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a b s t r a c t 

Fluorescence is an innovative technique that has captivated scholars in recent years due to its 

superior sensitivity and selectivity. The development of microfluidic components has added to 

its appeal, particularly given the technology ability to control fluid using very small quantities 

(microliter range) and achieve high liquid throughput. We have combined these two technologies 

to develop a lab-constructed simple system for measuring fluorescence, notable for the following 

features: 

• The device constructed entirely in our lab and programmed for measuring the fluorescence of 

liquids using microfluidic technology, delivered excellent results. The regression coefficient R2 

(0.9995) was obtained five points between 0.001-0.01μg .ml− 1 . Moreover, the reproducibility 

standard deviation (%) of 0.008 μg .ml− 1 fluorescein dye remained at zero, for ten repeated 

experiments. 

• The device was full automated using a smartphone as a data logger, and lab-constructed 

programs. 

• The results were satisfactory with a detection limit of 1 × 10− 4 μg.ml− 1 . This proposed system 

can measure over 200 samples per hour making it highly efficient and eco-friendly due to 

the reduced use of reagents and lower waste production. The fully automated system can 

effectively be used to determine fluorescein dye concentrations. Another application (micro 

pump view) manages all actions required in this microfluidic system, such as operating the 

two lab-constructed peristaltic pumps. 
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Method details 

We have designed a microfluidic device to measure fluorescein dyes. This comprehensive system contains several components 

allowing precise tuning of the results. It uses a smartphone and a customized program for controlling the measurements of fluorescent

dyes. The system setup includes a smartphone as a controller, an UNO Arduino, a microfluidic chip, pumps, and a flow cell, all

connected to a computer for results display. We gauged fluorescein dyes concentrations in micro-units using dyes as samples. The

quantity of fluorescein dyes and the target application will guide the future applications of this advanced microfluidic device. 

Method validation 

Overview 

Microfluidics is a scientific field that focuses on understanding small fluids system ranging from meters to nanometers in scale [1] .

It leverages components like mixers, reactors, valves, and pumps to manage fluid transport processes. A development in this field,

known as "lab-on-a-chip’’, combined microfluidic chip with an ecosystem. This technology, which is produced industrially confers 

numerous advantages such as reduced sample and reagent usage and low cost-effectiveness [2 , 3] . Fluorescence due it superior sensi-

tivity and selectivity, is a revolutionary method that has garnered substantial interest among researchers. Over the last few decades,

microfluidics has demonstrated its significance in chemistry and biology. The field stands out for its precise fluid control employ-

ing small fluid volumes and achieving high fluid throughput [4] . Microfluidics has minimized the scale of laboratory experiments,

allowing for the adjustment and operation of fluids microliter ranges. In various ways, it has proven to be an influential tool [5 , 6] .

The influence of automation on numerous human activities has yielded significant improvements in system performance [7 , 8] . The

complex advancements in automation technologies had a profound influence on clinical laboratories. Many manual asks in these 

facilities have been partially or fully replaced by automated labor-saving devices [9 , 10] . This paper reviews an extensive body of

work centered on fluorescence technology with a particular focus on the development and creation of hand-built automated systems 

utilizing a fluorimeter as a detector [11] . With suitable software, smartphones have recently emerged as potential alternatives to spec-

troscopic instruments like spectrophotometers [12] . The availability and affordability of advanced smartphone cameras have made 

mobile health device design a viable option [13] . Attributes that can be incorporated into smartphones facilitate data processing

and signal handling capabilities [14 , 15] . In this study, we utilized a smartphone outfitted with custom software. The Uno microcon-

troller wirelessly transmits digital signals to the smartphone via Bluetooth. Signals received were displayed as peak heights on the

smartphone screen, corresponding to the concentration of the sample of interest. Our work aimed to develop a cost-effective, high

throughput user-friendly, and reliable automated microfluidic system with a smartphone serving as both a data logger and detector. 

Procedure of measurements 

All solutions were made using deionized distilled water. The mean value was obtained from three successive peaks heights. A 0.01

mol/L solution was prepared by dissolving 0.33231 g of fluorescein into 1 L of distilled water. A stock dye solution of fluorescein

sodium salt of 0.001 mol/L was also prepared by dissolving 0.09407 g in an appropriate volume of deionized water. We ensured

that the working processes were carried out on a daily basis and stored in a dark setting prevent any photo-degradation. This was

achieved by covering the container carrying the stock solutions with aluminum foil. Every calibration run started with freshly prepared

solutions [16–18] . 

Instruments 

The microfluidic chip used in this study was made from polydimethylsiloxane (PDMS) and built following a two-way design. The

channels of the chip were shaped using a Rongxin tool, Fig. 1 . We determined the volume of these channels by injecting a highly

concentrated fluorescein dye with a Hamilton syringe. With each channel holding 15 μL; the chip had a total volume of 30 μL,

considering the modest amounts of fluorescein sample and carrier. 

The lab-constructed mini peristaltic-pumps 

Table 1 and Fig. 2 , present the components used to construct two peristaltic-pumps. Both pumps were operated by a pair of UNO

Arduino microcontrollers, with a smartphone equipped with a custom software used for data logging, Fig. 3 . The signal was logged

as peak height using software named Lab-Fluorometric GetData LFGD. 

Lab-constructed fluorometer 

The key components of the handmade fluorometer are outlined in Table 2 and Fig. 3 . A 28V LED lamb serves as a light source.

The fluorometer equipped with a flow cell 450 L, and uses a photocell sensor tied to a secondary microcontroller (UNO Arduino),

to detect signals. These signals are displayed as peak heights on a smartphone screen equipped with Lab-constructed software that

measures the concentration of fluorescein, Fig. 4 [19–21] . 
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Fig. 1. Shows the created microfluidic chip for the automated system. 

Fig. 2. Mini peristaltic pump devices created at the laboratory. 

Table 1 

The micro-controller components. 

Component kind action source 

Arduino UNO Micro controller Italy 

Driver motor L298N Micro controller China 

Tow peristaltic 

Liquid pump dosing pump 

INTLLAB 12V DC DIY for withdrawing carrier and reagent China 

Power supply - Device power controlling China 

On/off button - Electrical power on/off China 

Two button - Air suction China 

 

 

 

 

 

Methodology 

Fluorescence has many practical applications, including in mineralogy, gemology, medicine, chemical sensors, fluorescent labeling, 

dyes, biological detectors, cosmic-ray detection, vacuum fluorescent displays, and cathode-ray tubes. The aim for future devices 

is to create intelligent devices with smart phones as controllers, resulting in fast, sensitive, user-friendly, and advanced control

systems. These are used to characterize molecular environment and samples. To enable measurements for digital photochromic 

studies, adjustment may be made to the sensors of the original fluorescence device, and the smartphones software interface [22] .

Our research results, shown in Fig. 5 a and b, demonstrate the automated microfluidic fluorometric smartphone system handling 

fluorescein dye. Automation in this system involved the use of Excel 2016 on a laptop to control the volume and timing of dye

distribution via a first Arduino microcontroller. The volume of fluorescein dye was input into the first two channels of the microfluidic

chip, with water subsequently added to the second channel. As the flow cell became filled with fluorescein dye, the Photocells sensor

detector identified the resulting signal. A smartphone equipped with custom software recorded this signal, indicating the fluorescein 

concentration as a peak height. 
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Fig. 3. Lab-constructed Fluorometer tools. 

Table 2 

The lab-constructed fluorometer tools. 

Tools kind action source 

Arduino UNO Micro controller Italy 

LED lamp - Light source China 

Photocells sensor - detector China 

Flow cell 450 μL Helmma Sample container Germany 

 

 

 

 

Results and discussion 

In situ analysis is becoming a critical objective in analytical chemistry, aided by the rise of portable analytical devices. An ideal

analysis system comprises several components that enable extraction, detection, and quantification of targeted analyses. However, 

preparing a portable quantification methods remain a challenge in developing such systems. Traditional lab analytical tools lack 

mobility, restricting their effectiveness for in depth in situ analysis. Smartphones, a contemporary sensation are rapidly gaining in

popularity and evolving in performance. Numerous methods can be used to make transform smartphones into effective quantifiers. 

These include but are not limited to optical detection (spanning from colorimetric, fluorescence, chemiluminescence, bioluminescence, 

and photoluminescence detections to pixilation, and label-free detection), electrochemical detection, barcode reading, chemometric 

applications, and fluorescence microscopy with smartphone imagining. Smartphone might well represent a new direction in analytical 

chemistry [23] . 

Optimum conditions 

To achieve optimal performance, the measurements of fluorescein were done at 494 nm and 512 nm for excitation and fluorescence

wave-lengths, respectively. Influential factors for the fully automated Lab-constructed microfluidic system were optimized. Fig. 6 and 

Table 3 illustrate the impact of carrier stream flow rate on the peak height of fluorescent dye (0.008 μg/mL). Our finding suggesting
4
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Fig. 4. Mobile phone program view (Mi.data.florescent). 

Table 3 

List of flow rate & the peak height. 

Flow rate (ml/min) Peak height (mm) 

2 34 

2.25 33 

2.5 32 

2.75 30 

3 28 

3.25 26 

3.5 23 

3.75 21 

 

 

 

 

 

 

 

 

that an increased flow rate results in a decreased peak height, likely due to heightened fluorescein dispersion [24] . Thus, a flow rate

of 2 mL/min was identified as a suitable for further investigation. 

Fig. 7 and Table 4 demonstrate the impact of sample volume on peak height, with studied values ranging 108–12.5 μL. The

results clearly indicate that peak height increases with sample volume, likely due the dispersion of greater amounts of fluorescein

dye. Therefore, a sample volume of 108 μL was selected for future studies to ensure optimal sensitivity. 

Fig. 8 and Table 5 illustrate the impact of varying coil lengths, ranging from 10 to 100 cm on the peak heights resulting from the

extraction of 0.008 μg.ml− 1 of fluorescein dye. As coil length increases, the height of the peaks reduces due to increased dilution. A

coil length of 10 cm has been identified as the optimal measurement. 

Standard calibration curve 

Table 6 presents the obtained results. Figs. 9 , 10 along with Table 7 , indicate that the linearity ranged between 0.001 and 0.01

μg.ml− 1 . For the handmade system, a regression coefficient R2 of 0.9995 was noted for five points. The detection limit and the

dispersion coefficient stood at 10− 4 μg.ml− 1 and 1.0656 respectively, Fig. 12 . The system could handle 200 samples per hour, with
5
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Fig. 5. a - The diagram of automated microfluidic fluorometric smartphone system. b - The live screen of automated microfluidic fluorometric 

smartphone system. 

Table 4 

List of sample volume and the peak height. 

Sample volume (μ L) Peak height 

12.5 15 

35.7 24 

66 27 

83.3 31 

104 33 

108 34 

 

 

 

each sample requiring 0.025mL of 0.008 μg.ml− 1 fluorescein. Remarkably, 0.008 μg.ml− 1 fluorescein showed zero variability across 

ten repetitions. 

Recovery 

Table 8 and Fig. 11 , present the representative sample of fluorescein sodium analyzed using the Standard Addition Method to

mitigate any potential interferences. The recovery values fell within the accurate statistical range of 100–102 [25] . Three separate

fluorescein sodium samples with concentrations 0.0015, 0.0025 and 0.0035 μg.ml− 1 respectively, were individually augmented using 

the Standard Addition Method. Their concentrations 0.001, 0.002, 0.003, 0.004 and 0.005 μg .ml− 1 of fluorescein, were assessed 

using this approach. 

Dispersion coefficient 

Fig. 12 demonstrate the calculation of dispersion coefficient in the suggested system’s manifold, which was 1.051. D = Ho /H max;

D = 35.76/ 34.0 = 1.051 
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Fig. 6. a: Flow rate effect on a peak height resultant from withdrawing fluorescein 0.008μg/ml. b: Shows the result of flow rate on the peak height 

of (0.008 μg/ml) from Fluorescein. 

Fig. 7. a : Shows the influence of the sample volume on the peaks height. b : The obtained peaks from system. 

Fig. 8. a : The mixing coli effect on the peak height of (0.008 μg/ml) from fluorescein. b : The tube length effect on the peak height 

 

Application 

We effectively utilized the proposed approach to identify representative samples of fluorescein and fluorescein sodium dye using 

Standard Additions Method, mitigating the impact of any interference. We confirmed the system’s accuracy by using a smartphone as

a data logger for this microfluidic fluorescence system, conducting data transfer over Bluetooth with high sensitivity, and processing 

information through custom software (Mi.data.florescent). Our Lab-on-a-chip, which conducts quantitative analysis of blood data can 
7
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Table 5 

List of tube length and the peak height. 

Tube length (cm) peak height (mm) 

10 34 

20 32 

30 31 

40 28 

50 25 

60 24 

80 23 

100 22 

Table 6 

optimum conditions for determination of 0.008 μg .ml− 1 Fluorescein 

dye. 

Parameters Values 

Total flow rate 2 ml/min 

Chip volume 30 μL 

Sample volume 108μL 

Tube diameter 0.2 mm 

Table 7 

Standard calibration curve of fluorescein. 

Fluorescein concentration (μg .ml− 1 ) Peak height(mm) R.S.D % 

0.002 8 0.0 

0.004 16 0.0 

0.006 25 0.0 

0.008 34 0.0 

0.01 43 0.0 

Fig. 9. Calibration curve for fluorescein. 

Fig. 10. The peak height that corresponds to the fluorescein calibration curve. 
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Table 8 

The recoveries were investigated using the conventional adds procedure. 

Sample Added (μg .ml− 1 ) Found (μg .ml− 1 ) ∗ Recovery 

1 0.0015 0.0015 100 ± 0.0 

2 0.0025 0.0025 102 ± 0.0 

3 0.0035 0.0035 101 ± 0.0 

∗ RSD = zero 

Fig. 11. Standard addition method of adding 0.0015 μg .ml− 1 of fluorescein sodium as a reprehensive sample (sample 1). 

Fig. 12. Shows the dispersion coefficient. 

 

 

 

 

 

 

 

 

 

notably decrease analysis time, sample volume, and costs. The use of integrated sensors in combination with a smartphone facilitates

direct data processing through wireless transmission for remote analysis and smartphone applications [26–30] . Some researchers 

have implemented sensor technologies for smartphone-based health monitoring. Improvements have been made in optical detection 

platforms, color sensors, miniaturized imaging sensors, and luminescence sensors, including photoelectric cell sensors. We can also 

make minor modifications to the fluorescence device to facilitate sample analysis. With the right programming, can be controlled 

through a smartphone interface [ 31–36 ]. 

Conclusions 

Fluorescence spectroscopy, an emission technique uses a photon source to excite sample molecules. Molecules that emit radiation 

when they relax can be identified by measuring the intensity of this emitted radiation. Fluorimeter is typically used in situation when

no other colorimetric method is sensitive or selective enough to identify a particualr chemical. It is widely applicable in immunoas-

says and bioluminescence chemistry, where it used to detect organic and inorganic substances. However, data be compromised due 

to various factors, such as sample contamination or interference from scattered or stray light. Therefore, it is important to always

consider these potential issues. All experiments should include the collection of emission spectra and the assessment of blank samples.

Smartphones equipped with quick and simultaneous quantity sensing systems are increasingly used for environmental monitoring 

food, safety checks, and home health care. The color changes in digital photos, detected on smartphones represent a powerful, quick,

and low-cost analysis method known as digital image colorimetry. Samples can be collected with automated sampling systems, ex- 

change systems, or repeated solution pumping all controlled wirelessly by a computer or mobile phone. A specially designed software

displays the results on the smartphone screen. The approach is simple, fast, and uses minimal reagents making it environmentally

friendly and fully automated, with no need for expert involvement. Moreover, it can be used in undergraduate and postgraduate

laboratories for measuring graduation research, which benefits the development of their skills. 
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