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Abstract

Generalized k connectivity for graphs and generic graphs is recognized as NP-
complete, a parameter that measures the network’s ability to connect vertices. Suppose
k,,a completely connected bipartite graph represents the maximum number of internally
disjoint Steiner trees (IDSTs) joining a subset ScV(G) of k vertices in G. In this context, Steiner
trees (or “S -trees”) T,, T, are considered internally detached if and only if V(T)) N V(T,) = S
and E(T)) N E(T,) = ¢. We define generalized k-connectivity as «, (G). This study focuses on
calculating the precise values of generalized k-connectivity for line- graph of bipartite graphs

with k = 3, 4 and generalized k-connectivity for bipartite graphs with k > 3.

Subject Classification: 05C10, 05C25.

Keywords: Completed bipartite graph, Generalized k-connectivity, Line graph inwardly disjoint trees,
Steiner trees.

1. Introduction

A desired pair (V(G), E(G)) represents (G) graph, where both of (V(G),
E(G)) symbolize vertices, edges sets, respectively. By the number of vertices
which is directly adjacent to x € V(G) degree of a vertex is determined it that
symbolize d by d;(x). The minimum degrees of G are represented by & =
6(G), respectively. When § is equal to some natural number g, the graph is
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called g -regular. When the vertices of (G) are separated into the sub-sets X, Y,
then each edge has an end vertex at Xand another at Y [2]. A completed bipartite
-graph, symbolized as (k,, ,,) that is a bipartite graph where all vertices in X are
adjacent to all vertices in Y, with m = |X| and n = |Y|. The application of
graphs see [17,18], L(G) is the symbol of the line graph of G where, exactly
when the corresponding edges are adjacent that the two vertices in L(G) are
adjacent. The vertices of L(G) correspond to the edges of G. Connection is a
basic understood in graph theory, measuring the ability G to remain connected
after removing vertices or edges. Connectivity for the graph G symbols as x(G),
representing the mini number of vertices which have to remove to separate the
graph or reduce it to a trivial state The. TheG, — C, introduced by Chartrand et
al. in [3], is a stronger measure of connectivity used to assess the dependability
and fault tolerance in the network. It considers any subset (S) of the vertex set
V' (G) and defines a Steiner tree as a tree in Gthat contains all vertices in S. S -
trees are internally edge-disjoint trees if they share no common edges. The
G, — C for G, symbolize as k; (G), is the least connectivity value amongst all
subsets S of V(G) with k vertices. J.M. Xu [12] established in 2001 that a graph
has at least two satisfying edges. Ch.F et al. [10] found a solution for
generalized connectivity in graphs for any two integers n and k. The upper and
lower bounds of generalized connectivity in a general graph Gare discussed in
[4,6]. Sh. Li et al.[7] introduced the G, — C of star graphs for k = 3, and later
Dh. D. Kadhim and A.A. Najim [2]improved it for an equally complete k -
partite graph in 2019. The generalized 4-connectivity of hypercube for
CBPGwas studied by Sh. Lin and Q. Zh [9] . In 2022, S. Li, Zhao, et. al. [15]
studied internally disjoint trees in the line graph and total graph of CBPG. For
further information on generalized connectivity, refer to [1,5,8,11,13-16].

Abbreviations
Abbreviations Meaning
G.—C Generalized k -connectivity
IDSTs internally disjoint S — trees
MNIDST maximum number of IDSTs
CBPG complete bipartite graph

2. Preliminary Results

Lemma 2.1: [6] Any connected G graph have order n arranged by minimum
degree &, if there are two adjacent vertices with same &, the system have
ki (G)<6—1of3<k<n

Lemma 2.2: [6] If n and k are integers where (2 < k < n), G is connected with
n vertices so, vertex connectivity (i, (G) ) is less or equal than edge connectivity
(A (@), which is in turn less or equal than the less degree of (8(G)).

Lemma 2.3: [8] For any edge e = xy € E(G), the grade of e in the line graph
L(G) is equal to the sum of the degrees of (x , y) in simple undirected graph,
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minus 2. Specifically, whether G is q -regular, so L(G) is (2q — 2) -regular. In
fact, the IDSTs with the maximum number of connections, denoted as MNIDST
for convenience, are of interest. The count of cases for an equally CBPG can be
calculated as the ceiling of (k + 1)/2, whereas for a non-equally CBPG, it is
simply k + 1Furthermore, any vertex with a non-positive index is not part of the
vertex set V(G), and consequently, any edge incident to such a vertex is not
included in E(G).

3. Principal findings

This section's goal is to assess the G, — C of both the equally CBPG,
considering a range of values for k from 3 to 9. Moreover, we will examine the
non-equally CBPG along with its line, focusing specifically on the cases when &
takes on the values 3, 4, and 5.

Theorem 3.1: Any integer n and k, where n > 2 and k takes the values 3, 4, 5,
the following statement holds true: the rank of CBPG k,, ,, is equal ton — 1.

Proof: Consider the CBPG k,, with vertex sets (X = {x1,%;,...,%,}, ¥ =
{y1,¥2,---,¥n}) where each vertex in X is adjacent to every vertex in Y, and
|X| = |Y| = n. Since k,, ,, is a regular graph, the minimum degree is § = n. By
applying Lemma (2.1) , we obtain the inequality. Ky (k;,,,) = n — 1. To establish
the lower bound Kk (k,,) =n—1, we require to demonstrate for every k,
S € V(kyy,) at least there isn — 1 IDSTs connecting the vertices in S within
k. where |S| = k. we discuss the case define as:

Case(r) S, ={Vr_3,Vr_2--»Vr—1, X1, X2, -+, Xk—r+1}, Where r = 1,23,
then MNIDST ink,,, is n —1 < k,(S) < n, as explained in: T; = x;y;x, U
X3YiXa U... UXg_1¥iXp U XjY1XpY3- (unless k =5,7=3) and i = 3) and
T, = y1X1Y3X, U Y3x3Y, at (k = 5,r = 3and i = 3 Where

i_{l,z,...,nifr=1 _{k—r+1ifr:1,2h_{0ifr=1
T12,...nifr=2391" Wk -3ifr=3 M= ifr = 2,3

0ifk=3,45r=2andi=2,3,...,n and
andj=ik=5,r=3and\7’i24
3ifk=5r=3andVi=2
When h = 0 then the branch y;x;, is not exist. From the argument above, we get
n—1 <k, (S) < n. Thus, we get iy (k) =n— 1.

m={3ifr:2
lifr=3

Lemma 3.1: Let G =k, ,, where n =3, we have iy (k) <6 — 2 where
k=6

Proof: Let k,,, be a CBPG,G(XUY,E), such that |[X|=[Y]=n. Let S S
V(knn) where 8§ =k, S={u,u,,...,u,} where uj,u, €Y and u; €X;
i =34,...,k. We want to prove that the MNIDSTS connecting in G are § — 2,
which is T;,Ty,...,Ts_,. Clearly, the Steiner tree containing the set S has a
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maximum degree of two or more. Assuming that d;(u;) = 3 in one particular
Steiner tree, denoted as T;, implies the existence of § —3 Steiner trees
connecting S in the graph G, distinct from T;. Consequently, the minimum
number of IDSTs (MNIDSTSs) connecting S in G. Alternatively, if we suppose
that d;(uy) = 2 in two Steiner trees, say T; and T,, then there exist § — 4
additional Steiner trees connecting S, resulting in § — 2 MNIDSTs connecting S
in G. In the case where the maximum degree of vertices in S is two or less in a
single tree, denoted as T, and the vertices in S in other trees have a degree of
one, T; requires at least k — 5 vertices from the set Y (excluding u; and u,).
Therefore, the remaining number of vertices from the set ¥, which are different
from u,, u,, and the k — 5 vertices, is n — k — 3. In this scenario, the MNIDSTs
connecting S in G amount to n — k — 3. Based on the above results, we can
conclude that rc, (k) < 8 — 2.

Theorem 3.2: Any integer n, k where n = 3 and k = 6,7,8,9. Then (k) =
n-—2.

Proof: Let k,, , be a CBPG,G(X UY,E) in which each vertex of X is adjacent
with each vertex of Y = {y3,¥,,...,¥,} such that |X| = |Y| = n. Since k,, ,, is an
regular graph this means that § = n then by lemma (3.1) we get kj (k) <n —
2. To prove ky(k,,)=n— 2, the suggested system require that for any
k —subset S € V(k,, ) at least there is an n — 2 IDSTs connecting S in k,, ,. we
discuss five cases as define:

Case(r) S, = {Vr_3,Vr_2,Vr—1, X1, X2, -+, Xk—r41}-Where r = 1,2,3, then
the MNIDST connectingSink, ,is n — 2 < § < n, as explained in:

T; = x1y1x5 U x3Yx4 U...U gy X U Y1 X Y3-m

1,2,...,nifr=1 iifr=1 kifr =1
Wherei={2,3,...,nifr=2j={i—1if7~=2,q={ -

34,...,nifr=3  li—2ifr =3 k—rifr=23
_{Oifr=1 andm_{3ifr=2
“liifr=23 T Wifr=3

When h = 0 or negative the branch y;x;, is not exist.

Case(d) S, = {¥1,¥2, Y2, X1, X2, ..., Xx—3}. Then the MNIDSTin k,, , isn — 2, as
explained in : T; = ¥ Y1%Y3%m42 U Y1Xim U X3Y2Xm41.T2 = X1YaX2y, U
X3VaXg V..U X 4 VaXp_3 U Y1 X3Y2, Where X, X i1, Xmez € S and

0ifk =6
M= 4tk =789 13 = X1YsX2 U X3Y5X4Y2 U Y3X5YsXe Y1

(used only at k =8,9), T, = x1Y6X3 U X3Y6X4V3 U Y1 X5VeXeY, (used only at
k=9 and T;_, = x,¥;x, U Xx3y;x, U...U X;_3Y; X; Y1 U ¥, x; V5 Where

i_{k—&k—L””nﬁk=739
“lk-1k... nifk=6 .
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Case (5) Sy = {V1, V2, Y2, Var X1, X2, -+, Xx—4}, (used only at k = 8,9). Then the
MNIDST ink,, is n—2, as explained in: T} = x4Y1X1Y3XXp, U Y3X3Y4,
Ty = X3Y2X1YaX2Y1Xm U YaXaY3 Tz = X1Y5X5 U Y1X3Y5X4Y, U Y3X5 U X5Y4 and
Ti—p = X1Yi X2 U X3Y;X4 U X0 ViX; V1 U Yo X; Y3 U yux; where i = 6,7,...,n and
_ {0 ifk =8

Sifk =9 Thus x (kp ) =1 — 2.

Theorem 3.4: The extended 4-comnectivity for line G graph of CBPG is
Ka(Lkmpn)) =m+n—3wherel <n<m.

Prove: Spouse X = {xy,X5,...,xn}, Y ={y1,¥2,...,7n} be two parts of
Kmnsuch ;V (K, ) = V(X UY) and let L(k,,,) be the line graph of a CBPG
kmn with 1 <n <m. Since L(k,,,) is a m +n — 2-regular graph, we get by
lemma (2.1)x,(L(k;pn)) < m +n — 3. Next we prove that k,(L(k;, ) = m +
n — 3 to achieve this we need to proof that there is IDSTs connecting in for
subset. We can write L(k,,,) as n sets and m vertices in each set
x;yj € V(L(kpmp)) where (i =1,2,...,m)and(j = 1,2,...,n)) is a vertex in
L(kyn) and its edge in kyp, also, the edge in L(kpy,) are (x;y),x;y;r) and
(xyj, xpry;) where (i=12,...,m), (j=12,...,n), (i'=12,...,m) and
(G'=1.2,...,n.

Case (1): If u=xy,, v=x3; , r=x3y; and w =x,y;. Then the
MNIDSTin L(ky,,) is m +n — 3, selected as: Ty = wvur, T, = uwrv,Tjq =
UX Y XYV U XY X3y;T U Xy X y;wwhere (i=12,...,n) and Tp,;_3=
ux;y,v U Xy, U x;y;w where (j = 5,6,...,m).

Case 2): If u = x;y4, v =%y, , ¥ = x3Yy; and w = x;y,. Then the MNIDST
in L(kpy,) is m+n—3, selected as : Ty = wuvr, T, = vX,y,WX3y,TU,
Ti_1 = ux;y1v U x;y17 U Xy, x;y,w where (i=4,5,...,m) and Tp,j3=
ux;yjw U x1Y;X, ;v U X1 y;x3y;T where (j = 2,3,...,n).

Case (3): If u = x;y;, ¥ = x;¥, and w = x,y,.Then the MNIDSTin L(k,, ) is
m+n-—3, selected as : Ty =vurw, T;_, = ux;y,v U X3Y,%;Y,7 U X;Y,W
where (i =34,...,m) and Ty,j_3 =ux;y;7 UX1y;Xy;v U x,y;w  where
(G=34,..n).

Case (4): If u = x,y,, v =2x,y; , 7 = %1, and w = x;y5. Then the MNIDST
in L(ky,) is m+n—3, selected as : T} = rWuv, Ty =uxoym Uxayoxayaw
T; = ux;y1v U x;y1 XY, U Xy, X;ysw where (i =3,4,...,m) and Tpyj_3 =
ux;y;r U x1y;w U X, ¥;X,y;v where (j = 4,5,...,n).

Case (5): Ifu = x;y,, v = x1y, , v = x;y3 and w = x;y,.Then the MNIDST in
L(kmn) is m+n—3, (see Figure 1) selected as : Ty = wvur, T, = uwrv,
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Tiv1 = Uux;y1X; Y0 U X; Y1 X, V37 U X; V1XYW where (i =2,3,...,m) and
Trnyj—z = ux1y;v U x,¥;7 U X1 y;w where (j = 5,6,...,n).

Ez%

@?ﬁ’ﬁ?ji

i‘igure 1
By the five cases above, deduce any sub-set (if IDSTs are connecting). Thus
K4(L(kpy)) =m+n-—3.
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