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Abstract: The rapid spread of the use of high-density polyethylene (HDPE) pipes is due to the
wide variety of methods for connecting them. This study keeps pace with the developments of butt
fusion welding of HDPE pipes by exploring the relationship between the performance of the weld
joints by studying ultimate tensile strength and exploring the joint welding profiles by studying
the shape of the joint at the outer surface of the pipe (height and width of the joint cap) and the
shape of the joint at the internal surface (height and width of the joint root). Welding pressure, heater
temperature, stocking time, and cooling time were the parameters for the welding process. Regression
was analyzed using ANOVA, and an ANN was used to analyze the experimental results and predict
the outputs. Two optimization techniques (pattern search and genetic algorithm) were applied to
obtain the ideal operating conditions and compare their performance. The results showed that pattern
search and genetic algorithms can determine the optimal output results and corresponding welding
parameters. In comparison between the two methods, pattern search has a limited relative advantage.
The optimal values for the obtained outputs revolved around a tensile strength of 35 MPa (3.45 and
4.5 mm for the cap and root heights, and 8 and 6.98 mm for the cap and root widths, respectively).
When comparing the effects of welding parameters on the results, welding pressure had the best
effect on tensile strength, and plate surface temperature had the most significant effect on the welding
profile geometries.

Keywords: butt fusion welding; HDPE pipes; pattern search; genetic algorithms; joint profile;
tensile strength

1. Introduction

Urban and industrial expansion has made transporting liquids and gases over long
distances extremely important. The development of polymers has significantly reduced the
difficulties of this task. High-density polyethylene (HDPE) has been an important polymer
since its production began in 1933, but its actual use in the pipe industry dates to 1975 [1].
In addition to being lightweight compared to carbon steel, copper, and other metal pipes,
HDPE has a low production cost and minimal manufacturing requirements [2]. HDPE
pipe, produced by combining raw materials of different densities, has a strong structure
that is resistant to high pressure. Since it produces resistance to high pressure, the rate at
which it is affected by external forces is very low. HDPE is a solid element that absorbs
little liquid. It is durable and has dimensional stability. It is a very good gas preventer. It
can be very transparent and colorless. When made thicker, it becomes more opaque and
whiter. Moreover, these pipes are characterized by high corrosion and ductility resistance,
relatively high strength and thermal resistance, and the possibility of welding with high
efficiency [3].

Many connection methods have contributed to the rapid spread of HDPE pipes,
including bolting, extrusion, rubber gasket latching, flange, thermal bushing, and butt
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fusion. Butt fusion welding has increased in recent years, becoming the most widely used
method [4,5]. The significant development of butt fusion welding machines for welding
HDPE pipes, their ease of use, and the fact that they do not require highly qualified
operators are considered to be the main reasons for this spread. Specialists agree that the
butt fusion welding process goes through four distinct, successive stages [6,7], as shown in
Figure 1.
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Figure 1. Phases developing during butt fusion welding according to pressure with time variation.

The first phase, known as the bead-up phase, or sometimes as equalization [8], involves
precisely aligning the two ends of the pipe and bringing the parts into contact with the
heating plate under sufficient pressure to achieve sufficient deformations and equal thermal
penetration. During the second phase, also known as the heat soak phase [9], the pipe’s
two ends maintain direct contact with the heater plate, thereby lowering the pressure and
facilitating the absorption of the necessary heat. The thickness of the melt layer increases
over time, depending on the size and type of pipe material. After achieving the desired
melting thickness, the heater plate must be swiftly removed and briefly exposed on both
ends of the pipes, known as the “dwelling time”, which signifies the third phase. In this
phase, the pressure and temperature at both ends of the pipe drop, and it is crucial to avoid
extending this stage to prevent the unintentional cooling of the two heated ends of the pipe,
resulting in the development of solid skin on both ends. After this brief period, the fourth
stage begins. Pressure brings the ends of the hot pipes together for welding. During this
stage, a part of the molten material flows outward along the perimeter of the contact area,
and the two ends of the tube remain in contact until the weld area solidifies. This stage is
sometimes called the cooling stage [10].

Figure 2 shows the sequential stages in the butt fusion welding process. Grips are used
to secure the two ends of the pipe (usually polyethylene pipes) to both ends of the carriage.
Then, a trimmer is positioned between the pairs of carriages and brought up to speed. The
function of the carriage is to constantly push both ends of the pipe forward and trim until
the strip is removed from both ends of the polyethylene pipe. Removing the strip separates
the two ends of the tube, and the trimmer is removed. Here, the technician must perform a
visual inspection to ensure that both ends of the tube are flat and aligned in preparation
for inserting the heater plate. The tube tip is pressed against the heater plate with initial
bead-up pressure to remove remaining asperities. In the meantime, a thin bead forms on
both ends of the polyethylene pipe and remains in contact with the heater plate until the
end of the heat soak time is reached, at which point the dwelling stage begins. At this stage,
the two ends of the polyethylene tube are separated from the heater plate, followed by the
two ends of the tube being brought together under fusion pressure. The dwell time should
be as short as possible to avoid excessive cooling affecting the welding quality.
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Interest in butt fusion welding in polymers, especially the study of welding parameters
(welding pressure, heater temperature, stocking time, and cooling time), has become more
exciting in recent years. This welding process was previously called hot plate welding.
However, it gradually developed until it became more specialized and was called butt
fusion welding, especially when the welding is linked to polymers [11]. S. Pathak and S.
K. Pradhan [12] used grey relational analysis to optimize the heating plate temperature,
welding pressure, and drag pressure of HDPE pipes with 8 mm wall thickness during
butt welding. They found that the optimal parameters were 215 ◦C, 20 bar, and 18 bar,
respectively. Muhammad Shaheer [13] conducted an extensive study using the finite
element method (FEM), based on experimental tests, to find the relationship between heat
input and break values during general tensile testing of a batch of butt-fusion-welded
SDR 11 HDPE pipe. The study demonstrated a stress increase of approximately 30% at
the outer weld notch, indicating that the weld bead geometry significantly influences the
quality of the joint results. Under the specific conditions of fatigue loading, Lai et al. [14]
found that a defect size of less than 15% of the MDPE pipe’s wall thickness did not affect
the failure of joints welded by butt fusion. Faraz et al. [15] studied how changing process
parameters (soaking time and heater temperature) affected the strength of the weld joint in
tensile testing, and they compared it with non-welded samples of extruded HDPE pipes
and elbows in an effort to gain a more thorough understanding of HDPE pipe fusion
welding. Wang et al. [16] attempted to learn more about pressure by looking at high
pressure, low pressure, and dual low pressure separately. They also looked at how these
pressures affected the effectiveness of the welding joint for 74 mm HDPE pipes in places
that require the highest level of safety, such as nuclear plants. They discovered that the
tensile strength in the outer and inner parts of the joint was higher than that in the middle
part, and that dual low pressure improved the joint’s extensibility. S. S. Alkaki and M. O.
Kaman [17] compared butt fusion and electrofusion for HDPE pipes by experimentally
and numerically examining the hydrostatic pressure and tensile strength. They found that
butt fusion welding had better behavior in the hydrostatic test, while electrofusion gave
a higher maximum average load in the tensile test. Xingmin et al. [18] tried to enhance
the joint tensile strength by removing the outer and inner crimps of polymer pipes during
butt fusion welding. They discovered a relationship between the strain rate and welding
process parameters, and there were no obvious differences in elastic modulus values in the
welding area.

The joint profile refers to the height and width of the outer and inner surfaces of joints
resulting from the welding process of HDPE pipes, as shown in Figure 3. When considering



J. Manuf. Mater. Process. 2024, 8, 187 4 of 17

other types of welding (fusion or solid-state), the joint profile is considered to be a critical
factor affecting the weld quality, tensile strength, and joint efficiency. Joint profile studies
have been widely discussed in various types of arc welding [19,20]. This has not stopped at
arc welding but has also been extended to include laser welding [21,22]. It has recently also
been expanded to include solid-state welding, such as friction stir welding [23,24]. These
in-depth studies related to joint profiles open the door to exploring their importance in
butt fusion welding of different types of polymers, especially the joints of HDPE pipes.
Thus, this study seeks to fill the research gap related to joint profiles in HDPE pipe welding.
However, there is a lack of research on how to evaluate butt fusion welding for polymers.
This study aims to investigate the relationship between the welding joint profile and the
butt fusion welding parameters. Experimental monitoring of the generated head and bead
height and width on the upper and lower surfaces of the joints of HDPE pipes was carried
out, and the corresponding joint tensile strength was analyzed using regression and an
ANN. Then, genetic algorithms and pattern search approaches were applied to predict the
optimal welding parameters.
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2. Materials and Methods

The HDPE pipe used in this study had a nominal diameter of 101.6 mm, a 7 mm
thickness, and a standard dimension ratio (SDR) of 17. The HDPE pipe was compliant with
ASTM F714 [25]. In this study, a hydraulic semi-automatic butt fusion welding machine
for HDPE pipe joining was used (Hangzhou Welding Machinery Equipment Co., Ltd.,
Hangzhou, China). As indicated in Figure 4, the machine consists of four main parts (main
frame, heating plate, trimmer, and hydraulic power station). The basic frame includes
four sets of couplings to help the operator prepare the machine better before and after
welding, and it uses an integral shaft to ensure chassis strength. The heating plate has a cast
aluminum body with an anti-stick PEFT coating. It has qualified, built-in heating elements
that swiftly and steadily raise the temperature. It is standard and has an aviation plug and
heavy-duty cable, ensuring operation safety. The temperature range of the heating plate
surface is 170 ◦C–250 ◦C (±5 ◦C). The trimmer was prepared to prevent loss and sticking
during operation. It has a powerful copper-wiring motor, a durable, double-edged HSS
blade, and the required connected wires. The hydraulic power station features an enclosure
design that shields it from splashes and dirt and comes with wheels for easy transportation.
It includes a control panel centralized in the hydraulic unit, which enables operators to set
welding parameters and execute welding procedures conveniently. The operation pressure
is up to 6.3 MPa, and air is used as a cooling system.
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For the purpose of exploring the optimal values of the butt fusion welding process
of HDPE pipes, through which the best values of welding profiles that achieve maximum
tensile strength can be achieved, we adopted a research path based primarily on a series of
experiments. Four welding parameters (welding pressure, heater temperature, and soaking
and cooling times) were investigated, as indicated in Table 1.

Table 1. Welding process parameter levels.

Input Parameters Unit
Code Level Value

−1 0 1

Welding Pressure Bar 0.2 0.6 1
Heater Temperature ◦C 160 200 240

Soaking Time Minute 2 6
Cooling Time Minute 10 15

We conducted 36 experimental sets, and three experiments were conducted for each
set, taking their average measurements for both the width and height of the joint’s cap
and root. Regarding joint performance, the tensile strength of all samples was measured
according to ASTM D638 [26], which is approved in many studies related to welding
HDPE pipes [16,27,28]. A universal tensile machine (Lonroy LR-WAW-600B, Dongguan,
China) was used to investigate the tensile strength of HDPE specimens. The main tensile
machine and specimens used during the tensile tests are indicated in Figure 5. The welding
parameters and the corresponding joint profile and tensile strength outputs are indicated
in Table 2.

Table 2. Process parameters and corresponding welding profile and tensile strength.

Run
P

(bar)
T

(◦C)
ST

(min)
CT

(min)

Cap Root Tensile
Stress
(MPa)

Height
(mm)

Width
(mm)

Height
(mm)

Width
(mm)

1 0.2 160 2 10 2.0 4.3 2.5 3.0 35.13
2 0.2 160 2 15 1.3 5.3 3.1 4.0 32.48
3 0.2 160 6 10 1.8 5.6 3.3 5.0 26.75
4 0.2 160 6 15 2.2 6.0 4.0 5.2 31.23
5 0.2 200 2 10 2.1 5.7 3.5 5.2 29.54
6 0.2 200 2 15 6.0 10.0 4.0 11.0 34.59
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Table 2. Cont.

Run
P

(bar)
T

(◦C)
ST

(min)
CT

(min)

Cap Root Tensile
Stress
(MPa)

Height
(mm)

Width
(mm)

Height
(mm)

Width
(mm)

7 0.2 200 6 10 3.0 7.0 4.4 7.0 29.46
8 0.2 200 6 15 2.0 8.4 4.9 5.7 35.21
9 0.2 240 2 10 2.6 6.0 3.2 5.0 30.58

10 0.2 240 2 15 2.5 5.4 4.0 5.6 26.43
11 0.2 240 6 10 3.2 8.2 6.7 9.8 25.42
12 0.2 240 6 15 4.0 11.6 6.0 7.5 35.65
13 0.6 160 2 10 1.7 4.0 3.0 3.5 35.42
14 0.6 160 2 15 1.7 4.0 1.7 3.4 35.18
15 0.6 160 6 10 2.0 6.0 7.0 2.5 44.18
16 0.6 160 6 15 2.6 7.0 2.5 7.0 31.56
17 0.6 200 2 10 4.2 6.1 5.0 7.0 37.23
18 0.6 200 2 15 3.0 5.0 3.4 4.4 33.45
19 0.6 200 6 10 3.2 9.2 4.8 6.0 32.87
20 0.6 200 6 15 4.6 10.0 4.8 8.7 38.17
21 0.6 240 2 10 2.5 8.1 4.3 7.2 39.37
22 0.6 240 2 15 3.0 6.7 3.0 7.7 42.22
23 0.6 240 6 10 4.3 11.3 6.2 10.2 38.93
24 0.6 240 6 15 4.2 9.0 6.0 9.4 43.61
25 1 160 2 10 2.0 5.5 2.6 6.0 25.57
26 1 160 2 15 2.0 4.4 3.4 3.5 30.77
27 1 160 6 10 3.3 8.2 4.0 7.0 42.59
28 1 160 6 15 2.7 8.0 3.0 7.7 42.59
29 1 200 2 10 2.4 7.5 2.8 8.3 37.36
30 1 200 2 15 4.0 9.0 6.0 10.0 39.75
31 1 200 6 10 6.0 10.0 8.0 9.0 40.58
32 1 200 6 15 4.5 9.0 6.0 10.0 31.03
33 1 240 2 10 3.2 8.5 4.0 9.5 38.49
34 1 240 2 15 4.0 8.0 4.0 9.0 38.03
35 1 240 6 10 5.0 13.0 6.0 9.0 39.75
36 1 240 6 15 5.5 10.0 6.0 12.5 40.25
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Figure 5. HDPE specimens tensile test: (a) universal tensile machine, (b) specimen preparation
according to ASTM D638, (c) specimen fixation, and (d) specimen during failure.



J. Manuf. Mater. Process. 2024, 8, 187 7 of 17

3. Results and Discussion

The regression technique was then applied to model the relationship between the four
input parameters and the outputs. The outputs studied were tensile strength and welding
profile, represented by the height and width of the joint’s cap and root. An analysis of
variance (ANOVA) was used to determine the significant factors affecting the response. In
order to develop the complex non-linear relationship between inputs and outputs, an ANN
was applied, and then two different paths were used to find the optimal conditions (GA
and pattern search).

3.1. Regression Analysis and ANOVA

Regression analysis is a powerful and conceptually simple technique for exploring
historical data on welding parameters in welding processes [29,30]. The regression model
employs the stepwise regression method, while the response function includes linear,
second-order, and interaction terms. Regression analysis yielded five equations that, as
shown in Table 3, describe the cap height (Ch), cap width (Cw), root height (Rh), root width
(Rw), and tensile strength (TS).

Table 3. Regression analysis equations for the welding profiles and tensile strength.

Terms Regression Analysis Equation

Cap Height
(Ch)

Ch = −18.59 − 2.58x1 + 0.206x2 − 0.276x3 − 0.015x4 + 0.85x2
1 −

0.0005x2
2 + 0.0104x1x2 + 0.503x1x3 − 0.102x1x4 + 0.002x2x3 +

0.001x2x4 − 0.0236x3x4

Cap Width
(Cw)

Cw = −28.8 + 1.8x1 + 0.25x2 − 0.186x3 − 0.878x4 + 3.07x2
1 −

0.0005x2
2 + 0.0133x1x2 + 0.271x1x3 − 0.592x1x4 + 0.003x2x3 +

0.002x2x4 − 0.0089x3x4

Root Height
(Rh)

Rh = −13.3 + 0.58x1 + 0.153x2 + 0.2696x3 − 0.098x4 + 0.51x2
1 −

0.0004x2
2 + 0.0002x1x2 + 0.065x1x3 + 0.06x1x4 + 0.003x2x3 +

0.001x2x4 − 0.0492x3x4

Root Width
(Rw)

Rw = −28.1 + 8.31x1 + 0.296x2 − 0.37x3 + 0.275x4 + 5.6x2
1 −

0.0006x2
2 + 0.0199x1x2 + 0.130x1x3 − 0.004x1x4 + 0.0018x2x3 −

0.0011x2x4 + 0.0239x3x4

Tensile Strength
(TS)

TS = 53.4 + 20.9x1 − 0.238x2 + 0.73x3 − 1.07x4 − 22.2x2
1 +

0.00036x2
2 + 0.0879x1x2 + 1.66x1x3 − 0.858x1x4 − 0.0083x2x3 −

0.00812x2x4 + 0.025x3x4

x1: welding pressure, x2: heater temperature, x3: soaking time, x4: cooling time.

In regression analysis, R-sq (coefficient of determination) represents an important
factor in explaining the variance in the dependent variable. A higher R-sq value indicates
a stronger relationship between the independent variables and the dependent variable,
and vice versa [31]. The obtained values of R-sq were not at the level of expectations for
all outputs, as they were 70.65% (cap height), 81.23% (cap width), 65.16% (root height),
and 69.88% (root width), while it was 51.64% for the tensile strength, which was the worst
value between the outputs. ANOVA often indicates the most influential welding process
parameters on the output through the F-value and p-value. Whenever the p-value is ≤0.05,
it means that this welding process parameter has a significant impact on the results [32,33].
On the other hand, a higher F-value indicates that this parameter has a more significant
influence on the welding process’s results.

Tables 4 and 5 show the F-values and p-values for the ANOVA analysis for welding
profile and tensile strength. The maximum F-values for the joint cap height were 6.91,
2.25, 4.9, and 3.48, indicating that heater temperature is the most influential factor in the
weld joint profile. The tensile strength analysis was somewhat different. At 0.86 bar, the
welding pressure showed a greater effect than the other welding parameters. Overall, the
analysis results show that the welding parameters affect the welding process outputs for
HDPE pipes differently. A thorough examination of the p-value results indicates that most
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values exceeded 0.05. This suggests that further analysis is necessary to determine the
optimal welding parameters for achieving the desired outputs, which will be addressed in
the following ANN section.

Table 4. ANOVA for joint cap height and width.

Source DF
Joint Cap Height Joint Cap Width

F-Value p-Value F-Value p-Value

Regression 12 4.61 0.001 3.58 0.004
P (bar) 1 0.38 0.543 0.01 0.916
T (◦C) 1 6.91 0.015 2.25 0.147

ST (min) 1 0.23 0.634 0.13 0.721
CT (min) 1 0.00 0.969 0.04 0.844

P (bar) * P (bar) 1 0.21 0.653 0.04 0.835
T (◦C) * T (◦C) 1 8.46 0.008 2.88 0.103
P (bar) * T (◦C) 1 0.62 0.439 0.00 0.991

P (bar) * ST (min) 1 5.49 0.028 0.05 0.818
P (bar) * CT (min) 1 0.35 0.558 0.07 0.789
T (◦C) * ST (min) 1 1.17 0.291 1.68 0.207
T (◦C) * CT (min) 1 0.45 0.511 0.37 0.550

ST (min) * CT (min) 1 0.71 0.408 1.82 0.190
Error 23
Total 35

Table 5. ANOVA for joint root’s height and width and tensile strength.

Source DF
Joint Root Height Joint Root Width Tensile Strength

F-Value p-Value F-Value p-Value F-Value p-Value

Regression 12 8.30 0.000 4.45 0.001 2.05 0.068
P (bar) 1 0.09 0.767 0.97 0.336 0.86 0.363
T (◦C) 1 4.90 0.037 3.48 0.075 0.32 0.579

ST (min) 1 0.05 0.830 0.10 0.752 0.06 0.815
CT (min) 1 2.57 0.123 0.13 0.724 0.27 0.608

P (bar) * P (bar) 1 1.31 0.263 2.21 0.151 4.90 0.037
T (◦C) * T (◦C) 1 3.66 0.068 2.85 0.105 0.13 0.725
P (bar) * T (◦C) 1 0.49 0.490 0.56 0.462 1.54 0.227

P (bar) * ST (min) 1 0.77 0.391 0.09 0.767 2.05 0.165
P (bar) * CT (min) 1 5.71 0.025 0.00 0.991 0.86 0.363
T (◦C) * ST (min) 1 1.43 0.244 0.17 0.688 0.51 0.483
T (◦C) * CT (min) 1 0.86 0.364 0.11 0.740 0.77 0.390

ST (min) * CT
(min) 1 0.05 0.828 0.18 0.678 0.03 0.869

Error 23
Total 35

3.2. Artificial Neural Network (ANN)

ANN models are potent statistical tools that have been increasingly employed to
model complex welding process systems in the last decade [34,35]. Typically, the ANN
model performs better than regression analysis [36]. This study tried to develop a sys-
tematic, robust approach for interpreting the ANN model to investigate the butt fusion
welding process of HDPE pipes. Unlike traditional regression, an ANN can capture subtle
interactions between variables for finding accurate joint geometries in HDPE pipes. More-
over, ANNs can model complex, non-linear relationships between welding parameters and
find the best joint profile for both cap and width, leading to more accurate predictions of
optimal conditions.

The ANN model, using the dataset in Table 2, was divided into 70% training and
30% testing groups and designed for four input parameters (welding pressure, water
temperature, soaking time, and cooling time), one hidden layer of 15 neurons, and five
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targets. The targets included tensile strength and welding profiles, which included both the
height and width of the cap and the height of the welding joint. Moreover, sequential-order
incremental training with learning functions was used. The tansig function activated the
input/hidden layers, while the purelin function used hidden/output layers. Figure 6
shows the regression behavior throughout the training and testing stages of the ANN
model training process. The maximum and minimum R-sq for training and testing were
0.9884 and 0.9851, respectively.
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(b) testing.

For the ANN model results, Figure 7 illustrates the impact of varying pressure on
the welding profile of the HDPE joint. It should be noted that a gradual increase in joint
cap height (upper surface) can be achieved when the welding pressure is varied, until
we reach 0.78 bar, where the joint cap height begins to decrease. On the other hand, the
joint cap width behaves differently, as it increases significantly after reaching 0.78 bar.
When the pressure exceeds a certain threshold, the material starts to over-compress. As
the pressure increases, the molten material is squeezed and flows towards the sides and
upward, reducing the joint cap height and increasing the cap width. The joint root height
and width of the tube’s lower surface do not differ much from the behavior of the upper
surface, except that the values of cap height are relatively higher than the root height. The
Earth’s gravity, the method of fixing the pipes, and the location from which the samples are
selected may impact this.

Figure 8 shows that the gradual increase in welding pressure was insufficient to cause
a noticeable change in the tensile strength until reaching 0.7 bar, where a significant change
in the joint’s behavior began and its strength increased. This behavior can be explained by
the fact that the bulk of the molten material was spreading only on the upper and lower
edges of the joint, but increasing the welding pressure further led to the molten material
beginning to soften more and flow better on the interface surface of the joint, forming a
suitable heat-affected zone (HAZ) [4]. In general, better contact with the HDPE surface
promoted more thorough melting and intermingling of the polymer chains.

Figure 9 shows a smooth increasing trend in the joint tensile strength, as well as the
profile height and width of the upper surface (cap) and lower surface (root), as the plate
temperature increases. Increasing the temperature can enhance the flow of the molten
HDPE pipe material in the welding area, enabling it to reach all overlapping parts [37].
Additionally, it can expand the dimensions of the welding profiles on the upper and lower
surfaces of the pipe, thereby enhancing the tensile strength [38]. The increase in plate
temperature leads to more molten and less viscous material, thereby increasing the weld
bead size.
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Figure 10 demonstrates that a heating temperature of 240 ◦C for a P of 0.6 bar, ST
of 2 min, and CT of 10 min yields the maximum strength of weld joints. Higher heating
temperatures ensure that the HDPE material at the weld interface melts thoroughly and
uniformly. This thorough melting allows for better interdiffusion of polymer chains across
the weld interface, leading to a stronger, more cohesive bond.
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3.3. Genetic Algorithm Optimization

By mimicking the process of natural selection, the genetic algorithm (GA) is a compu-
tational method that finds optimal solutions to complex, constrained optimization prob-
lems [39]. The optimization of welding process parameters, including the minimum weld
deposition rate and the maximum tensile strength and hardness, is a common application
of the GA [40]. The MATLAB (R2010a) genetic algorithm toolbox was used to optimize the
welding profile and tensile strength.

A single-point crossover was used, and each individual was constructed with a fitness
function (obtained from the regression analysis model). An initial population of 50 and
a crossover fraction of 0.8 were selected. The four input parameter range bounds were
taken as follows: welding pressure 0.2–1 bar, plate temperature 160–240 ◦C, soaking time
2–6 min, and cooling time 10–15 min.

In optimization methods, especially genetic algorithms, the average of the output
values is often taken as the objective threshold to minimize the objective function in dealing
with HDPE processes [41]. So, the output goals of the butt-welding process parameters
were considered as follows: cap height of 3.5 mm, cap width of 8 mm, root height of 4.5 mm,
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root width of 7 mm, and tensile strength of 35 MPa. Table 6 displays the optimal values of
the process parameters, as well as the best possible welding profiles and tensile strength.
Figure 11a–e show the fitness values and current best individuals for cap and root weld
height, cap and root weld width, and tensile strength, respectively.

Table 6. Optimal genetic algorithm values of welding process parameters of HDPE pipes.

Outputs Mean
Values

P
(bar)

T
(◦C)

ST
(min)

CT
(min)

Cap Height (mm) 3.5 mm 0.95 201 2.1 11.5
Cap Width (mm) 8 mm 0.93 202 3.4 14.5

Root Height (mm) 4.5 mm 0.87 224 2.48 14.1
Root Width (mm) 7 mm 0.54 218 2.33 14.2

Tensile Strength (MPa) 35 MPa 0.45 179 2.6 14.5
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3.4. Pattern Search Optimization

Pattern search is an optimization method that does not require a gradient [42]. It is
also known by other names, but this name has been spreading since Hooke and Jeeves
launched it [43]. This method’s main principle is to search for values with the fewest
errors. In many welding processes, including arc welding [44], friction stir welding [45],
laser welding [46], etc., pattern search has become more and more popular in recent years.
The objective function and welding parameter limits used in the pattern search analysis
were the same as those used in the genetic algorithm. MATLAB R2010a was used, and
the functions considered in the pattern search analysis are shown in Table 7. Figure 12
displays the fitness values, as well as the current best individuals for welding joint profiles
and tensile strength.

Table 7. Functions considered for pattern search optimization.

Parameters Function

Poll Method GPS positive basis 2 N
Complete Poll Off
Polling Order Consecutive

Mesh Size 1
Expansion Factor 2

Contraction Factor 0.5

It is known that the objective function value represents the measure of performance or
error that the algorithm seeks to minimize (or maximize) in pattern search optimization.
The mean value of the objective function provides a good impression of the algorithm’s
stability and convergence evaluation. The optimal conditions of pressure, temperature,
soak time, and cooling time (see Table 8) were selected to achieve the mean value of the
objective function over multiple iterations. Table 8 displays the mean value of the objective
function over the iterations for the following parameters: cap height (3.5 mm), cap width
(8 mm), root height (4.5 mm), root width (7 mm), and tensile strength (35 MPa).

Table 8. Optimal pattern search values of welding process parameters of HDPE pipes.

Outputs Mean
Values

P
(bar)

T
(◦C)

ST
(min)

CT
(min)

Cap Height (mm) 3.5 mm 0.933 204 2.24 10.5
Cap Width (mm) 8 mm 0.65 199 4.3 13.2

Root Height (mm) 4.5 mm 0.911 235 2.58 14.23
Root Width (mm) 7 mm 0.483 215 2.9 13.5

Tensile Strength (MPa) 35 MPa 0.45 167 2.74 14.6

Comparing the genetic algorithm and pattern search algorithm can lead to inves-
tigating which approach is most suitable for optimizing the process parameters of butt
fusion welding for the HDPE pipes. The comparison is based on the main equations of
the joint profiles and tensile strength, as indicated in Table 3. The best results for both the
genetic algorithm and pattern search approaches are indicated in Table 9. The results show
the optimal response values corresponding to the optimal parameters obtained from the
optimization technique. The values obtained from the pattern search algorithm are much
closer to the desired values than those obtained from the genetic algorithm.
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Table 9. Comparison between the genetic algorithm and pattern search approaches.

Parameters Method Mean
Values

P
(bar)

T
(◦C)

ST
(min)

CT
(min)

Best
Value

Cap Height (mm) GA
3.5 mm

0.95 201 2.1 11.5 3.4859 mm
PS 0.933 204 2.24 10.5 3.4978 mm

Cap Width (mm) GA
8 mm

0.93 202 3.4 14.5 7.9831 mm
PS 0.906 210.7 3.02 13.95 8.0026 mm

Root Height (mm) GA
4.5 mm

0.87 224 2.48 14.1 4.4954 mm
PS 0.911 235 2.58 14.23 4.4989 mm

Root Width (mm)
GA

7 mm
0.54 218 2.33 14.2 6.9822 mm

PS 0.483 215 2.9 13.5 6.9852 mm

Tensile Strength (MPa) GA
35 MPa

0.45 179 2.6 14.5 35.2044 MPa
PS 0.45 167 2.74 14.6 34.9975 MPa
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4. Conclusions

In this study, optimal butt fusion welding parameters that achieve ultimate tensile
strength and welding profile geometries during HDPE pipe joining were explored. In
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addition to the heater plate temperature and welding pressure, both soaking and cooling
times were investigated as welding process parameters. For welding profiles, the height
and width of the joint cap were used to describe the profile of the upper surface joint of the
HDPE pipe, while the height and width of the joint root were used to describe the profile
of the lower surface joint of the HDPE pipe. Regression analysis based on ANOVA and an
ANN was used to model the experimental sets. Then, genetic algorithm and pattern search
approaches were used to optimize the butt fusion welding parameters and predict the
corresponding tensile strength and welding profiles. The main points that can be concluded
from this study are as follows:

1. The heater plate temperature is most significant for the welding joint profile, while
the welding pressure is most significant for the joint’s tensile strength.

2. The results of the trained ANN model were more closely related to the experimental
results than those of the regression analysis model based on ANOVA.

3. Within certain limits, the combined increase in heater plate temperature and welding
pressure leads to a significant increase in tensile strength and weld profiles for both
upper and lower surfaces.

4. For HDPE pipe joining, both pattern search and genetic algorithms can be considered
suitable approaches for optimizing butt fusion welding parameters, with pattern
search having a relative preference.
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