueberries Individuals with
symptomatic knee
OA

4 months Freeze-dried
blueberry powder
(40 g)

Everyday
consumption of
whole blueberries
may improve gait
and performance
in people with
symptomatic knee
OA by reducing
pain, stiffness, and
difficulty in
completing daily
tasks

IL-13 expression
increased while MCP-
1 concentration
decreased

Du et al.
(2019)

– Pomegranate Knee OA patients 6 weeks 200 ml/day
pomegranate juice

Pomegranate juice
consumption
decreases the
breakdown of
cartilage enzymes
and increases
antioxidant status
in osteoarthritic
individuals

A significant increase
in GPx
MMP-1 and MMP-13
were down-regulated

Ghoochani
et al. (2016)

– Garlic 76 postmenopausal
overweight or
obese women
having KOA

12 weeks 1000 mg odorless
garlic tablet

Garlic has a
therapeutic
potential to
manage the OA

In the garlic group,
the WOMAC overall
score, stiffness, pain,
and physical function
all considerably
improved

Salimzadeh
et al. (2018)

– Ginger 90 patients with
kOA

12 weeks 500 mg/day Ginger effectively
attenuated the
pain in patients
with KOA

Pain scores declined Alipour
et al. (2017)

– Spinach Monosodium
iodoacetate-
induced
osteoarthritic rats

28 days 250 and 500 mg/
kg/day

500 mg/kg/day
dose was more
effective for
restoration of the
cartilage as a
therapeutic
treatment

Down-regulate
glutathione S-
transferase (GST)
activity and cartilage
oligomeric matrix
protein
Up-regulation of
aggrecan and TIMP2

(D.
Choudhary
et al., 2018)

– Cashew nut Monosodium
iodoacetate-

21 days 100 mg/kg Cashew nuts
decreased pain

Restores the lipid
peroxidation, catalase

Fusco et al.
(2020)

(continued on next page)
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Table 1 (continued )

Anti-OA
agents

Bioactive
compound

Food Model Duration Dose Outcomes Mechanism/signal
pathway

References

induced
osteoarthritic rats

intensity, restored
the pro-oxidant/
antioxidant
balance, and
restricted tissue
damage and joint
inflammation.

(CAT), glutathione
(GPx) activity, and
glutathione (GSH)
levels. Significantly
ameliorated
histological and
radiographic
alteration related to
OA

Other
nutrients

Polycan Aureobasidium
pullulans SM-
2001

partial medial
meniscectomy, and
anterior cruciate
ligament
transection-
induced
osteoarthritic rats

48 days Polycan (85, 42.5,
and 21.25 mg/kg/
day) orally

42.5 mg/kg dose
of polycan for 48
days is the optimal
dose to alleviate
the OA

Reduced histological
cartilage damage and
low articular stiffness
were noted

Kim et al.
(2012)

D-002 (mixture
of beeswax
alcohols)

Beeswax OA patients 8 weeks (50–100 mg/day) D-002 (50–100
mg/day) for 6 was
well tolerated. D-
002 improves OA
symptoms
reduced total
WOMAC score,
pain, and joint
stiffness

D-002 can inhibit the
cyclooxygenase
(COX) and 5-lipooxy-
genase (5-LOX)
enzymes and has an
anti-inflammatory
effect.

Puente et al.
(2014)

Lactobacillus
casei
Glucosamine
hydrochloride
(Gln)
Type II collagen
(CII)
Mixture (L. casei,
CII, Gln,; 5

– MIA-induced OA
Female Wistar rats

Oral
feeding
began 14
days before
MIA
injection
into the
articular
cartilage
and lasted
for up to 8
weeks

L. casei: 2 × 1010
cfu/kg, 500 mg/kg
Glucosamine
hydrochloride:
250 mg/kg
CII/Gln: CCII, 250
mg/kg; Gln, 250
mg/kg
Mixture: L. casei, 2
× 1010 cfu/kg,
500 mg/kg; CII,
250 mg/kg; Gln,
250 mg/kg

L. casei with CII
and glucosamine
hydrochloride
effectively
reduced
lymphocyte
infiltration,
reduced pain and
cartilage
destruction in OA
than glucosamine
or L. casei alone

Down-regulated the
TNF-α, IFN-γ, IL-17,
IL-2, IL-6, and matrix
metalloproteinase
(MMP13, MMP3, and
MMP1)
While up-regulated
IL-4 and IL-10
expression

So et al.
(2011)

Fig. 2. Molecular mechanism of polyphenol in OA.
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grains, nuts, lentils, beans, and olive oil (OO), positively correlate with
OA attenuation. In contrast, a diet rich in trans and saturated fats is
associated negatively with this disease (Dyer et al., 2016; Shahid,
Inam-ur-Raheem, Aadil, & Israr, 2022; Vina & Kwoh, 2018). A review
conducted in 2022 summarized the evidence-based key nutrients for OA
and reported that the consumption of refined carbohydrates and
high-sugar food, linoleic acid, purine diets, high-calorie diets, trans fat,
saturated fatty acids, and monosodium glutamate can exacerbate
OA-related symptoms and progression. In contrast, fish, fish oil, vege-
tables (dark green leafy vegetables, particularly spinach, broccoli, cab-
bage, dark lettuce, and parsley), fruits (particularly strawberries,
pomegranate, guava leaves, mango, guava, avocado, and grapes), nuts
(particularly peanut, peanut leaves, walnut, cashew, and pistachio), and
spice and condiments (particularly garlic, turmeric, ginger, and cinna-
mon) are evidence-based superlative foods for OA (Shahid et al., 2022,
2024). Numerous pieces of research supported the positive effect of OO
on OA. This effect is possibly due to its phytochemicals, which include
phenolic compounds, hydroxytyrosol, oleuropein, tyrosol, tocopherol,
and carotenoids, which have antibacterial, antioxidant, and
anti-inflammatory properties (Montaño et al., 2016; Musumeci et al.,
2013). The phenolic compounds of OO scavenge-free radicles lower
oxidative stress, interact with the inflammatory cascade and avert
osteoclast proliferation in the subchondral bone (Chin & Pang, 2017).
High consumption of fruits is also inversely linked to the size of the tibial
plateau bone and the bone marrow lesions, which is consistent with the
fact that fruit is a significant source of nutrients, including vitamin C.
Data also suggests the beneficial effect of zeaxanthin, β-cryptoxanthin,
lutein, and vitamin E on the pathogenesis of OA progression (Davidson
et al., 2016; Hung et al., 2017; Shahid, Inam-ur-Raheem, Aadil, & Israr,
2022). Consumption of different fruits or fruit parts has a palliative ef-
fect on health (Abbas & Alkheraije, 2023; Bebas et al., 2023; A. N.
Choudhary & Tahir, 2023; Dalal et al., 2023; Turan et al., 2023;
Ur-Rehman et al., 2023). Among these, guava fruit and leaves are cited
widely for their therapeutic and pharmacological properties, mainly due
to their high level of antioxidants, polyphenols, essential oils, vitamins,
minerals, and polysaccharides (Shahid, Inam-ur-Raheem, Aadil, & Israr,
2022), which have the potential to ameliorate the OA (Kawasaki et al.,
2018).

A study evaluated the therapeutic effect of spinach extract on mon-
osodium iodoacetate-induced osteoarthritic rats. The animals were fed
500 and 250 mg/kg extract for 28 days. In vitro, cell-based, and cell-free
assays corroborated spinach extract’s anti-inflammatory and antioxi-
dant potential against OA. The histological analysis also supported the
chondroprotective properties of spinach extract. The author deduced
that spinach extract could alleviate the monosodium iodoacetate-
induced OA and can be a promising therapy for treating OA
(Choudhary et al., 2018). Sulforaphane is a bioactive compound
commonly present in cruciferous vegetables such as cabbage and broc-
coli. It has the potential to attenuate OA by inhibiting inflammatory and
pro-inflammatory cytokines. It slows down the expression of
cartilage-degrading proteinases and protects chondrocytes and cartilage
by inhibiting NF-κB in human articular chondrocytes. However, it does
not affect histone deacetylase inhibition or Nrf2 activation (Davidson
et al., 2016). Parsley contains copious amounts of apigenin flavonoids
and vitamins A, K, and C, and its anti-OA potential was investigated by
orally administering 200 mg/kg/day of extract to OA-induced albino
rats. The study’s findings suggested that parsley extract has therapeutic
potential for OA treatment (Aml & Rezq, 2016).

Various clinical trials evinced the anti-osteoarthritic activity of
eicosapentaenoic acid, α-linolenic, and docosahexaenoic acid. Fish, fish
oil, hazelnuts, walnuts, olives, sesame, and canola are copious reservoirs
of omega-3 fatty acids (Durmuş, 2019). Researchers conducted a
16-week randomized, double-blind control trial to investigate the effect
of fish oil (EPA 400 mg + DHA 200 mg) on OA. The findings of that trial
evinced that fish oil significantly reduced OA-related chronic pain
(Kuszewski et al., 2020).

4. Effect of food technology and processing on OA-related
nutrients and bioactive compounds

Food processing improves nutritional value, safety, taste, and shelf-
life. Although processing has many advantages, it can also be harmful
and reduce the nutritional value of food. Various food processing tech-
niques like thermal, nonthermal, pasteurization, food excipient, nano-
technology, ingredient modification technologies, food fortification, and
bio-fortification not only affect the sensory attributes of food but also the
nutritional composition and bioavailability of bioactive compounds,
subsequently influencing the diet therapy to manage the OA (Augustin
et al., 2016; Shahid, Inam-ur-Raheem, Aadil, & Israr, 2022). Therefore,
more than understanding and knowing the nutritional composition of
food is needed to address OA; it is crucial to comprehend which food
processing technique impacts the nutrients and to what extent (Table 2).
Fig. 3 instantiates the interrelation of food, OA, and food processing.

4.1. Thermal treatment/cooking and its impact on OA-related nutrients

The food type, amount consumed, and preparation methods pri-
marily influence the nutritional status. During thermal processing, food
undergoes various changes that modify its nutritional content and
bioactive compounds, ultimately affecting health (Palermo et al., 2014;
Ribas-Agustí et al., 2018).

Cooking is as old as human civilization, and it is a method of pre-
paring food by applying heat to make it edible. Before consumption,
food is cooked by heat processing methods such as pressure, boiling,
sautéing, blanching, boiling, roasting, microwaving, steaming, or frying
(Fabbri& Crosby, 2016). Heat treatment or cooking can cause the loss of
vitamins, minerals, antioxidants, and phytochemicals in food through
thermal degradation (Oral & Kaban, 2023), while matrix softening en-
hances the extractability of bioactive compounds (Palermo et al., 2014).
This modification leads to imprecise nutrient intake estimation. There-
fore, it is indispensable to provide nutritional information on how and
which cooking method enhances nutrient retention, extractability, and
loss (Palermo et al., 2014).

4.1.1. Thermal treatment/cooking and OA-related nutrients of vegetables
Burette et al. investigated the effect of microwaving, steaming, and

boiling on the nutritional and physical characteristics of sweet potatoes,
cauliflowers, and carrots with anti-OA nutrient components (Buratti
et al., 2020). Nutritional quality was assessed, and principal component
analysis was used to analyze the texture parameters and e-sense data.
Boiling improved carotene accessibility while negatively affecting
ascorbic acid, total phenolic content, and antioxidant activity. Steaming
resulted in the loss of ascorbic acid, but it increased total phenolics and
carotenoids. While microwaving caused a slight reduction in ascorbic
acid levels, increased total phenolics, and did not affect carotenoids
content. According to Guillén et al. (2017), the antioxidant components
from boiled peppers (Capsicum annum L.) leached into the cooking
water. Different cooking methods (microwaving, stir-frying, or boiling)
significantly altered cooked food’s ascorbic acid, total phenol, and
radical-scavenging activity. However, various studies have suggested
that steaming is the best method to avoid losing water-soluble compo-
nents (Nicoletto et al., 2018; Rennie&Wise, 2010). A study assessed the
effect of steaming, boiling, blanching, and microwaving cooking on true
retention and content of ascorbic acid, vitamin K, vitamin E, and
β-carotene. After microwaving, vitamin C retention was higher, while
boiling resulted in the lowest retention. Cooked vegetables have a higher
availability of fat-soluble vitamin levels (α-tocopherol and β-carotene)
than their fresh counterparts, but it depends on the type of vegetable. In
contrast to spinach and chard, microwave cooking caused a significant
loss of vitamin K in crown daisy and mallow (Lee et al., 2018).

Heat treatment/cooking affects the vitamins and minerals and the
polyphenols, the largest dietary antioxidants known for their capacity to
neutralize free radicals (Cory et al., 2018). These non-nutrient
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Table 2
Role of food technologies in diet-based OA management by affecting OA-related factors.

OA-related
factors

Food technology/
intervention

Compound Model Processing
parameters

Duration Outcomes Conclusion References

Dietary fat High intake of dietary fat is a risk factor for the development of OA and is associated with alterations in cartilage degradation in vivo Brunner et al.
(2012)

Fat substitute Nano-cellulose – 1% weight of
aqueous
dispersion of
cellulose
nanofiber and its
palm oil pickering
emulsion at the
ratio of 1:1
(water: oil, v:v) is
a fat substitute
that can replace
30% and 50% of
the original fat

– Using cellulose
nanofiber and
palm oil
pickering
emulsion to
replace fat led to
low-fat content,
higher lightness
values, higher
moisture
content, and
lower cooking
loss

For the
development of
low-fat meat
products, cellulose
nanofiber, and its
pickering emulsion
can serve as viable
fat substitutes

(Yanan Wang
et al., 2018)

Fat replacer Microcrystalline
cellulose (MCC)
or carboxymethyl
cellulose (CMC)
are non-
digestible fibers

– MCC or CMC
aqueous
dispersion was
used to replace
the 10% weigh of
the ground beef at
the concentration
of 0.5–3.0 wt%

– MCC has a fat-
like mouthfeel
in fried beef
patties
Patties with
MCC (>1%)
were juicer and
softer than
controls
CMC is not
suitable as a fat
replacer in
concentrations
of more than
0.5% weight

Microcrystalline
cellulose results in
a reduction of fat
by around 50% in
patties.

Gibis et al.
(2015)

Fat replacer Wheat and oat
bran-based fat
replacers in the
form of gels

– Gel-based fat
substitutes made
from wheat and
oat bran were
used to replace
30–50% of the fat
in cookies

– The sensory
qualities of the
full-fat cookies
were preserved
in the cookie
formulation at a
level of 30%
wheat bran gel
and had higher
dietary fiber,
phenolic
content, and
minerals than
30% oat bran
gel-containing
cookies

The use of wheat
bran gels at a
concentration of
30% resulted in the
formulation of
cookies having
more nutritional
value but low-fat

Milićević et al.
(2020)

Fat replacer (FR) Sweet potato
starch treated
with citric acid as
a fat replacer

– Citric acid
treatment (0, 1,
and 2%) fat
replacer was
investigated in
low-fat (1%),
medium-fat (6%),
and high-fat
(11%) ice creams

60 days of
storage

Medium-fat and
low-fat ice
creams
containing 1%
FR were found
to be quite
acceptable
Overrun, acidity
and hardness
values of ice
cream samples
decreased
throughout 60
days of storage

Sweet potato
starch treated with
citric acid turned
out to be a
promising
substitute for fat in
making ice cream

Surendra Babu
et al. (2018)

Fat replacer Protein-based fat
replacers or
modified tapioca
starch, Inulin,
and maltodextrin

– The low-fat (2%)
and reduced-fat
(4%) coconut
milk ice cream
The control
sample contained
8% fat

– Simplesse® 100,
inulin, and
maltodextrin-
added reduced-
fat ice creams
did not differ
substantially
from the control

Low-fat and
reduced-fat
coconut milk can
be made by
replacing the fat
with inulin and
Simplesse® 100

Fuangpaiboon
and
Kijroongrojana
(2017)

Caloric
content

Calorie restriction (CR) mitigates OA by decreasing weight-bearing burden on joints and improving systemic inflammation Radakovich
et al. (2019)

Fat replacer Inulin – 12%, 9%, 6%, and
3% inulin as a fat
replacer was

23 days of
storage

Significant
energy content
reductions of up

Sausages
incorporated with
6% inulin-citrate

Nowak et al.
(2007)

(continued on next page)
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Table 2 (continued )

OA-related
factors

Food technology/
intervention

Compound Model Processing
parameters

Duration Outcomes Conclusion References

added to the final
product

to 47.5% were
achieved when
inulin (12%)
was used to
replace fat

showed low energy
content (22%)
compared to
control sausages
and were
microbiologically
stable for 23 days
of storage

Fat replacer Inulin,
hydroxypropyl
methylcellulose,
and maltodextrin

– Fat replacement
(100%, 75%,
50%, 25%, and
0%) using inulin,
hydroxypropyl
methylcellulose,
and maltodextrin

– Similar mean
overall
acceptability
scores (6.26 ±

1.37 and 6.40 ±

1.36
respectively)
were obtained
for the 75% fat-
replacement
snacks made
from
maltodextrin
and inulin as
compared to the
control

These snacks
products are an
excellent source of
protein and dietary
fiber and provide
low calories
(≤25% less than
reference food)
than control and
commercial

Colla and
Gamlath (2015)

Fat replacer Oleogel
developed with
ethyl cellulose
and behenic acid

– As a fat replacer,
ethyl cellulose-
based oleogel
with behenic acid
used at different
concentrations

– The
combination of
ethyl cellulose
and behenic
acid at
particular ratios
(2:4 and 1:5 wt
%) enhanced
the oleogel’s
characteristics

In developing low-
caloric food
products, the
oleogel developed
with ethyl cellulose
and behenic acid
has good potential

Ahmadi et al.
(2020)

Micronutrient
deficiency

High consumption of vitamin E, vitamin D, vitamin K, vitamin A, vitamin C, and n-3 fatty acids are recommended to combat OA Thomas et al.
(2018)

Fortification Vitamin A Lactating
mothers, their
infants and
children, and
cohorts of
children and
women

Fortification of
unbranded palm
oil with retinyl
palmitate

– Fortified oil
improved
vitamin A
intakes

Vitamin A fortified
oil intake
contributed, on
average, 38, 40%,
26 %, 35%, and 29
% of the daily
recommended
nutrient intake for
children (5–9
years), (24–59
months), (12–23
months), non-
lactating and
lactating women,
respectively. At
endline, serum
retinol was 2–19%
higher than at the
baseline

Jus’at et al.
(2015)

Fortification Vitamin A Postpartum
Moroccan
women

Fortification of
cooking oil with
vitamin A

6 months/
week

Serum retinol
concentration
was high in the
fortified oil
group compared
to the non-
fortified oil
group

Fortification
appears to be a
long-term solution
to overcome the
vitamin A
deficiency
problem,
especially in low-
income regions

Atalhi et al.
(2020)

Fortification Vitamin D 65 subjects
from both
sexes

D-fortified
sunflower oil
unfortified
sunflower oil (500
IU/30g)

12 weeks The level of
serum 25(OH)D
increased
significantly
accompanied by
a significant
reduction in
iPTH Significant
reduction in
weight and
waist

Cooking oil could
be a useful tool for
mass fortification
campaigns to
combat vitamin D
deficiency, which
could improve
several
cardiometabolic
risk factors

Nikooyeh et al.
(2020)

(continued on next page)
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Table 2 (continued )

OA-related
factors

Food technology/
intervention

Compound Model Processing
parameters

Duration Outcomes Conclusion References

circumference
was also noted

Polyphenols
and
antioxidants
content of
foods

Polyphenols may help to mitigate OA because of their anti-inflammatory and antioxidant effects Valsamidou
et al. (2021)

Cold plasma Anthocyanin
content
(Pomegranate
juice)

– Cold atmospheric
gas phase plasma
Treatment time
(3,5,7 min)
Treated juice
volume (3,4,5
cm3)
Gas flow (0.75, 1,
1.25 dm3/min)

– The
anthocyanin
content
increased from
21% to 35%

Cold plasma was
shown to be an
excellent treatment
Treatment at 3
min, 5 cm3 sample
volume, and 0.75
dm3/min gas flow
was most effective

Kovačević et al.
(2016)

UV-Irradiation
and thermal
pasteurization

Ascorbic acid,
and total
phenolic content
(Pineapple)

– UV-irradiation:
Wavelength 254
nm (53.42 mJ/
cm2, 4.918 s)
Thermal
pasteurization:
80 ◦C for 10 min
stored at 40C for
13 weeks

13 weeks Ascorbic acid
and total
phenolic
compound
increased in UV
irradiated
samples

As a thermal
pasteurization
substitute
technology, UV
irradiation holds a
great potential in
producing
products of high
nutritional values

Chia et al.
(2012)

Gamma-
irradiation

Vitamin C,
anthocyanin,
ellagic acid,
gallic acid,
pyrogallol,
chlorogenic, and
catechol
(Strawberry
fruit)

– 0, 300, 600, 900
Gy

– 600 Gy treated
samples had the
highest
antioxidant and
total phenolic
content and
activity,
followed by 300
Gy
Anthocyanin
contents
increased
during storage
Ascorbic acid
decreased in all
treatments

Irradiation
increase the
Phenylalanine
ammonia-lyase
(PAL) activity
responsible for
phenolic
compound
production (ellagic
acid, gallic acid,
pyrogallol,
chlorogenic, and
catechol)

Maraei and
Elsawy (2017)

Ultrasound Vitamin C, and
antioxidants
(Strawberry
fruit)

– 33 kHz, 60 W (0,
10, 20, 30, 40, 60,
min)

– Antioxidant
potential
decreases after
60 min exposure
Vitamin C and
antioxidant
activity are
better retained
between 30 and
40 min

Ultrasound
treatment can be
used as a minimal
processing

Gani et al.
(2016)

Thermosonication Anthocyanin,
carotenoid, total
flavonols, TPC,
and TFC (Spinach
juice)

– 600 W, 400 W,
and 200 W, 30
kHz, at 60 ± 1 ◦C
for 20 min
Pasteurization:
60 ± 1 ◦C for 30
min

– Bioactive
compounds,
anthocyanins
value, and
phenolic
compounds
activity
significantly
high at 600 W,
30 kHz
TPC and TFC
increased in all
treatments
except
pasteurization

High intensity
thermosonication
treatment
increased the
bioactive,
antioxidant
compounds
(anthocyanin,
carotenoid, and
total flavonols) and
their activity

Manzoor et al.
(2021)

Bioavailability Nano-particle
colloidal
dispersion

Curcumin Individuals
with knee OA

Surface-
controlled water-
dispersible
curcumin named
Theracurmin®

Theracurmin
containing
180 mg/day
of curcumin
for 8 weeks

The
bioavailability
of Theracurmin
is 27-fold higher
than that of
curcumin
powder knee
pain Visual
analog scale
(VAS) scores
were
considerably

For the treatment
of knee OA in
humans,
Theracurmin has a
modest potential

Nakagawa et al.
(2014)

(continued on next page)

A. Shahid et al. Food Bioscience 62 (2024) 105156 

10 



compounds have antioxidant and anti-inflammatory properties that
benefit OA management (Cory et al., 2018). The cooking/heating
method applied to polyphenols mainly decides the fate of these com-
pounds. Heat causes cell walls to burst, increasing the availability of the
bound phenolics by allowing them to move to other areas (D’Archivio

et al., 2010). At the same time, the heating process can damage some
polyphenols through oxidation (Maghsoudlou et al., 2019). According to
thermal treatment studies, the boiling method unfavorably alters the
samples’ polyphenol composition; steaming or frying can conserve these
compounds (Ribas-Agustí et al., 2018). The underlying cause could be

Table 2 (continued )

OA-related
factors

Food technology/
intervention

Compound Model Processing
parameters

Duration Outcomes Conclusion References

lower in the
Theracurmin
group than in
the placebo
group

Excipient food
technology

Boswellia serrata
and bromelain

Individuals
with various
types of OA

Formulation of
gastro-resistant
food supplement
of Boswellia
serrata and
bromelain using
excipient

6 months Seven out of the
ten quality-of-
life questions
and the overall
quality-of-life
score both
showed
considerable
improvements

Using those
supplements may
be an effective non-
pharmacological
approach for
people with
various kinds of OA
to improve their
quality of life

Italiano et al.
(2020)

Excipient food
technology

Curcuma extract
(Flexofytol®)

Individuals
with OA

The galenic form
of curcumin, in a
specially made
excipient, is used
(4–6 capsules/
day)

6 months Flexofytol®
reduced patient
discomfort
related to OA,
increased
articular
mobility, and
improve quality
of life within the
first six weeks

Flexofytol® is an
appropriate
treatment option
for patients with
joint pain

Appelboom
et al. (2014)

Excipient food
technology

Next Generation
Ultrasol
Curcumin
(NGUC)

Monosodium
iodoacetate
(MIA)-
induced knee
OA in rats

20 mg/kg of
curcuminoids in
100 mg/kg of
NGUC and 40
mg/kg of
curcuminoids in
200 mg/kg of
NGUC excipients
(phospholipids
and
monoglyceride)
were used to
develop NGUC

4 weeks Reduction in IL-
1β, IL-6, TNF-α,
CRP, and
COMP, and
expressions of
NFκB, COX-2,
MMP-3, and 5-
LOX, were noted
Increased levels
of antioxidant
enzymes, e.g.,
CAT, GPX, and
SOD, were
noted

NGUC’s
bioavailability was
64.7 times higher,
and it lessens the
severity of MIA-
induced OA in rats
than natural
turmeric extract

Yabas et al.
(2021)

Fig. 3. Triangular relation of food, OA, and food processing technologies/operations.

A. Shahid et al. Food Bioscience 62 (2024) 105156 

11 



the water-soluble nature of phenolic compounds, which seep into the
surrounding media during heating.

Nevertheless, the matrix’s and polyphenol’s chemical characteristics
determine how temperature affects the phenolic compounds. Heat
treatment causes the tissue to break down, allowing nutrients and
bioactive components to enter the boiling water (Minatel et al., 2017).
Frying showed detrimental effects on leafy vegetables (Passiflora edulis,
Gymnema lactiferum, Centella asiatica, Olax zeylanica, and Cassia auric-
ulata). Depending on the type of leafy vegetable, boiling and steaming
showed varying effects on polyphenols, carotenoids, and antioxidant
characteristics (Gunathilake et al., 2018). Centella asiatica possesses
anti-osteoarthritic activity and can be a novel food for OA (Micheli et al.,
2020). Spinach is another green leafy vegetable that is a rich source of
polyphenols, antioxidants, and nutrients and shows chondroprotective
potential (Choudhary et al., 2018). Other green vegetables like cauli-
flower, cabbage, and broccoli also showed anti-osteoarthritic properties
due to the sulforaphane compound (Davidson et al., 2016). Micro-
waving, steaming, boiling, and microwaving effects evolved on thirteen
frozen (− 20 ◦C after blanching) vegetables, including mushrooms, green
and yellow French beans, hashed spinach, peas, brussels sprouts, broc-
coli, cauliflower, leek, zucchini, whole leaf branches, carrots, and
salsify, and the impact of these thermal treatments on carotenoids,
folate, and vitamin C content was characterized. The results revealed
that cooking methods significantly impacted but varied depending on
the vegetable and phytochemical characteristics. Generally, boiling is
less suited, whereas pressure cooking, steaming, and microwaving could
be the greatest approaches to maintaining nutritional quality (Coe &
Spiro, 2022). Boiling resulted in a significant loss of total vitamin C,
about 51% and 68% folates, an insignificant loss of lutein (15%), and
about 9% loss of beta-carotene on a fresh weight basis. On a dry weight
basis, it continued to be less suited for folates and vitamins, causing the
loss of 65% and 44%, respectively, but not for carotenoids because it
enhanced the extractability of lutein to 9% and carotene (20%) (Bureau
et al., 2015). Sweet potatoes are a rich source of bioactive compounds
well-known for their anti-inflammatory and anti-osteoarthritic proper-
ties like anthocyanin, chlorogenic acid, neochlorogenic acid, β-carotene,
and ferulic acid (Jokioja et al., 2020). The effects of boiling, baking,
steaming, and microwaving were assessed on four varieties of sweet
potatoes. Boiling showed the most deleterious impact, decreasing the
neochlorogenic acid (69%), chlorogenic acid (29%), and trans-ferulic
acid (29%) in the 414-purple variety from Croatia, Slovakia, and
Beauregard variety from Croatia, respectively. On the contrary, these
treatments increased the total anthocyanins, total polyphenols, and total
antioxidant activity in all samples (Musilova et al., 2020).

4.1.2. Thermal treatment/cooking and OA-related nutrients of fruits
It is evident from studies that heat processing treatments affect the

bioavailability of macronutrients, micronutrients, and polyphenols
(Jing et al., 2017; Luo et al., 2013). Lycopene, naringenin, and chloro-
genic acid, commonly found in tomatoes, have anti-inflammatory and
chondroprotective properties and can alleviate OA-related symptoms
(Wang et al., 2017; Zada et al., 2021; Zhan et al., 2021). Naringenin
attenuates the expression of Bax, MMP, and MMP13, restores type 11
collagen expression and protects the chondrocytes (Pan et al., 2022).
Chlorogenic acid down-regulates the expression of IL-1β-mediated
inflammation, PGE-2, COX-2, NF-κB, MMP-13, and iNOs, and protects
the chondrocytes and type 11 collagen (Liu et al., 2017). However, heat
treatments can affect these compounds. In a randomized controlled trial,
researchers found that the naringenin glucuronide concentration in
plasma and urine excretion was significantly higher in the tomato sauce
group than in the raw tomato group, indicating that heating can improve
the bioavailability of nutrients and antioxidants (Martínez-Huélamo
et al., 2015). Another study evaluated the impact of heat by subjecting
the tomatoes to different cooking methods. Stir-frying for 4.5 min
(230 ◦C) and microwaving for 40 s (560 W) significantly affected the
total phenolic compounds (TPC) and total flavonoid compounds (TFC).

However, the stir-fried technique was more detrimental to TPC than
microwaving. However, compared to microwave cooking and
stir-frying, the losses from boiling were less considerable (Thanuja et al.,
2019). Baking, proofing (the step when dough is allowed to rise), and
cooking reduced the anthocyanin content of blueberries, while
non-significant change in procyanidin content was seen. These treat-
ments resulted in a decrease in oligomer content and a significant in-
crease in procyanidin and chlorogenic content. While caffeic acid,
quercetin, and ferulic acid content remained constant during these
treatments (Rodriguez-Mateos et al., 2014). The effect of baking on the
bioavailability of blueberry polyphenols (phenolic acids, anthocyanins,
and procyanidins) was evaluated. Processing decreased the anthocyanin
content by 42% and significantly increased the chlorogenic acid, fla-
vanol trimmers, and dimers (23%, 28%, and 26%), respectively. At the
same time, no effect has been observed on total polyphenolic content.
The author assessed the bioavailability of total phenolic content by
assessing 22 metabolites’ plasma levels. The findings revealed that the
bioavailability of phenolic compounds in the unprocessed blueberry
drink remained unaffected. However, baking significantly decreased the
contents of sinapic acids, hippuric acid, salicylic acid, and benzoic acid
while increasing the levels of hydroxy hippuric acid, ferulic acid, and
m-hydroxyphenyl acetic acid (Rodriguez-Mateos et al., 2014). Grape
seeds are rich in numerous polyphenols that possess therapeutic and
pharmacological activities for various diseases, including OA (Tanideh
et al., 2020). Kim et al. (2006) evaluated the effects of various tem-
peratures (200, 150, 100, and 50 ◦C) on grape seeds (whole and
powdered forms). The results showed that heating the entire grape seed
extract for 40 min at 150 ◦C yielded the highest TPC and radical scav-
enging activity (RSA). While heating the powdered grape seed extract
for 10 min at 100 ◦C yielded the highest value. Gas
chromatography-mass spectrometry (GC-MS) analysis identified several
new low-molecular-weight phenolic compounds (o-cinnamic acid, aze-
laic acid, and 3,4-dihydroxy) produced in whole grape seed extract after
heating at 150 ◦C for 40 min. According to the results of the
high-performance liquid chromatography analysis, heat treatment
considerably increased the gallocatechin gallate and caffeine in grape
seed extract. This study concluded that thermal processing and duration
affected the antioxidant activity of grape seed extraction (Kim et al.,
2006). Intern microwave treatment resulted in 18% and 16% flavonol
losses for quercetin 4′-glucoside (QmG) and quercetin 3,4′-diglucoside
(QdG). Meanwhile, moderate microwave heating did not affect the
flavonol content. Boiling the onion for 30 min leached the quercetin
glycosides (29% QMG and 37% QdG) into the water. The effects of
boiling for 60 min were severe. It caused the degradation of quercetin
derivatives at rates of 44% and 53% for QmG and QdG, respectively.
Frying treatment was more damaging than boiling, followed by roasting.
Meanwhile, microwave roasting causes more damage than oven roasting
(Rodrigues et al., 2009). Another study endorsed that the duration of the
heat process affects the nutritional value of food. To preserve the
nutritional quality of vegetables, limiting the heat (cooking) exposure to
no more than 7.5 min is important; steaming is the best method to
preserve the flavor compared to boiling (Poelman et al., 2013).

4.1.3. Thermal treatment/cooking and OA-related nutrients of fish, fish oil,
and meat

Fish and fish oil are the best sources of omega-3 fatty acids, including
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and their
inverse relation with inflammation and pain is explicated by numerous
studies related to OA (Durmuş, 2019; Kuszewski et al., 2020; Mehler
et al., 2016; Wann et al., 2010). Leounge et al. (2018) assessed the effect
of different cooking techniques and heat on salmon. Researchers found
that different cooking techniques did not affect the arachidonic acid
(AA), adrenic acid (AdA), EPA, and DHA in the salmon but significantly
decreased PUFA content. Pan frying and oven baking triggered lipid
oxidation and generated the by-product of lipid oxidation during
cooking. Salmon cooked in a pan had the highest concentrations of
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4-HHE and 4-HNE, followed by oven-baked, boiled, and raw salmon.
Except for pan frying and oven baking, no other cooking technique
produced salmon’s enzymatic/bioactive oxidized PUFA products (Leung
et al., 2018). Another study also showed that heat treatments (boiling,
frying, and roasting) generally did not decrease DHA and EPA levels;
however, only frying slightly decreased DHA and EPA levels (Gladyshev
et al., 2006). Baking and grilling treatments caused the loss of thiamin
(vitamin B1), riboflavin (vitamin B2), and niacin (vitamin B3). However,
nicotinic acid was lost more during cooking. By grilling, average vitamin
B loss was 45%, 38%, 45%, 46%, and 70% for vitamin B1, B2, nicotin-
amide, total vitamin B3, and nicotinic acid, respectively. The average
vitamin B loss during baking was 52%, 57%, 54%, 55%, and 66%,
respectively (Çatak et al., 2022). The overall loss of vitamins B3 and B6
during beef cooking through convection, radiation, and/or contact with
a hot surface was estimated using heat transfer, juice loss, and heat
denaturation models. This analysis concluded that vitamin B3 is highly
heat-resistant, while vitamin B6 is denatured only at extremely high
temperatures or during prolonged treatments (Kondjoyan et al., 2018).

4.1.4. Other factors related to thermal treatment/cooking
In addition to cooking methods, another factor that affects the

nutritional composition of food and triggers different physio-chemical
reactions is the cooking medium, e.g., oil medium, water medium, or
no medium. Compared to raw samples, no medium (microwaving) and
water medium (steaming and boiling) significantly increased the egg-
plant’s antioxidant capacity and total phenolic content. Steaming and
microwaving significantly increased the total polyphenol content
compared to boiling. Microwaving for 10 min was the most effective
method for improving the total antioxidant properties, compared to
microwaving for 5 and 15 min. The antioxidants and phenolic com-
pounds leach into the water during steaming and boiling, which could
explain this phenomenon. In contrast, during microwave cooking, an-
tioxidants and phenolic compounds remained preserved in food
(Chumyam et al., 2013). Among oil mediums, different oils affect the
nutritional quality of food differently (Ambra et al., 2022). Chio et al.
(2007) elucidated the effect of phenol-spiked sunflower and olive oil by
frying the 201-g sliced potatoes for 6min at 175 ◦C. Results revealed that
phenol-spiked sunflower oil fried potatoes had higher TPC, especially
oleuropein, than phenol-spiked olive oil fried potatoes, suggesting that
sunflower oil might be a better choice than OO if one wants to increase
the PC content of food (Chiou et al., 2007). Another study showed that
air-fried canola oil potatoes had a significantly higher phenolic content
than potatoes in soybean oil and OO. This study also suggested that the
air-frying technique is a healthier alternative to deep-frying, as it re-
duces the fat content by 70%, reduces the calorie content to 45 kcal/100
g, and causes less fat oxidation (Santos et al., 2017).

Pasteurization and drying are also thermal treatments. Currently,
pasteurization refers to the process of heating milk or milk products at
specific time-temperature combinations, most frequently at 72 ◦C for 15
s, which effectively destroys harmful pathogens (O’Callaghan et al.,
2019, chap. 7). In the dairy industry, pasteurization is a prevalent
thermal treatment. This treatment kills harmful bacteria and pathogens
in milk and beverages and extends their shelf life (Dubey et al., 2022;
Mandi et al., 2019). Nevertheless, nowadays, pasteurization application
is also used for fruit juices. Pasteurization kills bacteria and pathogens
and affects the overall nutrition quality, including antioxidants, poly-
phenols, and phenolic compounds. Various studies have shown that
thermal processing deteriorates the nutritional value of food by dena-
turing bioactive compounds through ionization, hydrolysis, and oxida-
tion reactions (Ignat et al., 2011; Paniwnyk, 2017; Putnik et al., 2017).
Efforts are underway to develop novel pasteurization techniques,
including nonthermal ones, to mitigate these nutritional losses.

4.2. Nonthermal technologies and their impact on nutrition concerning
OA

Thermal processing offers numerous benefits, but its detrimental
impact on nutritional quality is substantial. Numerous nutrients are heat
sensitive and cause the loss of those nutrients during heat processing,
resulting in low-quality food (Ignat et al., 2011; Paniwnyk, 2017; Putnik
et al., 2017). Nonthermal technologies like high-pressure processing,
ultrasound processing, high-pressure carbon dioxide, electric field, mi-
crowave processing, high-pressure homogenization, cold pasteurization,
high hydrostatic pressure, and supercritical are promising processing
methods that can minimize nutrition loss. Researchers have extensively
studied these innovative technologies in the context of almost all food
products and production to understand their effect on nutritional and
sensory qualities and their application at the industrial level (Jadhav
et al., 2021; Putnik et al., 2019). These nonthermal treatments improve
the taste and textural qualities of the food, preserve the nutrients,
decrease the microbial load, and extend the shelf life (Choudhary &
Bandla, 2012; Jadhav et al., 2021; Thirumdas et al., 2015). These
technologies do not use direct heat and process the samples at almost
room temperature, e.g., ultrasound, which uses the mechanical sound
waves that oscillate in the medium generated by molecular motions.
These ultrasound waves (low-and high-intensity waves) have a fre-
quency of around 20 kHz and are inaudible to the human ear.
Nonthermal technology is still in its early stages in the food industry,
although it is already well-established in other industries like the med-
ical and biomedical fields (Gallo et al., 2018). The food industry employs
the ultrasound technique for various purposes, including meat tenderi-
zation, dispersion, activation or deactivation of enzymes, improving the
extraction, dissolution, crystallization, homogenization, emulsification,
preservation, stabilization, aging and oxidation, hydrogenation,
ripening, degassing, and atomization (Arvanitoyannis et al., 2017;
Bhargava et al., 2021; Chavan et al., 2022; Chemat & Khan, 2011; Ojha
et al., 2017; Villamiel et al., 2017).

The ultrasound enhances the efficiency of extracting bioactive
compounds from plant and animal sources. The ultrasound extraction
improved the bioactive compounds’ physical and chemical character-
istics and yield. For instance, ultrasound is a proven technique for oil
extraction from flaxseed, olive, and soybean, which have anti-OA po-
tential (Cavallo et al., 2020; Juliano et al., 2017). The use of ultrasound
waves during drying improves not only the physical and sensory quality
of fruits and vegetables but also the nutritional quality (minerals, vita-
mins, and antioxidants) of the dried product (Fan et al., 2017; Huang
et al., 2020; Zhang & Abatzoglou, 2020). The combined cold plasma
treatment and antimicrobial washing decreased the P. digitatum load
without compromising the nutritional (ascorbic acid, total polyphenols,
and antioxidant capacity) and sensory properties. It showed less
ripening damage than untreated oranges. Cold plasma treatment for 6
min (7.2 log CFU/mL) inactivates the Bacillus spp. in blueberry juice
(Hou et al., 2019), whey grapes (Amaral et al., 2018), cloudy apple juice
(Illera et al., 2019), tomato juice (Starek et al., 2019), sour cherry nectar,
tomato, apple, and orange juice (Dasan & Boyaci, 2018) without dete-
riorating the nutritional quality and enhances the retention of bioactive
compounds and improves the color (Kovačević et al., 2016). Cold
plasma works with various reactive species that cause lipid oxidation
during storage, a disadvantage of this technology. The malondialdehyde
(MDA), a by-product of lipid oxidation, increases the risk of OA (Vyas
et al., 2015). Researchers have detected it in stored samples treated with
cold plasma samples (Gao et al., 2019; S. Sharma, 2020). To overcome
this disadvantage, high-lipid foods should be exposed to cold plasma
treatment for a minimum, or adding antioxidants to that food can be
helpful (Gavahian et al., 2018; Sarangapani et al., 2017). Supercritical
carbon dioxide is ideal for food storage and preservation, as well as oil
extraction, antioxidants, and polyphenols, because it is non-toxic and
can be easily separated from the final product (Deotale et al., 2021). The
growing body of evidence suggests that bioactive compounds like
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quercetin, ellagic acid, lycopene, carotenoids, resveratrol, curcumin,
and anthocyanins can alleviate the inflammation in OA joints by sup-
pressing the inflammatory and pro-inflammatory cytokines and media-
tors (IL-1β, TNF-α, and NFκβ) (Ansari et al., 2020; Shen et al., 2012;
Sirše, 2022; Valsamidou et al., 2021). However, high temperatures can
quickly destroy these bioactive compounds due to their sensitivity to
oxygen and heat. Supercritical technology makes it possible to extract
the bioactive compounds without compromising their quality because
the presence of carbon dioxide and the extremely low temperature
during the supercritical extraction technique preclude the presence of
oxygen. Several studies reported the efficiency of supercritical tech-
nology to extract the functional compounds from feijoa leaves (iso-
quercetin, gallic acid, and catechin) (Santos et al., 2021), selective
extraction of carotenoids and chlorophylls, carnosic acid, and rosmar-
inic acid from rosemary (Lefebvre et al., 2021), oil from corn germ
(Rebolleda et al., 2012), apple seed (Ferrentino et al., 2020), olives
(Al-Otoom et al., 2014), ginger (Salea et al., 2017), green coffee (de
Oliveira et al., 2014), and bioactive compounds (astaxanthin, lycopene,
quercetin, carotenoids, and anthocyanins) from seaweed and micro-
algae, and cape blueberry pulp (Gallego et al., 2019; Torres-Ossandón
et al., 2018). These findings suggest the supremacy of supercritical
extraction over conventional solvent extraction (Jadhav et al., 2021).
This technology reduces the microbes and bacterial load by decreasing
pH, causing cell rapture, and inactivating the bacteria and microbes.
When pomegranate juice was stored for 28 days after being treated with
supercritical carbon dioxide, bacteria growth was below the detection
level, and the total phenolic content increased by 22%. Conversely, the
total phenolic content decreased by 15% in juice treated with conven-
tional pasteurization (Bertolini et al., 2020). The results from liquid food
(Smigic et al., 2019), coconut water (Cappelletti et al., 2015), sports
drinks (Cappelletti et al., 2015), and ground beef (Yu & Iwahashi, 2019)
preserved in a supercritical fluid also supported that supercritical carbon
enhances the polyphenolic compounds and preserves the nutritional
profile that ultimately benefits the OA patients. Consequently, this
technology is widely employed in the food industry to protect and store
fruits, vegetables, and juices (Silva et al., 2020).

Irradiation, including X-rays and gamma rays, is employed effec-
tively in the food sector to store, preserve, and inactivate pathogen
microbes (Shalaby et al., 2016). These irradiation rays can penetrate
deep into food, damage the nuclei aid, unfold the DNA strand, and cause
oxidative damage to microbial pathogen cells, thereby reducing the
microbial load (Bashir et al., 2021). Irradiation is effectively used for
microbial inactivation in ready-to-cook chicken (Fallah et al., 2010),
food grains (Bashir et al., 2017), fresh pasta (Cassares et al., 2020), and
for enhancing the sensory and physical characteristics of food like grape
juice (Mesquita et al., 2020), apple juice (Lim & Ha, 2021), garlic bulb
(Sharma et al., 2020) and wheat (Bhat et al., 2020). Moreover, it causes
no significant nutritional and sensory changes compared to conven-
tional preservation. Despite the numerous advantages of irradiation
technology, it is important to note that vitamins B1 and C are sensitive to
irradiation and loss during irradiation treatment preservation
(Witrowa-Rajchert et al., 2009; Woodside, 2015). While vitamin C is
widely recognized for its anti-OA potential, which alleviates OA and
OA-related symptoms by attenuating oxidative damage within articular
cartilage (Marks, 2024). High-intensity irradiation also causes damage
to lipids. Nevertheless, this loss is much less than conventional drying,
cooking, freezing, and preservation (Witrowa-Rajchert et al., 2009;
Woodside, 2015).

Pulsed electric field (PEF), a high-field intensity pulse applied to food
for a short time, is extensively employed in the food sector because of its
ability not to cause undesirable sensory or nutritional changes in treated
food (Niu et al., 2020). It inactivates microbes such as E.coli in orange,
coconut, and pineapple juice and inactivates the spoilage enzymes in
pine nuts, apples, and carrot juice (Liang et al., 2017; Niu et al., 2020).
The extended literature on the use of PEF in the extraction of bioactive
compounds from anti-OA-related food, e.g., cyanobacteria (Chittapun

et al., 2020), apple peel (Wang et al., 2020), cinnamon (Pashazadeh
et al., 2020), and tomato (Pataro et al., 2020) elucidated its ability to
preserve and improve these bioactive compounds and their bioactivity.
Besides that, various studies have also explored its operation in freezing
and dehydration. The PEF treatment reduces the time required for
drying and freezing and maintains thawed and dehydrated food’s color
and textural properties (Jadhav et al., 2021). A study conducted in 2020
on PEF-treated spry dried red bell pepper juice powder showed higher
retention of vitamin C but a lower level of total phenolic content (Rybak
et al., 2020). Another study conducted to elucidate the PEF treatment
effect on the phenolic compounds of carrots explicated that after 24 h of
treatment, a significant increase in ferulic acid, p-OH-benzoic, total
phenolic, and chlorogenic acid was noted (López-Gámez et al., 2020).
More research is needed to understand and untangle the discrepancies in
the reported effects of PEF treatment on total phenolic content.

High hydrostatic pressure (HHP) produces pressure on food by the
water. During this treatment, exposure to HHP destroys mold, yeast, and
gram-positive and gram-negative bacteria from exposed food. HHP-
treated samples have fresh-like attributes because this technology
effectively preserves the texture, nutritional, and sensory quality of food
(Cap et al., 2020). This technology is highly effective in extracting an-
thocyanins, antioxidants, phenolics, and flavonoid compounds (de Jesus
et al., 2020), which have therapeutic potential in alleviating the OA
(Deligiannidou et al., 2020; Pomilio et al., 2024). Extraction of neu-
traceutical compounds from different foods, e.g., egg yolk, gooseberry
juice, pomace of grapes, tomato waste, and red microalgae, demon-
strated the effectiveness of HPP technology (Jadhav et al., 2021).
HHP-treated fermented juices showed a substantially higher level of
antioxidants and phenolic compounds than untreated samples
(Rios-Corripio et al., 2020). This implies that future treatments for OA
may utilize HHP-treated bioactive compounds or foods.

Pulsed ultraviolet technology (UV), an economical technology, is
extensively employed by food industries to increase shelf life and
destroy pathogens. Despite that, pulsed UV reduces the toxins and im-
proves the activity and levels of bioactive compounds (Fenoglio et al.,
2020). Thus, this technology can be considered safe for
anti-osteoarthritic diet processing because it improves and preserves
nutritional quality. A study conducted by Jagadeesh et al. (2011) re-
ported that mature green tomatoes treated with UV-C (3.7 KJ/m2) in
storage had significantly higher levels of ascorbic acid and total phenolic
content but low levels of lycopene content compared to untreated
samples. Recently, a study on pulsed UV-treated tomatoes (360 min,
365 nm) found a significantly high increase in flavonoids, lycopene,
lutein, β-carotene, carotenoids, and phenolic compounds. This suggests
that A-range ultraviolet irradiation has excellent potential to increase
the antioxidant compounds and their activity in post-harvested to-
matoes (Dyshlyuk et al., 2020). Despite its tremendous benefits, this
technology also has some limitations, such as adversely affecting the
texture of solid food and reducing its color. Ozone gas (O3) is highly
reactive, but the food industry widely uses it for its ability to inactivate
food toxins and kill bacteria and microbes. This gas sterilizes the
equipment because of its effective antibacterial and antimicrobial ac-
tivity (Porto et al., 2020; Tiwari et al., 2010). Nevertheless, this unstable
gas reacts quickly with food components and causes undesirable
changes like color reduction and lipid oxidation (Giménez et al., 2021).
There is a great need for thorough studies and research regarding the
limitations of nonthermal technologies to reduce undesirable changes
and improve food acceptability.

4.3. Nanotechnology

Nanotechnology is another novel technology with various applica-
tions in food and nutrition, including detecting food pathogens and
microorganisms, modifying the texture, taste, and color of food,
enhancing nutrition quality, creating a nutrient delivery vehicle, and
assisting in explicating nutrient physiology and metabolism. The field of
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nano-science technology has grown extensively into various domains of
research, such as food agriculture, nutraceuticals, and pharmacy, and is
aiding in the combat of numerous diseases and disorders, including OA
(Arshad et al., 2021; Naeem et al., 2023; Xiao et al., 2022). Nanotech-
nology offers an avenue to improve OA treatment by using targeted
therapeutics (antioxidants), smart scaffolds, and novel
visco-supplements (Fig. 4) (Table 3) (Lawson et al., 2021). Nanotech-
nology significantly improves antioxidant therapy in OA treatment
(González-Rodríguez et al., 2017). Phytochemicals can potentially pre-
vent and treat various diseases, including OA (Amirkhizi et al., 2022;
Guan et al., 2019; Mozafari et al., 2009). An expanding body of litera-
ture explicated that consumption of dietary polyphenols (quercetin,
epigallocatechin gallate, soy isoflavones, phytosterols, resveratrol, an-
thocyanins, and rosmarinic) mitigates the OA onset and progression, and
protects the cartilage by attenuating the inflammatory cytokines and
IL-1β, NF-κB, and TNF-α (Amirkhizi et al., 2022; Calabrese et al., 2021;
Guan et al., 2019). Unfortunately, these phytochemicals have extremely
low solubility, bioavailability, and stability, leading to rapid degrada-
tion before reaching their target cells or tissues. Accumulated research
explicated that nanotechnology improves phytochemicals’ stability,
bioavailability, and solubility, particularly quercetin, curcumin, epi-
gallocatechin gallate, and resveratrol. It prevents the premature degra-
dation of phytochemicals, increases the circulation time, and improves
the cellular uptake, target specificity, and their bioactivities (Wang
et al., 2014). Nanochitin slows down fat digestion, making it helpful in
producing high-satiety foods that aid in weight loss, a crucial factor of
OA. Nevertheless, it decreases fat-soluble vitamin bioaccessibility,
which is not ideal from a nutritional perspective (Zhou et al., 2020).
Many bioactive compounds and vitamins can degrade quickly due to
their high sensitivity to acidity and the enzymatic activity of the

stomach and duodenum. Nanocapsules, nanosized powders, or
nano-cochleate can be used as carriers to increase the delivery or
bioavailability of antioxidants, coenzyme Q10, flavors, essential oils,
vitamins, minerals, and phytochemicals in the human system. Vitamin
spray-dispersed nano-droplets improve the absorption and bioavail-
ability of nutrients like curcumin, iron, and folic acid. These are efficient
approaches to distributing nutrients effectively without changing the
color or taste of food (Nile et al., 2020; Ognik et al., 2016; Singh et al.,
2017).

Vitamins D, E, C, β-carotene, and calcium, indispensable in OA
pathophysiology and treatment, have received significant attention in
nanotechnology (Zhou et al., 2020). Curcumin has an anti-OA potential,
but its absorption is limited because a minimal amount of those mole-
cules can cross the intestinal barrier to become part of the circulation.
Theracurmin, nanoparticle colloidal dispersion, had a 27-fold higher
bioavailability in humans than curcumin powder. A short-term, ran-
domized, double-blind, placebo-controlled prospective study of eight
weeks was conducted to ascertain the clinical effect of Theracurmin on
knee osteoarthritic patients. Knee pain visual analog scale (VAS) scores
were significantly lower in the Theracurmin group than in the placebo
group (Nakagawa et al., 2014). The potential of acid-activated curcumin
polymer micelles as therapeutics for OA was appraised using a mouse
model of monoidoacetate acid (MIA)-induced knee OA (KOA), and re-
sults manifested that acid-activated curcumin polymer micelles hold
remarkable potential as a therapeutic agent for OA (Kang et al., 2020).
Although nanomaterials have GRAS (Generally Recognized as Safe)
status, the safety and health issues associated with their use cannot be
overlooked. Focusing on the potential for nanoparticles to migrate from
packaging materials into food, the use of cytotoxic agents, and their
effects on consumer health, many studies have raised safety concerns

Fig. 4. Visual representation of food processing techniques of effects on OA-related factors.
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Table 3
Preclinical/clinical studies and evidence supporting the efficacy of nanotechnology in OA therapy.

Category Nanocarrier Composition/Formulation Animal model/cell
line

OA induction Drug delivery route Study
Duration

Outcomes References

Gene therapy Matrix
metalloproteinase 13
Short interfering RNA
(MMP13 siRNA)

siRNA loaded nanoparticles (siNPs)
encapsulated in poly (lactic-co-
glycolic acid) (PLGA) based
microPlates (μPLs) to formulate
siNP-μPLs against MMP13
(siMMP13-μPLs)

Mice Post-traumatic OA
induction by
repetitive mechanical
joint loading

1 intra-articular injection 28 days MMP13 gene expression was down
regulated by 65%–75%, which
attenuate the development of
osteophytes, meniscal degeneration,
and cartilage deterioration

Bedingfield
et al. (2021)

G5-AHP/miR-140 A multifunctional gene vector G5-
AHP with microRNA-140 (miR-
140) were employed to make G5-
AHP/miR-140 then construct the
nano-microns combined with
monodisperse-gelatin-
methacryloyl hydrogel
microspheres (MS)

Mice OA induction by
destabilizing the
medial meniscus by
surgery

1 intra-articular injection
of PBS, MS@G5-AHP/
miR-NC, G5-AHP/miR-
140, and MS@G5-AHP/
miR-140, after every 2
weeks

12 weeks OARSI scores were lower in the G5-
AHP/miR-140 and MS@G5-AHP/miR-
140 groups than PBS group. The
MS@G5-AHP/miR-140 group
performed the best in terms of GAS
level, indicating superior cartilage
thickness retention.

Li et al.
(2022)

p5RHH-siRNA p5RHH peptide that was
synthesized by GenScript is an
ationic amphipathic peptide and
p5RHH–siRNA polyplexes were
prepared

Mice OA induction by
destabilizing the
medial meniscus by
surgery

5 intra-articular injections
of p5RHH–siRNA nano-
complex were injected
first, immediately after
surgery then at 1, 2, 4 and
6 weeks

6 weeks IL-1-induced MMP-13 and ADAMTS-4
and 5 expressions in chondrocytes were
knockdown by these intra-articular
injections

Duan et al.
(2021)

CircRNA3503 with
small extracellular
vesicles (sEVs)

From synovium mesenchymal stem
cells, sEVs were derived and
produced circRNA3503-loaded
sEVs. Poly gels (PLEL) were used as
sEVs carrier

In vitro:
Osteoarthritic
human synovial
membrane and
articular cartilage
cells
In vivo: Rats

In vitro: IL-1β (10 ng/
mL) or TNF-α 10 ng/
mL for human cells
In vivo: Sham surgery

In vivo: After surgery,
PLEL@sEVs were injected
by intra-articular injection
every 4th week

– PLEL@circRNA3503-OE-sEVs is a
highly successful therapeutic approach
to halt the progression of OA.
Additionally, circRNA3503-OE-sEVs
increased chondrocyte regeneration to
slow down the loss of chondrocytes over
time.

Tao et al.
(2021)

Peptide-WNT16 mRNA
nano complex

Peptide was incubated withWNT16
mRNA to form a nano complex and
stabilized this complex with
hyaluronic acid (HA)

Osteoarthritic
human cartilage
explants

– – 48 h Peptide-WNT16 mRNA nano complex
inhibits canonical -catenin/WNT3a
signalling, increasing the synthesis of
lubricin and reducing chondrocyte
death.

Yan et al.
(2020)

NPs-YCWP NPs:
miR365 antagomir/
AAT

miR365 antagomir/AAT (NPs)
complex was made by miRNA365
antagomir and AAT then YCWP and
NPs used to develop oral drug
delivery. Fluorescently labelled
yeast cell particle made by
S. cerevisiae SAF-Mannan was used

Mice Post-traumatic
osteoarthritis model
by surgical
destabilization of the
medial meniscus

Oral administration of 06/
YCWP with 100 pmol
miR365 antagomir every
day

50 days Histological staining, gene, and protein
expression results showed that the OA
symptoms were alleviated by the
biodegradable miR365 antagonist/NPs-
YCWP.

Zhang et al.
(2020)

Drug delivery
system

Polylactic acid (PLA)
and chitosan
hydrochloride (CS-HCl)
nano complex

Etoricoxib-loaded bio-adhesive
hybridized nanoparticles were
formulated using PLA and (CS-HCl)
in the presence of Captex®200,
Tween®80, and polyvinyl alcohol

MC3T3-E1 normal
bone cell line

– – 28 days This nanoparticle formulation enhanced
the ALP activity, calcium ion binding
and deposition. This nano complex
showed strong binding capacity with
naturally occurring HA

Salama et al.
(2020)

Kartogenin conjugated
chitosan (CHI-KGN)

Kartogenin was conjugated with
low and molecular-weight chitosan
in the presence of a catalyst

Rat Surgery Intra-articular injections
at weeks 6 and 9 after
ACLT OA induction

14 weeks Less degenerative alterations were
observed in CHI-KGN NPs or CHI-KGN
MPs treated OA rats. In conclusion,
polymer-drug conjugates such as CHI-
KGN NPs or MPs can be effective IA drug
delivery systems for treating OA.

Kang et al.
(2014)

Micelles Drug-loaded hydrogen peroxide-
sensitive nano-micelle

Activated
macrophages and
BMSCs

– – 7 days These drug-loaded nano-micelles
reduced the joint inflammation, up-
regulated bone marrow mesenchymal

Wu et al.
(2021)

(continued on next page)
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Table 3 (continued )

Category Nanocarrier Composition/Formulation Animal model/cell
line

OA induction Drug delivery route Study
Duration

Outcomes References

stem cells to regenerate cartilage and
caused the BMSCs to develop into
chondrocytes

Liposomal gel Lipogel of diclofenac OA patients – Applied on knees 6 weeks Diclofenac liposomal gel was superior in
reducing the symptoms of OA in the
knee.

Bhatia et al.
(2020)

Thermo-responsive
poly nano-particles
loaded with KAFAK
drug

pNIPAM shell prepared and then
copolymerized with KAFAK drug

Cartilage plugs from
bovine knee

The elimination of
native aggrecan was
used to replicate OA-
like circumstances

Nano-particles and IL-1β
were added every 2 days

8 Days These thermosensitive drugs loaded
nano-particles suppressed the IL-16
expression.

McMasters
et al. (2017)

Bisphosphate
nanoparticle with
clodronate drug

Clodronate drug embedded with
amino bisphosphate nanoparticles

In vivo: OA patients
In vitro: Circulating
progenitor cells

– In vivo: 200 mg weekly
administrated through
intra-muscular injection
In vitro: 50 nM–100 nM

In vivo: 6
months

Compared to clodronate alone, drug-
loaded NPs more effectively increased
SOX9 expression and alleviate the OA
pain. It also improved physical and
mental health

Valenti et al.
(2017)

Berberine chloride-
loaded chitosan
nanoparticles

The ionic cross-linking method was
used to develop these nanoparticles

Rat Knee OA induced
surgically

0.6 mg/ml BBR-loaded
CNs injected by intra-
articular injection and
blood obtained at different
hours after administration
of nanoparticles

10 weeks These nanoparticles increased anti-
apoptotic activity and showed high
retention time in synovial fluid. Because
of their spherical shape, these nano-
particles showed great stability

Zhou et al.
(2015)

Gold nanoparticles
with chondroitin
sulfate

Gold nanoparticles synthesized and
combined with chondroitin sulfate
(CS) to form an AuNps-CS complex

Goat chondrocytes Collagenase Specific concentrations of
AuNps and CS were added

– Collagen and GAG production is greatly
enhanced, and chondrocyte
proliferation and extracellular matrix
formation also increased

Dwivedi
et al. (2015)

Nano-curcumin A specific evaporation technique
was employed to synthesize the
nano-curcumin complex

Rat Mono-iodoacetate 200 mg kg− 1 curcumin
and nanocurcumin were
gavaged for 2 weeks

2 weeks Nano-curcumin enhanced the
chondroprotective potential of
curcumin, enhanced the cellularity and
slow down the degeneration of cartilage

Niazvand
et al. (2017)
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related to nanomaterials (Athinarayanan et al., 2014; Bradley et al.,
2011; Jain et al., 2018). While developing nano-food products, the
transparency of safety and health issues should be the priority. Thus,
more research and mandatory testing related to the usage safety of
nano-food products are required before they enter the market.

4.4. Ingredient-modified food processing

4.4.1. Fat-modified food
Obesity has emerged as a serious health concern in developed

countries, and it has a strong association with OA. Even though obesity
and overweight are modifiable, these are still the most decisive and
determinant risk factors for OA, especially for KOA (Raud et al., 2020;
Shahid, Inam-ur-Raheem, Aadil, & Israr, 2022). A 5% increase in body
mass index increases the risk of KOA by 35% (Raud et al., 2020). The
actual reason is that excessive body weight increases the mechanical
load on joints, which damages the cartilage and cartilage mayhem
(Kulkarni et al., 2016). Besides that, white adipose tissue produces leptin
and adipokine, and elevated leptin is strongly associated with low-grade
inflammation and cartilage degradation (Thomas et al., 2018). Adipo-
kine contributes to OA pathogenesis because it is crucial in maintaining
healthy bones and cartilage and is directly linked to inflammation and
adiposity (Azamar-Llamas et al., 2017). A caloric-restricted diet with
low fat is frequently advised to lose weight and improve joint health
(Radakovich et al., 2019). Even though many have started choosing
low-fat and fat-free diets, research shows that cutting back on fat is one
of the healthiest but most difficult habits to keep up because reduced-fat
and fat-free foods have poorer mouthfeel, flavor, texture, and sensory
properties (Hsieh & Ofori, 2007). Therefore, the focus has been on
substituting dietary fat in traditional foods with new components with
similar sensory qualities usually attributed to dietary fat. Nowadays, fat
replacers (FRs) successfully solve this problem by reducing high fat and
high caloric content while maintaining the flavor, taste, mouthfeel,
texture, and organoleptic attributes of food (Colla et al., 2018).

The FRs used as dietary fat substitutes can be carbohydrate-based,
fat-based (also known as fat substitutes), or protein-based. They have
different functions and structures, can replace one or more functions of
fat, and provide a lower caloric value than the original fat (M et al.,
2021; Colla et al., 2018). FRs can be synthetic fat substitutes (FS), fat
mimetics (FMs), fat analogs, and fat extenders. Carbohydrate-based FRs
include starch-derived FRs (resistant starch, maltodextrin, poly-
dextrose), cellulose-based FRs (microcrystalline cellulose, MC gums),
dietary fiber-based FRs (pectin, inulin, b-glucan, bacterial cellulose, and
Z-trim), and gum-based FRs (locust bean gum and guar gum).
Protein-FRs can be classified as animal-based or plant-based protein-fat
replacers. Fat-based FRs, also referred to as fat substitutes, are used in
food products to mimic the properties of traditional fats while reducing
calorie content. Structured lipids, sugar polyesters, esterified propoxy-
lated glycerol, dailkyl dihexadecymalonate, and trialkoxytricarballate
are examples of fat-based FRs (Tur & Bibiloni, 2016). B-glucan is a
polymer commonly found in oats, barley, and yeast cell walls. Its
preparation is used as a substitute for vegetable oil in low-fat food
products such as salad dressings, ice creams, yogurts, cheese, and
mayonnaise. Furthermore, b-glucans have gained widespread recogni-
tion for their therapeutic potential and nowadays are under light for OA
treatment (El Khoury et al., 2012). Kim and his collaborators investi-
gated the efficacy of polycan, a beta-1,3-1,6-glucan originated from
Aureobasidium pullulans SM-2001, in the treatment of OA caused by
partial medial meniscectomy (PMM) and anterior cruciate ligament
transection (ACLT). Cartilage proliferation, the maximum extension
angle of each knee, cartilage histopathology, and the change in
circumference were evaluated. The study’s result showed that 84 days of
continuous oral treatment with three different doses of polycan (21.25,
42.5, and 85, 42.5 mg/kg) significantly reduced articular stiffness and
histological cartilage damage compared to OA controls, suggesting that
42.5 mg/kg of polycan is the ideal dose for treating OA (Kim et al.,

2012). A double-blind, placebo-controlled 8-week trial evaluated the
efficacy of beta-1,3/1,6-glucans on osteoarthritic dogs and elucidated
that daily consumption of 800 ppm beta-1,3/1,6-glucans significantly
reduced the pain, stiffness, and lameness and improved the locomotion
and activity of dogs compared with placebo. The author suggested that
800 ppm beta-1,3/1,6-glucans in dry food for dogs would be worthwhile
in treating OA (Beynen & Legerstee, 2010). Chia seeds and oats are
antioxidants and polyunsaturated fatty acid-rich foods that possess
anti-inflammatory properties and have been well known for their ther-
apeutic potential, especially for OA (Kim et al., 2021; Mohamed et al.,
2020). Polyphenols like avenanthramide, avenasterol, avenacoside, and
β-glucan are major components of oats that attenuate inflammation
(Kim et al., 2021). Avenanthramide C extracted from oats and β-glucan
are promising candidates for attenuating OA progression (Tran et al.,
2021). There is increasing interest in using oat and chia emulsion gels as
substitutes for animal fat. It not only reduces fat and calories, but it also
improves the nutritional content of food and minimizes nutrient loss
during cooking. Including chia emulsion gel in reduced-fat fresh sau-
sages improved the polyunsaturated and monounsaturated fatty acid
content (Pintado et al., 2018). To develop healthier fat, Beeswax and
ethyl cellulose oleogels were prepared using linseed oil, OO, and fish oil
as fat replacers. Both olegels exhibited high nutritional value because of
the high nutritional profile of these compounds. For example, OO: 45%
MUFA, particularly 72% of oleic acid; linseed oil: 68% PUFA, most
representative ones n-3 fatty acids; and fish oil: 35% PUFA, most
abundantly EPA (18.7%) and DHA (12%) (Chin & Pang, 2017; Loef
et al., 2019; Mendoza et al., 2013; Puente et al., 2014). Ethyl cellulose
oleogel had a detrimental effect on sensory parameters, while beeswax
oleogel had no discernible effect (Gómez-Estaca et al., 2019). Another
study used oleogels made from beeswax and sesame oil as full or partial
FRs in beef burger formulation, also substantiating the potential of wax
olegoels as FRs in meat product development (Moghtadaei et al., 2018).

Inulin, an oligomer, forms a gel or cream at 40%–45% concentration,
giving it a fatty cream feel. It has properties like durability against
freeze-thaw, strong water binding, and suppression of syneresis in
mayonnaise and salad dressings. Inulin with a degree of polymerization
(DP) of 25 or below replaces high-performance fat in fat-reduced table
spreads, cheese, meat, meat substitutes, fillings, and frozen sweet sauces
(M et al., 2021). This oligomer is under discussion to understand the
anti-osteoarthritic role of inulin (Korotkyi et al., 2020). Furthermore,
polydextrose (Beynen et al., 2011; Reuter et al., 2015), xanthan gum (Li
et al., 2019), and microcrystalline cellulose (Setu et al., 2014) are also
FRs that have an ameliorative effect on OA. Z-trim, which stands for zero
calories, is a carbohydrate-based FR that can replace some glycemic
elements (starches, sugars, and syrups) and fat. It offers a fiber-like
structure made of aqueous gel without imparting any taste. It signifi-
cantly reduces the calories depending on how much fat and carbohy-
drates are replaced in meal formulations. It contributes zero calories,
which is why it has been commonly used in dairy and bakery products
since its discovery in 1996, and more focus is given now to using it in
meat and meat products to replace meat or meat fat (Schmiele et al.,
2015; Summo et al., 2020).

FRs are granted GRAS status by the Food and Drug Administration
(FDA), except for olestra and polydextrose. Olestra is a synthetic fat
made up of vegetable oil and sucrose that digestive enzymes cannot
hydrolyze in the gut, cannot be absorbed due to its enormous molecular
size, and remains undigested. It does not add any calories or fat to the
meal, but its excessive use may cause fatty and watery stool and cause
the loss of fat-soluble vitamins. A labeling disclaimer is always necessary
when polydextrose is present in products because it can have a laxative
effect (Hsieh & Ofori, 2007). Therefore, more research and work are
required to address these issues and increase the applicability and
acceptance of fat replacement technology. Despite the limitations of FRs,
accumulating evidence suggests that FRs can help to reduce and control
weight, which is a significant risk factor for osteoarthritic and
non-osteoarthritic individuals, concurrently allowing them to enjoy
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their food while managing the OA through diet therapy.

4.4.2. Decaffeination processing
Caffeine, an alkaloid, is a stimulating compound naturally found in

tea leaves, yerbamate leaves, cacao beans, guarana beans, cola nuts, and
coffee beans. It can be produced synthetically and incorporated into
foods, beverages, pills, and dietary supplements. It has no nutritional
value, but it is one of the most often ingested substances, with an
average daily intake of 120 mg. However, excessive consumption of
caffeine-containing beverages is linked to various health issues,
including OA. There is plenty of evidence that caffeine consumption
negatively affects the physiology of articular cartilage and raises a
person’s risk of developing OA (Choi et al., 2017; Luo et al., 2015;
Shangguan et al., 2017; Tan et al., 2012, 2018). Caffeine consumption
negatively affects the articular cartilage by reducing the cartilage ECM
(extracellular matrix) component synthesis, decreasing the tidemark,
diminishing chondrocyte proliferation, and leading to an irregular
cartilage surface. Caffeine consumption buildup of cholesterol in chon-
drocytes reduces the quality of chondrocytes (Guillán-Fresco et al.,
2020). Numerous experimental studies investigated caffeine consump-
tion’s effect on rats’ articular cartilage. These studies found that prenatal
caffeine consumption, even below the threshold for clinical intoxication,
severely damaged the articular cartilage of fetal rats. Histological
studies specifically showed that parental caffeine exposure affected rat
offspring rigorously. The unevenly distributed chondrocytes and irreg-
ularly surfaced cartilage were observed in the tangential zone of joints
(Luo et al., 2015; Reis et al., 2018; Shangguan et al., 2017; Tan et al.,
2012, 2018). It is important to note that parental caffeine’s negative
effect on the fetal rats’ articular cartilage persisted into adulthood
(Shangguan et al., 2017; Tan et al., 2018). Due to its deliberately
devastating effect on OA onset and evaluation, caffeine intake should be
avoided or mentored carefully, especially for persons with a slow
metabolism (pregnant women and children) and those with OA or a high
predisposition to having OA (Guillán-Fresco et al., 2020). However,
advances in food technology have significantly contributed to the
development of caffeine-free beverages.

Decaffeination can be executed using solvent extraction, supercriti-
cal carbon dioxide, and water decaffeination. Commonly used organic
solvents are methylene chloride (DCM) and ethyl acetate (EA), while the
water decaffeination process does not use any solvent (Pietsch, 2017,
chap. 10). Supercritical carbon dioxide decaffeination has gained
popularity due to its benefits, including its safety, non-flammability, and
exceptional selectivity. During decaffeination, some volatile aroma
precursors may also be removed along with caffeine, leading to a low,
plain, and thin taste even after roasting (Muchtaridi et al., 2021; Pietsch,
2017, chap. 10). These decaffeination methods have some shortcomings,
but water decaffeination is better than other methods due to its ability to
maintain the taste of coffee while removing caffeine. In contrast, solvent
extraction and carbon dioxide decaffeination are capital-intensive
methods due to high-cost agents and show some health concerns.
However, health concerns are associated with solvents such as methy-
lene chloride, despite not being proven to cause cancer in humans but in
mice at specific concentrations (Hsieh & Ofori, 2007).

Therefore, microbial decaffeination methods (caffeine degradation
by bacteria, fungi, or enzymes) were employed as an alternative to
conventional decaffeination processes. Fungi species (Penicillium and
Aspergillus) and bacterial species (Pseudomonas and Serratia genus) are
effective caffeine degraders. However, studies have shown fungi species
are less efficient at decaffeination than bacteria. Demethylases and ox-
idases are enzymes responsible for the caffeine-degrading ability of
bacteria and fungi. Researchers isolated and purified these enzymes to
make this process more efficient by using them in caffeine degradation.
However, these isolated enzymes are unstable and do not provide effi-
cient results (Lukman et al., 2023). Studies related to genetic modifi-
cation found that bacteria use N-demethylation and C-8 oxidation
metabolic pathways for decaffeination. The discovery of these two

catabolic pathways (N-demethylation and C-8 oxidation) can pave the
way for numerous biotechnology applications that can be used for OA
management (Lin et al., 2023; Vega et al., 2021). A review conducted in
2022 found that the most effective approach for making caffeine-free
coffee species is to use CRISPR-Cas9 and A. tumefaciens-mediated
transformation (AMT). This process involved genome editing and de-
leting two key genes in the caffeine biosynthesis pathways. These two
genes are XMT (7-methylxanthine methyltransferase) and DXMT (3,
7-dimethylxanthine methyltransferase), which are crucial for caffeine
synthesis (Leibrock et al., 2022).

4.5. Food fortification

Micronutrient deficiency is widespread, particularly in middle and
low-income countries, affecting cognitive and physical health and
enhancing the global disease burden. A low nutrient-dense food intake, a
high processed diet intake, infection, or blood loss can cause micro-
nutrient deficiency. According to estimates, micronutrient deficiencies
contribute to 7.3% of the world disease burden, with vitamin A and iron
deficiency ranking among the top 15 leading causes of morbidity in
more than a million children each (Ahmed et al., 2012; Black et al.,
2013). The United Nations Food and Agriculture Organization (FAO)
and World Health Organization (WHO) employed various strategies to
combat this micronutrient deficiency. Nonetheless, only food fortifica-
tion has been proven to combat micronutrient deficiency successfully.
Food fortification can be defined as adding vitamins and minerals to
frequently consumed foods to enhance diets and prevent and control
micronutrient deficiencies. It is a risk-free, cost-effective, and most
appropriate nutritional intervention to combat nutritional deficiencies,
particularly deficiencies related to vitamin D, vitamin A, folic acid, iron,
and zinc deficiencies. The extended literature suggested an inverse
relation between vitamin D, A, and B9 and OA progression. A low serum
vitamin D level is associated with a high incidence of radiographic OA,
narrower joint space, severe knee pain, and poor physical function
(Tripathy et al., 2020). Magnetic resonance imaging (MRI) revealed that
vitamin D deficiency is positively linked with the medial and lateral
tibial bone area in women. In older men and women, serum 25(OH)D
level was significantly and positively associated with knee cartilage
volume. A five-year longitudinal study also explicated the significant
association of vitamin D with OA. Results showed that a higher baseline
serum level of vitamin D decreases cartilage volume loss and is associ-
ated with bone protective factors (Wang et al., 2023).

Food fortification of staple foods with vitamins D, A, B9, and B12
could assist in curbing OA onset and progression. Vitamin-D-fortified
foods like fortified milk, fortified spreads, and fortified cereals are
helpful to cope with vitamin D deficiency (available at DBA, the Asso-
ciation of UK Dieticians, https://www.bda.uk.com/resource/vitamin-d.
html) and at Rheumatology online. To combat vitamin A deficiency, 29
developing countries are fortifying their foods with vitamin A (Mason
et al., 2014). More than 40 countries mandated vitamin A and D forti-
fication in sugar, margarine, and edible oil (Olson et al., 2021). In
October 2019, the Rwandan government initiated the fortification of
five staple foods, namely wheat flour and maize flour, with vitamin B12,
vitamin B1, vitamin B3, vitamin B9, vitamin A, zinc, and iron, edible oils
and sugar with vitamin A, and salt with iodine (Olson et al., 2021).
Whiting and colleagues summarized different studies of food fortifica-
tion to evaluate the effect of food fortification on bone health and
metabolism. The findings of this review indicate that calcium and
vitamin D have been the subjects of most studies of fortification and
bone health, and these nutrients positively affect bone remodeling
(Whiting et al., 2016).

Biofortification, another type of food fortification, increases the
micronutrient content of staple crops through plant breeding, agro-
nomically, or mineral fertilizers. Biofortification programs focus pri-
marily on increasing provitamin, carotenoid, zinc, and iron content in
food crops; some biofortification projects also focus on amino acids and
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protein. Biofortification projects include biofortification of vitamin A in
cassava, potatoes, and corn, iron-biofortified rice, sweet potatoes, beans,
and maize, and zinc-biofortified sweet potatoes, rice, wheat, beans, and
rice. Genetic engineering enables the cultivation of micronutrient-
enriched crops, which can help combat OA and many other comorbid-
ities (de Brauw et al., 2019; Van Der Straeten et al., 2020).

Point-of-use fortification, also known as home fortification, is the
addition of vitamins and minerals to cooked food or when it is ready to
be eaten. It is a key approach to combating micronutrient deficiencies,
particularly iron. Single-dose powdered vitamin and mineral packets
sprinkled onto food that do not change the flavor, color, or taste
(Organization, 2016). Most countries use a 15-micronutrient-powdered
formulation for children (Suchdev et al., 2020). Formulating micro-
nutrient supplements or powders designed explicitly for OA can be a safe
and cost-effective approach to combating OA progression and onset,
especially for individuals predisposing to OA.

4.6. Excipient food technology

The food or nutrients, regardless of whether they are hydrophilic or
lipophilic, must be released from the food matrix, be bioaccessible after
digestion, and reach the target tissue of action to improve health and
mitigate the diseases, including OA, through an appropriate diet
(Sensoy, 2021). Therefore, developing practical methods for enhancing
the bioavailability profile of nutrients and bioactive compounds is of
utmost importance. In this regard, excipient is a novel development that
increases the bioavailability of orally consumed bioactive substances.
An excipient is a non-bioactive component added to a dietary or phar-
maceutical preparation to improve the bioavailability of co-ingested
bioactive components (Ionova & Wilson, 2020). Non-integrated excip-
ient foods refer to the co-ingestion of bioactive-rich food with the
excipient food formulation. Integrated excipient foods contain the
dispersion of bioactive compounds into the excipient food formulations.
They can be consumed as independent functional foods, such as drinks,
desserts, sauces, dressings, or yogurt fortified with nutraceuticals like
omega-3 fatty acids, carotenoids, or polyphenols (McClements et al.,
2015). This innovation can improve overall health and effectively
combat OA by increasing the bioavailability of OA-related bioactive
nutrients. For instance, eating a salad with a specially formulated salad
dressing may boost the bioaccessibility of carotenoids, a proven
anti-osteoarthritic compound. Various food ingredients, such as lipids
that promote intestinal absorption, antioxidants that prevent chemical
oxidation, enzyme inhibitors that slow metabolism, permeation en-
hancers that improve absorption, and efflux inhibitors, may be present
in this dressing. The excipient foods enhance the bioavailability of ca-
rotenoids and oil-soluble vitamins in salads when consumed with
fat-containing. A potential excipient food can be an edible coating that
improves the bioavailability of flavonoids, phytosterols, or vitamins.
Cream, yogurt, and ice creams can be potential excipient foods to
enhance the bioavailability of berries, fruit flavonoids, and vitamins
(McClements & Xiao, 2014). OO is a component of excipient food that
increases carrots’ α and β carotene content. According to pharmacoki-
netic studies, adding OO to carrots during cooking increases carotene
extractability and solubilization (Rinaldi de Alvarenga et al., 2019),
whereas adding it to tomato sauce improves the solubilization of phe-
nolics (Martínez-Huélamo et al., 2015).

In addition to fat-based excipients, there are carbohydrate-based,
protein-based, mineral-based, and food additive-based excipients that
improve the bioavailability of bioactive compounds. The food excipi-
ents, carbohydrates, protect the EGCG from degradation in aqueous
solutions like sugar. Food additives such as xylitol/vitamin C and
xylitol/citric acid improve the absorption of the total catechin of green
tea in the intestinal tract (Shpigelman et al., 2013). Various pieces of
knowledge revealed that incorporating lipid droplets in starch-based
hydrogels enhanced lipid and carotenoid digestion (Mun, Kim, &
McClements, 2015; Mun, Kim, & McClements, 2015). Pectin also

functions as a food excipient by altering the carotenoid bioaccessibility
and lipid digestion, depending on the type of pectin (Verrijssen et al.,
2015). The bioavailability of anthocyanins in blueberry juice can be
improved by incorporating soybean flour (Ribnicky et al., 2014).

Curcumin has an anti-OA potential but cannot be used to its full
potential because of the low bioavailability of curcumin in its native
form. The galenic form of curcumin in a specific excipient is developed
using a very thin dispersion of curcumin to maximize its bioavailability.
This particular form of curcumin was evaluated for its anti-osteoarthritic
potential and concluded that this new preparation of curcumin is a po-
tential neutraceutical approach for OA (Appelboom et al., 2014).
Another novel formulation of curcumin was prepared with a combina-
tion of established excipients, monoglycerides, and phospholipids,
which have high intestinal absorption and solubility. This formulation of
curcumin was evaluated for its anti-osteoarthritic potential, indicating
that its substantially high bioavailability significantly improves the
pathophysiology of OA (Yabas et al., 2021). A study was conducted to
assess the efficacy of an excipient food technology-derived gastro-
resistant food supplement formulation containing the combination of
bromelain and Boswellia serrata. This study evinced that this food sup-
plement significantly improved the quality of life of patients suffering
from different forms of OA (Italiano et al., 2020).

Contrary to enhancing the bioavailability characteristic of food
through excipients, many food combinations likewise reduced the
bioavailability of bioactives.

Contrary to improving the bioavailability of food through excipients,
many food combinations can decrease the bioavailability of bioactive
compounds. For instance, milk proteins, particularly sodium caseinate,
can dramatically reduce the bioaccessibility of flavan-3-ols. The low
bioavailability of ferulic acid due to its polysaccharide binding restricts
its extraction and absorption in the small intestine (Bohn et al., 2015).
The crosstalk of evidence suggests that excipient food technology could
be a novel way to boost the effectiveness of medications, dietary sup-
plements, and nutraceuticals to curb OA and OA-related symptoms.

4.7. Other food processing factors and their effect on OA

4.7.1. Food additives and preservatives
Food additives and preservatives are chemicals commonly used in

foods to enhance the color, taste, aroma, and shelf life and prevent
deterioration from the exposure of microorganisms, oxygen, and en-
zymes. Despite their effect on health, food industries have employed
more and more food additives and preservatives to enhance food attri-
butes. Most of these chemicals are classified as GRAS, but a few additives
and preservatives have deleterious effects on health and are still a reg-
ular part of food products. For instance, monosodium glutamate (MSG/
E621) is a flavor enhancer that makes food palatable. Many restaurants
commonly use it, and it is frequently used in home cooking. This flavor
enhancer can lead to obesity by altering the leptin-mediated hypotha-
lamic signaling cascade. As previously discussed, OA is directly linked to
obesity and inflammation; therefore, MSG/E621 could increase OA
predisposition and OA-induced comorbidities. A critical literature re-
view corroborated that MSG/E621 consumption has a linear relation-
ship with obesity and inflammation (Kazmi et al., 2017; Niaz et al.,
2018). An extended and augmented body of literature elucidates the
drastic role of phosphorous-based food additives in bone metabolism.
The phosphorous-based food additives significantly elevate the circu-
lating osteocalcin, fibroblast growth factor 23 (FGF23), and osteopontin
while drastically lowering the sclerostin concentration compared to
baseline values, which negatively links with bone and mineral meta-
bolism (Gutiérrez et al., 2015). Growing evidence suggests that contin-
uously high intakes of phosphorous can disrupt bone and mineral
metabolism and cause bone loss, leading to bone-related disorders
(Vorland et al., 2017). To date, no standard scientific research has
evaluated the effect of commonly used food additives and preservatives
on OA. Hence, in future work, scientists should consider elucidating the
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role of food additives and preservatives in bone and mineral metabolism
with a specific reference to OA.

5. Conclusion and future perspectives

The crosstalk of this review confirmed that food processing and other
related factors, such as additives, preservatives, the type of processing,
the duration of treatment, and the food matrix, can affect OA diet-based
management by affecting the nutritional content of OA-related foods.
The non-thermal food technologies, specifically ultrasound processing,
irradiation, high-pressure, carbon dioxide, electric field, microwave
processing, high hydrostatic pressure, and cold plasma, and other food
technologies, including food fortification, biofortification, decaffeina-
tion processing, nanotechnology, fat replacers, and food excipients, have
a great potential to significantly improve diet-based OA management,
specifically nanotechnology and food excipients. Despite being safe,
these novel technologies have some limitations, such as concerns about
health-related safety, degradation of nutritional quality, and significant
cost. Extensive research is needed to overcome these limitations, safety
issues, affordability, accessibility, and research gaps to design an
effective diet-based OA management guideline. Additionally, the
limited number of studies on food processing and OA indicate that future
preclinical and clinical research, especially randomized controlled trials
in humans, should focus on evaluating the effect of the novel food
technologies and their combined impact on OA-related foods, which can
pave the way for the development of safe and nutritious anti-OA foods
and food products with maintained or improved color, texture, flavor,
and mouthfeel for OA patients, focusing on personalized nutrition.
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Pintado, T., Herrero, A. M., Jiménez-Colmenero, F., Cavalheiro, C. P., & Ruiz-Capillas, C.
(2018). Chia and oat emulsion gels as new animal fat replacers and healthy bioactive
sources in fresh sausage formulation. Meat Science, 135, 6–13. https://doi.org/
10.1016/j.meatsci.2017.08.004

Poelman, A. A. M., Delahunty, C. M., & de Graaf, C. (2013). Cooking time but not cooking
method affects children’s acceptance of Brassica vegetables. Food Quality and
Preference, 28(2), 441–448. https://doi.org/10.1016/j.foodqual.2012.12.003

Pomilio, A. B., Szewczuk, N. A., & Duchowicz, P. R. (2024). Dietary anthocyanins
balance immune signs in osteoarthritis and obesity–update of human in vitro studies
and clinical trials. Critical Reviews in Food Science and Nutrition, 64(9), 2634–2672.
https://doi.org/10.1080/10408398.2022.2124948

Porto, E., Alves Filho, E. G., Silva, L. M. A., Fonteles, T. V., do Nascimento, R. B. R.,
Fernandes, F. A. N., de Brito, E. S., & Rodrigues, S. (2020). Ozone and plasma
processing effect on green coconut water. Food Research International, 131, Article
109000. https://doi.org/10.1016/j.foodres.2020.109000

Puente, R., Illnait, J., Mas, R., Carbajal, D., Mendoza, S., Fernández, J. C., Mesa, M.,
Gamez, R., & Reyes, P. (2014). Evaluation of the effect of D-002, a mixture of
beeswax alcohols, on osteoarthritis symptoms. The Korean Journal of Internal
Medicine, 29(2), 191. https://doi.org/10.3904/kjim.2014.29.2.191

Putnik, P., Barba, F. J., Lorenzo, J. M., Gabrić, D., Shpigelman, A., Cravotto, G., & Bursać
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Sirše, M. (2022). Effect of dietary polyphenols on osteoarthritis—molecular mechanisms.
Life, 12(3), 436. https://doi.org/10.3390/life12030436

Smigic, N., Djekic, I., Tomic, N., Udovicki, B., & Rajkovic, A. (2019). The potential of
foods treated with supercritical carbon dioxide (sc-CO2) as novel foods. British Food
Journal. https://doi.org/10.1108/BFJ-03-2018-0168

So, J.-S., Song, M.-K., Kwon, H.-K., Lee, C.-G., Chae, C.-S., Sahoo, A., Jash, A., Lee, S. H.,
Park, Z. Y., & Im, S.-H. (2011). Lactobacillus casei enhances type II collagen/
glucosamine-mediated suppression of inflammatory responses in experimental
osteoarthritis. Life Sciences, 88(7–8), 358–366. https://doi.org/10.1016/j.
lfs.2010.12.013

Starek, A., Pawłat, J., Chudzik, B., Kwiatkowski, M., Terebun, P., Sagan, A., &
Andrejko, D. (2019). Evaluation of selected microbial and physicochemical
parameters of fresh tomato juice after cold atmospheric pressure plasma treatment
during refrigerated storage. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/
s41598-019-44946-1

Steinmetz, J. D., Culbreth, G. T., Haile, L. M., Rafferty, Q., Lo, J., Fukutaki, K. G.,
Cruz, J. A., Smith, A. E., Vollset, S. E., & Brooks, P. M. (2023). Global, regional, and
national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic
analysis for the global burden of disease study 2021. The Lancet Rheumatology, 5(9),
e508–e522. https://doi.org/10.1016/S2665-9913(23)00163-7

Steves, C. J., Bird, S., Williams, F. M. K., & Spector, T. D. (2016). The microbiome and
musculoskeletal conditions of aging: A review of evidence for impact and potential
therapeutics. Journal of Bone and Mineral Research, 31(2), 261–269. https://doi.org/
10.1002/jbmr.2765

Suchdev, P. S., Jefferds, M. E. D., Ota, E., da Silva Lopes, K., & De-Regil, L. M. (2020).
Home fortification of foods with multiple micronutrient powders for health and
nutrition in children under two years of age. Cochrane Database of Systematic Reviews,
2(2). https://doi.org/10.1002/14651858.CD008959.pub3

Summo, C., De Angelis, D., Difonzo, G., Caponio, F., & Pasqualone, A. (2020).
Effectiveness of oat-hull-based ingredient as fat replacer to produce low fat burger
with high beta-glucans content. Foods, 9(8), 1057. https://doi.org/10.3390/
foods9081057

Sun, Y., Liu, W., Zhang, H., Li, H., Liu, J., Zhang, F., Jiang, T., & Jiang, S. (2017).
Curcumin prevents osteoarthritis by inhibiting the activation of inflammasome
NLRP3. Journal of Interferon and Cytokine Research, 37(10), 449–455. https://doi.
org/10.1089/jir.2017.0069

Surendra Babu, A., Parimalavalli, R., & Jagan Mohan, R. (2018). Effect of modified starch
from sweet potato as a fat replacer on the quality of reduced fat ice creams. Journal
of Food Measurement and Characterization, 12(4), 2426–2434. https://doi.org/
10.1007/s11694-018-9859-4

Tan, Y., Li, J., Ni, Q., Zhao, Z., Magdalou, J., Chen, L., & Wang, H. (2018). Prenatal
caffeine exprosure increases adult female offspring rat’s susceptibility to
osteoarthritis via low-functional programming of cartilage IGF-1 with histone
acetylation. Toxicology Letters, 295, 229–236. https://doi.org/10.1016/j.
toxlet.2018.06.1221

Tan, Y., Liu, J., Deng, Y., Cao, H., Xu, D., Cu, F., Lei, Y., Magdalou, J., Wu, M., & Chen, L.
(2012). Caffeine-induced fetal rat over-exposure to maternal glucocorticoid and
histone methylation of liver IGF-1 might cause skeletal growth retardation.
Toxicology Letters, 214(3), 279–287. https://doi.org/10.1016/j.toxlet.2012.09.007

Tanideh, N., Ashkani-Esfahani, S., Sadeghi, F., Koohi-Hosseinabadi, O., Irajie, C.,
Iraji, A., Lubberts, B., & Mohammadi Samani, S. (2020). The protective effects of
grape seed oil on induced osteoarthritis of the knee in male rat models. Journal of
Orthopaedic Surgery and Research, 15(1), 1–9. https://doi.org/10.1186/s13018-020-
01932-y

Tantavisut, S., Tanavalee, A., Honsawek, S., Suantawee, T., Ngarmukos, S.,
Adisakwatana, S., & Callaghan, J. J. (2017). Effect of vitamin E on oxidative stress
level in blood, synovial fluid, and synovial tissue in severe knee osteoarthritis: A
randomized controlled study. BMC Musculoskeletal Disorders, 18(1), 1–9. https://doi.
org/10.1186/s12891-017-1637-7

Tao, S.-C., Huang, J.-Y., Gao, Y., Li, Z.-X., Wei, Z.-Y., Dawes, H., & Guo, S.-C. (2021).
Small extracellular vesicles in combination with sleep-related circRNA3503: A
targeted therapeutic agent with injectable thermosensitive hydrogel to prevent
osteoarthritis. Bioactive Materials, 6(12), 4455–4469. https://doi.org/10.1016/j.
bioactmat.2021.04.031

Thanuja, S., Sivakanthan, S., & Vasantharuba, S. V. (2019). Effect of different cooking
methods on antioxidant properties of Tomato (Lycopersicon esculentum). Ceylon
Journal of Science, 48(1), 85–90. https://doi.org/10.4038/cjs.v48i1.7592

Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: A novel non-
thermal technology for food processing. Food Biophysics, 10(1), 1–11. https://doi.
org/10.1007/s11483-014-9382-z

Thomas, S., Browne, H., Mobasheri, A., & Rayman, M. P. (2018). What is the evidence for
a role for diet and nutrition in osteoarthritis? Rheumatology, 57(suppl_4), 61–74.
https://doi.org/10.1093/rheumatology/key011

Tiwari, B. K., Brennan, C. S., Curran, T., Gallagher, E., Cullen, P. J., & O’Donnell, C. P.
(2010). Application of ozone in grain processing. Journal of Cereal Science, 51(3),
248–255. https://doi.org/10.1016/j.jcs.2010.01.007
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