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This study employs wavelet transforms to address the issue of boundary effects. 

Additionally, it utilizes probit transform techniques, which are based on probit 

functions, to estimate the copula density function. This estimation is dependent on the 

empirical distribution function of the variables. The density is estimated within a 

transformed domain. Recent research indicates that the early implementations of this 

strategy may have been more efficient. Nevertheless, in this work, we implemented 

two novel methodologies utilizing probit transform and wavelet transform. We then 

proceeded to evaluate and contrast these methodologies using three specific criteria: 

root mean square error (RMSE), Akaike information criterion (AIC), and log-

likelihood (LogL). The wavelet transform method works better than the probit 

transform method at all three levels of correlation, as shown by a simulated study with 

four types of copulas, five sample sizes, and three levels of correlation. Research has 

demonstrated that probit transformation methods are most appropriate for linkages 

involving large and medium sample sizes, as indicated by Frank, Joe, and Tawn 

Copula. On the other hand, for copula functions for all sample sizes, the wavelet 

transform method was found to be ideal in cases with low correlation values. 
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1. Introduction  

     The nonparametric estimation technique is 

a common and flexible tool for analyzing data 

and modeling relationships between variables. 

The nonparametric estimation is different from 

the parametric estimation in that it does not 

take a fixed form or a specific form, but is 

obtained according to the information derived 

from the data. All information regarding the 

phenomena under research is assumed to be 

regularly distributed in parametric models. 

Under tight assumptions and circumstances, if 

the random variables are not normally 

distributed, we cannot use standard correlation 

measurements like Kendall's or Spearman's. 

Separating random variables' effects is 

extremely challenging, especially when 

evaluating the degree of positive and negative 

dependence. As a result, researchers use 

nonparametric approaches such as the kernel 

density function to detect dependencies, 

especially in multivariate distributions.  

    The problem in the modeling of 

multivariate functions is the presence of 

dependency between the observations of the 

variables of the examined phenomena, which 
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can lead to a variety of issues, including 

boundary effects. In this situation, It is 

impossible to get the exact estimation for these 

functions. A suitable statistical tool must be 

used to characterize the dependence structure 

between the variables of the examined 

phenomenon, particularly when the effect 

extends over a long or medium period of time 

and the data distribution is unknown. 

Nonparametric approaches are employed to 

estimate the copula functions in this research. 

    Many studies have been published by 

researchers to help develop ideas for modeling 

dependency measures in many fields, 

especially the challenges encountered during 

the analysis, such as problems of association 

between study variables and problems of 

boundary effects. [1] developed the theory of 

nonparametric estimation of the copula 

function of a random variable based on the 

empirical Copula and measuring the sample 

dependency by means of the empirical copula, 

and obtained a consistent empirical copula 

function. [2] clarified and reviewed some 

parametric, nonparametric, and semi-

parametric methods and suggested methods 

for estimating the probability density function 

and choosing the appropriate method for 

estimating smoothing parameter and 

comparing the mentioned methods in 

determining the best estimator for the 

probability density function using the 

simulation method. 

[3] used the copula theory in modelling the 

survival function of the bivariate variable 

Weibull distribution and bivariate standard 

normal distribution cut off at zero point and 

using simulation experiments for comparison 

between the estimation of the survival 

function by using six different copulas [4] 

presented a paper for inference copula models, 

based on the rank method. Working in detail 

on a small imaginary numeric example, 

illustrate the different steps for checking the 

dependence between two random variables 

and modeling it using copulas. It also 

introduces simple graphical tools and 

numerical techniques for selecting a suitable 

model, estimating its parameters, and checking 

its suitability. An application of the 

methodology to hydrological data is then 

presented. [5] investigated kernel methods for 

obtaining smooth and flexible estimates of the 

bivariate correlation cumulative distribution 

function, also discuss the selection of 

bandwidth parameters. [6] presented a 

proposal for a new copula by applying the 

Plackett copula through a mathematical 

modification that was made on that copula and 

comparing the Plackett copula with the 

proposed copula using simulations. [7] 

introduced the probit transformation of 

estimating the density of the kernel on the unit 

interval and he proposed a correct and simple 

method by combining the concept of 

transformation with estimating the local 

likelihood density, resulting in workable 

density estimations that are free of boundary 

issues in most cases. [8] investigated the 

probit transformation of the nonparametric 

kernel estimation of the copula density. He 

proposed a kernel type copula density based 

on the idea of transforming the margin of 

copula density to normal distributions using 

the probit function and estimating the density 

in the transformed domain without boundary 

bias problems. Thus, obtaining an estimation 

of the copula density via the back-

transformation, and it was then demonstrated 

that when this method is combined with 

methods of estimating the local polynomial 

density. [9] presented a method for estimating 

the copula density using different kernel 

density methods, including mirror reflection 

method, beta kernel method and kernel 

transformation method, and then comparing 

the three methods using simulation 

experiments, the results showed that the 

transformation kernel estimator is the best 

among the three methods, and it is proved that 

the copulas are highly explicitly  for high 

dependency, especially of the Gaussian 
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type.[10] presented a R package called 

Kdevine to estimate the density of the 

multivariate kernel with vine copulas.[11] 

studied reliability structural analysis methods 

with multidimensional correlation and  when 

conducting a structural reliability analysis and 

calculating the probability of structural failure. 

The techniques that helped analyze structural 

reliability in light of the correlation problem, 

include the third-moment technique, the 

fourth-moment technique, and the D-Vine 

copula technique. These techniques were 

based on the first-order reliability method in 

its basic techniques when transforming the 

studied random variables into independent 

standard normal random variables, and 

iterative algorithms were used to find the 

probability point of most failures. 

These studies were confined to nonparametric 

kernel functions using a fixed-value 

smoothing coefficient or a symmetric diagonal 

matrix. 

 In addition to many researchers have been 

studies wavelets. [12] studied the wavelet 

properties of the sunspot series. [13] employed 

variable kernel functions to estimate the risk 

for censored data. [14] used wavelets to 

estimate the return stock rate of the private 

banking sector. [15] studied multivariate 

fractional Brownian motion using discrete 

wavelets.  

     The purpose of this research is to estimate 

the copula density by nonparametric methods 

through probit transformation depending on 

the Kernel copula function for the purpose of 

correcting the boundary effects and wavelet 

transformation using multi-resolution analysis 

and comparison. Probit transformation is one 

of the methods used in boundary correction, 

and it is the most commonly used method, 

because this method suffers from biases at 

boundary points, we used a smoothing 

coefficient in the form of a full positive 

matrix. 

 

2. Materials and Methods 

 

2.1 Copula definition 

   A copula is a function that illustrate 

modeling the dependency of random variables. 

Sklar's created and initially utilized the copula 

[16]. 

This function has several advantages for 

modeling dependencies in multivariate data. 

first, consider the joint distribution's 

separation into the dependency structure 

(copula) and the basic marginal distributions. 

     And which can be viewed as a 

mathematical tool that is used to represent the 

relationship structure between two or more 

random variables. Many articles and studies 

have been written about nonparametric 

estimation of copulas. The use of 

nonparametric methods is more flexible than 

standard parametric methods, as no 

assumptions are required.  

      According to Sklar theorem 1959, every 

joint cumulative distribution function F of 

continuous random quantities       can be 

written as                         , for all 

         , where    and    are continuous 

marginal distributions and                 
is a unique corresponding to this joint 

distribution. Therefore, the copula is the joint 

cumulative distribution function with 

uniformly distributed marginal distributions 

on [0, 1] [17][18]. 

Therefore, every multivariate CDFs with 

standard uniform marginal that show the 

dependence structure of random variables X 

and Y, and their marginal cumulative 

distribution functions are described by 

                                            
Where U and V are uniformly distributed 

variables and            .The probability of 

two random variables,      and    , is 

described by the joint CDF          
          .                
                                                                                                                                    

 Where        is called a copula and can be 

uniquely determined when u and v are 

continuous [19]. 
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The following is the formula for a Gaussian copula: [20] 
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    Represents the standard normal 

distribution function, while     represents 

the inverse of standard normal distribution 

function. 

A Frank copula is given by [21].  
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Joe copula is provided by  
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Where                  . It is distinguished by upper tail dependency. moreover , 
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Tawn copula is 
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                                         , we recover the Gumbel copula. 

                  it will be asymmetric in its components.  

 

2.2 Kernel and probit estimation: 

     There are numerous nonparametric 

methods for estimating the dependence 

structure between two random variables, 

such as polynomial approximation copulas 

and kernel smoothing copulas [8]. 

2.2.1 Kernel density function estimation: 

The d-dimensional multivariate kernel 

density estimator in its general form is 

[23][24]. 

 ̂      
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      | |
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 ⁄  )                                          

Where H is positive and symmetric definite 

bandwidth matrix and K is kernel function, 

and | |      | |           

    There are several nonparametric 

techniques to estimate the dependence 

structure between two random variables, 

such as empirical [1].  polynomial 

approximation copula [17] and kernel 

smoothing copulas [25]. 

     In the classical statistics texts, a kernel is 

a nonparametric method for estimating the 

probability density function (pdf) of a 

continuous random variable. Any 

probability density can be used for the 

kernel [26] 

    In this study we use kernel type copula 

estimators because this method is the most 

commonly used in nonparametric estimation 
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of copulas, Although its flexible [7]. But is 

not appropriate for the unit squared copula 

densities, essentially because it is heavily 

influenced by boundary bias issues for 

estimation function. In addition, most 

common copulas permit unbounded 

densities, and kernel methods are not 

consistent in that case. Therefore, many 

researchers study and provide solutions to 

the boundary bias, including [27] [28] [8]. 

 

 

 

  

 The standard kernel estimator for c, denoted by  ̂  

 ̂       
 

 |   |
 

 ⁄
∑ 

 

   

(   

  
 ⁄ (

    
    

) )                              

                                                      

     

The use of kernel techniques to estimate an 

unknown bivariate copula density we will 

see that the boundedness of a copula 

density's support necessitates the use of 

more advanced techniques than the one 

considered. U, V ~U[0, 1] are random 

variables with the joint distribution C and 

the corresponding density c: [0, 1]
2
 →R. We 

assume that the copula C has i.i.d variables 

{                            }, and 

our goal is to estimate the density c [7]. 

 

2.3 probit Transformation Estimation 

Method (PTE) : 

    Data transformations are commonplace, 

and widely used to enhance the application 

and performance of classical estimating 

methods, this procedure, deals almost 

skewed data, heavy tails, or bounded 

supsport. 

    Several studies have investigated the 

transformation density estimation technique 

in the context of kernel density estimation, 

and they have presented a number of 

transformation families and transformation 

selection criteria. These studies created 

parametric families of transformations that 

approximate normality in a range of non-

normal distribution. Although our essential 

goal of simple density estimation does not 

necessitate normality, Transformations can 

serve a variety of purposes in statistical 

analysis [29].   

     To solve the problems that caused 

boundary bias by transforming the data so 

that its distribution is supported on the full 

R
2
.In other words, this method can be 

correct the boundaries in a natural way, and 

this method is characterized by being able to 

deal with boundary copula densities [25]. 

The difficulty in the copula density 

estimation of (U, V) is primarily due to the 

constrained nature of its support          

.Now define 

               and                                                      

Where    is the standard normal cumulative 

distribution function and     its quantile 

function or the probit transformation [7]. 

Given that both U and V are uniform 

distribution [0,1], S and T have standard 

normal distributions, but this does not imply 

that the vector (S, T) is bivariate normal. If 

the joint CDF of (S,T) is the Gaussian ,then 

    is the Gaussian copula because copulas 

are invariant for increasing transformations. 

[18] has unconstrained support R
2
, and 

estimating its density     cannot be affected 

by boundary problems. Furthermore, due to 

its normal margins, one can expect     to be 

well-behaved and easy to estimate. Under 

mild assumptions,      and its partial 

derivatives up to the second order are found 

to be bounded on R
2
, in this case copula 
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density is unbounded. If   FST refer to copula 

C, and the variables (S,T) are standard 

normal distribution , then we can write 

Sklar's theorem as equation below : 

                 (         )                                             

When differentiate FST with respect to s and t , we get the  joint density of (s,t)  

          (         )                                              

Where    is standard normal density Inverting this equation yields. 

       
                  

                  
                                         

 For any             , therefore, any estimator  ̂        automatically generates a Copula 

density estimate on the interior of  I . 

 ̂         
 ̂                 

                  
                                      

 

Where the symbol     is refer to the 

transformation idea. When appropriate, 

 ̂   can alternatively be defined by 

continuity at the limits of  . This 

transformation-based estimator has a 

number of appealing qualities. Because 

                is not defined for  

        cannot allocate any probability 

outside  . Also, if     is a true density 

function, in the sense that           
               and 

∫∫  ̂             
  

 

Then, through transformation in variables        and       ,  

 ̂                                ∫∫  ̂              
 

 

     According the bivariate kernel density estimator, which we shall denote by  ̂    when apply to 

the copula: 

       
   (             )

 (      ) (       )
                                         

   for all            

The first basic idea we should use the 

standard kernel density estimator such as 

 ̂  .Specifically, we use the estimate as: 

 ̂  
       

 

 |   |
 

 ⁄
∑     

  
 ⁄ (

    

    
) 

 

   

                     

Where K is a bivariate kernel function and    is symmetric positive –definite matrix, and 

 {                                      }               

Is the transform domain sample but         not Available, and          as well. Instead, one must 

make use of  

,( ̂     ( ̂ )  ̂     ( ̂ ))         -                  

 That pseudo-transformed sample as a result, the feasible form  ̂  
       is  
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 ̂        
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Based on equation (11), this leads to a "probit transform kernel copula density estimator". [7][10] 
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As a result, the asymptotic equation for the 

parameter of probit transformation is also 

obtained. The bias and variance of this 

method for copula density estimator are in 

the following form, respectively 

 

      ̂        
 

 
     ,   *          (      )           (      )       

      ((      )
 
  )+     *                              (      )       
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  )+      [                           (      )       
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Where       ∫          

The variance is 

   ( ̂     )     | |
  

 ⁄             (   | |
  

 ⁄ )                   

Where      ∫        

Then the variance of probit transformation copula density as below 

   ( ̂      )  
    

 | |
 

 ⁄
 

      

                  
     | |               

 

When we using standard normal distribution 

of kernel density and normal distribution for 

density function then 

                       
  

 ⁄  . Where 

d represents a number of variables 

Observe that 

       [
 

      
]

 
   

 ̂                         

3. Wavelet Copula Density Estimation (WCDE): 

 

3.1Wavelets: 

Wavelets are an extension of Fourier 

analysis in that both seek to express 

complex functions using the sum of simple 

ones. Wavelet theory, on the other hand, 

came considerably later than Fourier 

analysis. [30] [31] 

          Wavelets have accomplished 

impressive acceptance in earth sciences [32] 

[33]. Wavelets have been used successfully 

in a variety of application, including   

numerical analysis, engineering, signal and 

image processing,  statistics, and 

geophysics. We will use mathematical 

creation of wavelets discrete type 

transformations, first, provide a detailed of 

the space       from the standpoint of the 

multi-resolution analysis. 
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Multi-resolution is a method for describing 

the building of spaces and providing an 

analytical explanation of the components 

and bases of these spaces. Let us first 

construct the square-integrable function, 

often known as the space of Lebesgue 

measurable functions,  which is written as  

      and defined as [34] 

      {      ∫ |    | 
 

  
  } [35]. 

    A wavelet is a mathematical function tool 

used to divide a given function into 

compounds of different frequencies and 

explore each configuration using the 

appropriate solution for each measurement. 

These tiny waves display information and 

data in time and frequency domains. The 

continuity of their signal is limited in two 

variables: Unlike the sine function, which 

extends between       , the wavelet 

function is irregular and asymmetric. 

Wavelet is defined mathematically as a real 

value function on the real axis that fluctuates 

up and down consistently around zero. [36] 

[37] in other words it is defined as a signal 

of limited time length (continuity) with an 

average value of zero. The wavelet 

transform is based on the pressure of the 

wavelet to be processed with two functions: 

the first is the mother wavelet function Ψ(x) 

to obtain a set of coefficients characterized 

by the wavelet coefficients or detailed 

coefficients D(s,t), and the second is the 

scaling function ∅(x), also called the father's 

function, to obtain the approximate 

coefficients A(s,t) [38].  

                               

      Then , we approximate the signal using 

wavelets and find a group of  wavelet 

subgroups that are constructed from 

expansion or compression and shifting of the 

original wavelet and represent the signal or 

data to be analyzed. In other words, the 

process is the transformation of large-scale 

measurements into precise measurements by 

aggregating these data or signals. The main 

result of the transformation process is the 

mother wavelet function defined as: [39] 

[40] 

        
 

√ 
 (

   

 
)                                           

Where a and b are dilation and translation 

parameters, 

   refer to mother wavelet  

       refer to daughter wavelet 

    There are two types of wavelet 

transforms: continuous wavelet transforms 

and discrete wavelet transforms. 

To approximate the probability density 

function, the probability density function is 

decomposed into a set of infinite functions 

(daughter wavelets) in the time domain on 

an orthonormal basis by a scaling function 

(father wavelet) and a wavelet function 

(mother wavelet) [39]. 

 

 The approximation is defined as:  

           
 

 ⁄  (       )                              

and  

          
 

 ⁄  (       )                              

In this study, we use mother and father Daubechies wavelets [40]. 

3.2.Wavelet – Copula Estimation:  

In this section, it will be referred to as 

"wavelet- copula", and the procedure can be 

easily performed in two steps: 

    The first step involves using wavelet 

analysis to decompose variables. The second 

step uses the decomposed input variables to 

estimate the copula density function. Since 

modeling dependence by copula is sensitive 

to the marginal model, a major innovation of 
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the procedure is the combination of wavelet 

analysis with copula models.                                      

    Copula density estimates are constructed 

using wavelet analysis. This process is easy 

to implement using out-of-the-box wavelet 

tools and is based on algorithms that 

automatically deal with boundary effects. 

Pseudo-samples            , measured on 

arbitrary divisions of the unit square, are a 

more promising approach  [41]. 

     Wavelet-based estimation of copula 

density helps explain the underlying 

dependence structure. In general, the 

wavelet analysis of the second - order 

function is        a hat allows you to 

analyze this mapping infinitely 

simultaneously number of resolution levels  

j = 0, 1, . . . .  

The decomposition at any level        is 

given by 

At every level         , the decomposition 

is given by 

                                                                          

so that 

           ∑              

    

                                                            

is a trend (or approximation) and 

           ∑ (∑     
   

     
   

      

    

 ∑     
   

     
   

      

    

 

    

 ∑     
   

     
   

      

    

)                                            

is a collection of three sorts of details: 

vertical edges, horizontal edges, and oblique 

(corner of the square). In this form, the 

coefficients     and     
   

,     
   

and     
   

with 

       are unique for each choice of    

  . For all  j   N and                 , 

the functions      and     
   

  ,     
   

  and 

    
   

 are defined as follow: 

      
           

        
    

      

   
           

         
    

       

   
            

        
    

       

              
       

    

                                                

in terms of a certain scaling function, a 

corresponding wavelet, and their location-

scale transformations provided by . 

      
       

 
 ⁄  (        )                                                          

and         
       

 
 ⁄  (        )                                                

for any       , and       . The functions 

φ and ψ (the father and mother wavelet 

functions respectively) are defined by Many 

technical limitations have to be achieved. To 

ensure that the family of position scales they 

create constitutes an orthonormal system 

of   , the set of square-integrable functions. 

The selection of each pair (φ, ψ) yields a 

separate multiresolution analysis with the 

required degree of regularity. In this study 

assumed to have compact support [0, L] as 

is the case for the widely utilized and 
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provides an overview of this viewpoint. 

[40][41]  A wavelet representation is 

distinguished by the fact that the trend at 

level        Consistent with the trend at 

level   , highlighted by horizontal, vertical, 

and diagonal features corresponding to level 

  .in other words 

            (∑     
   

      
   

    

 ∑     
   

      
   

    

 ∑     
   

      
   

    

)                        

The actual copula    was detected with   by setting 

         (          )                                                                                                        
 

Assume that                     is a 

random sample from the unknown 

distribution  . The empirical are 

represented by    and    distributions 

related to F and G 

(
  

 
 
  

 
 )    (             )                                                                                     

 

W

here    and    are the ranks of    and    

respectively .  

    Let   and    be the corresponding 

wavelet for a given scaling function. Both 

functions are considered real-valued and 

compactly support [0, L] for some L > 0. 

For each j   N, define 

       
   

      
   

          
   

  as in (4) for each 

                 . The set 

  {        
   

      
   

      
   

             

          } 
is the orthonormal basis of         for any 

arbitrary      . Given a copula density c, 

it may be expanded as (3) with 

       ∫ ∫       
 

 

 

 

                                                                                         

According to Eq. (15), the change in variables                           yields  

       ∫ ∫                 
 

 

 

 

              {    (          )}                     

 

where    is the expectation based on the 

original observations' common distribution 

                    

If         are unknown, a nonparametric is 

generated by substituting F and G with their 

empirical distribution function,          . 

The estimator is therefore rank-based, i.e. 

 ̃      
 

 
 ∑    (             )

 

   

  
 

 
∑     

  

 
 
  

 
 

 

   

                                                   

A wavelet-based estimate of c is then given by:  

 ̃          ∑  ̃                                                                                     (35) 

where the smoothing index of the technique 

is denoted by the number   . It is worth 

noting that, is not always the copula density, 

 ̃   just as an empirical copula is not a 

copula. [1]   ̃    In particular, it can be 

negative in the section of the domain, so that 

it cannot be merged into 1. When you want 

an estimate of the intrinsic copula density, it 

can be obtained by truncating and 

normalizing  ̃   

From a numerical standpoint, it is crucial to 

notice that the sum over k in (18) is finite 
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since the wavelet is supported by compact 

support. Consequently, in reality. Only 

        c terms must be computed in the 

special situation when the copula density 

must be estimated at a single point 

                . For these reasons, the 

procedure's performance is determined by 

the level    selected. The latter should be 

determined in the most efficient method 

possible [39]. 

 

5. Discussion and results: 
(1) We simulate five different random 

samples (n= 32,64,128,256, 512) with 

replication (r=1000). 

(2) Generate X, Y variables from a 

uniform distribution.  

(3) The marginal distributions of the 

random variables X and Y (F and G) are 

uniformly simulated.  
(4) Finding the probit transformation of 

the observations of the variables that 

were generated in step 2. 

(5) Determine the number of vanishing 

moments at 4 degree. 

(6) For the dependence structure, we 

consider four copula function (Gaussian , 

Frank ,Tawn, and Joe ) ,with Kendall’s 

tau  τ = 0.7,0.5,0.3. as shown in Tables 

from 1 to 12. 

 

Tables from 1 into 12 represent the 

estimated root mean squares error of the 

copula density functions for nonparametric 

estimation methods and Akaike criteria and 

logarithm maximum likelihood criteria 

(LogL) at a correlation level tau = 

0.7,0.5,0.3 respectively with 1000 

repetitions for each experiment that were 

used to determine the performance of the 

best estimation method it was found that the 

best estimation method for the copula 

density function in the case of strong and 

weak correlations and for all sample sizes 

and for four copulas(Gaussian, Frank, Tawn, 

and Joe).The  method was probit 

transformation for all sample sizes and for 

all four copulas is the best at  tawn and Joe 

copulas when tau is strong but at Frank 

copula at small sample size. While the 

method (WCDE) is the Best at Gaussian 

copula in all level correlation ant at all 

sample size. 

In medium and weak correlation, it was the 

method (WCDE) at all Frank, Tawn and Joe 

copulas function.  

    The 3D plot of the real copula functions 

(Gaussian, Frank, Tawn, and Joe) are 

illustrated in Figures (1, 2, 3, and 4) below, 

in addition to the preface shapes for each of 

them using the (PTE, WCDE) methods. It 

can be noted, through 3D figures, that the 

distribution of the observations of the copula 

function estimated by the (WCDE) method 

was accurate at the edges while it was less 

accurate at the center for all functions. It is 

also evident from the three-dimensional 

figures that the probability density function 

of the real (Gaussian) copula function is 

characterized by the similar concentration of 

observations at the center and at the edges, 

with the withdrawal of observations towards 

the tail and its relatively little expansion at 

the center. Through the three-dimensional 

figure, the (WCDE) smoothing of the 

Gaussian function was more flat at the 

center and more congruent at the tails 

(extremities) when compared to the real 

probability density function. Besides, when 

estimating the copula function (Frank, tawn,  

and Joe), the smoothing of the probability 

density functions was less flat at the center, 

but it was more withdrawn towards the tails 

despite the presence of a great match 

between the smoothed and the real 

functions. Additionally, despite having 

observed that the smoothed and real 

functions had a significant match, the 

smoothing of the probability density 

functions while estimating the copula 

function (Frank, Tawn, and Joe) was less 

flat. In general, it can be said that the 
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smoothing when estimating the copula 

function (Gaussian) is slightly better than 

the smoothing when estimating the copula 

functions (Frank,Tawn, Joe). 

 

Table 1: Root-mean square error,(AIC)criterion and logarithm likelihood criteria for Gaussian copula when       

Gaussian 
Method RMSE AIC LOGL 

Sample size 

32 
PTE 0.29933 -38.599 22.71667 

WCDE 0.18843 -57.4329 29.8099 

64 
PTE 0.23146 -97.1761 49.99241 

WCDE 0.16175 -116.785 59.63232 

128 
PTE 0.21907 -215.913 109.6572 

WCDE 0.13695 -414.451 208.0832 

256 
PTE 0.22168 -374.616 194.7401 

WCDE 0.0767 -494.185 248.3973 

512 
PTE 0.18511 -771.349 387.8594 

WCDE 0.03925 -1314.73 658.6745 

 

Table 2: Root-mean square error,(AIC)criterion and logarithm likelihood criteria for Frank copula when 

      
Frank 

Method RMSE AIC LOGL 
Sample size 

32 
PTE 0.15321 -81.6971 41.67683 

WCDE 0.16953 -73.1424 37.44939 

64 
PTE 0.15021 -95.0123 48.9454 

WCDE 0.16593 -122.257 62.16542 

128 
PTE 0.14841 -280.421 141.4846 

WCDE 0.22525 -260.514 131.355 

256 
PTE 0.14168 -458.297 230.3296 

WCDE 0.05901 -485.975 244.9677 

512 
PTE 0.14168 -485.297 244.3296 

WCDE 0.05179 -1260.37 631.4375 

 
Table 3: Root-mean square error,(AIC)criterion and logarithm likelihood criteria for Tawn copula when       

Tawn 
Method RMSE AIC LOGL 

Sample size 

32 
PTE 0.15321 -81.6971 41.67683 

WCDE 0.19771 -70.7703 40.02418 

64 
PTE 0.15021 -95.0123 48.9454 

WCDE 0.18102 -83.0877 42.97897 

128 
PTE 0.14841 -280.421 141.4846 

WCDE 0.17395 -240.125 127.4758 

256 
PTE 0.14168 -485.297 244.3296 

WCDE 0.17055 -414.966 215.1595 

512 
PTE 0.14168 -1000.297 501.3296 

WCDE 0.14552 -485.56 244.807 
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Table 4: Root-mean square error,(AIC)criterion and logarithm likelihood criteria for Joe copula when       

Joe 
Method RMSE AIC LOGL 

Sample size 

32 
PTE 0.17041 -86.6256 43.92094 

WCDE 0.59031 -60.2817 30.79977 

64 
PTE 0.15969 -117.411 59.98481 

WCDE 0.42713 -63.8449 32.46232 

128 
PTE 0.15494 -214.156 108.7846 

WCDE 0.38647 -67.469 36.21485 

256 
PTE 0.14883 -453.003 228.3562 

WCDE 0.37677 -248.321 126.1468 

512 
PTE 0.14246 -872.756 438.4459 

WCDE 0.20222 -435.536 220.0326 

 

Table 5: Root-mean square error,(AIC)criterion and logarithm likelihood criteria for Gaussian copula when       

Gaussian 
Method RMSE AIC LOGL 

Sample size 

32 
PTE 0.64513 -14.0259 9.10046 

WCDE 0.55886 -18.9267 11.26035 

64 
PTE 0.51196 -50.1634 27.14061 

WCDE 0.46729 -66.2573 34.80296 

128 
PTE 0.49618 -102.509 53.73536 

WCDE 0.45667 -113.008 58.77383 

256 
PTE 0.44895 -180.244 95.50428 

WCDE 0.35513 -216.31 111.0381 

512 
PTE 0.42957 -342.784 174.5219 

WCDE 0.25761 -358.82 182.4047 

 

Table 6: Root-mean square error,(AIC)criterion and logarithm likelihood criteria for Frank copula when       

Frank 
Method RMSE AIC LOGL 

Sample size 

32 
PTE 0.42059 -16.5343 10.4112 

WCDE 0.48065 -25.2846 14.28811 

64 
PTE 0.41134 -81.704 42.66972 

WCDE 0.44904 -59.8056 31.32155 

128 
PTE 0.39342 -145.273 74.18602 

WCDE 0.36845 -148.747 76.70922 

256 
PTE 0.38824 -221.718 113.3838 

WCDE 0.27853 -249.719 127.3506 

512 
PTE 0.38815 -484.543 245.4771 

WCDE 0.24437 -644.141 324.3424 
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Table 7: Root-mean square error,(AIC)criterion and logarithm likelihood criteria for Tawn copula when       

Tawn 
Method RMSE AIC LOGL 

Sample size 

32 
PTE 0.42059 -16.5343 10.4112 

WCDE 0.54244 -8.03816 6.34288 

64 
PTE 0.41134 -59.704 31.66972 

WCDE 0.49021 -45.6272 25.02905 

128 
PTE 0.39342 -148.273 76.18602 

WCDE 0.48712 -121.104 62.55991 

256 
PTE 0.38824 -195.718 100.3838 

WCDE 0.18847 -221.834 113.3944 

512 
PTE 0.38815 -484.543 245.4771 

WCDE 0.15348 -986.863 494.9124 

 

Table 8: Root-mean square error,(AIC)criterion and logarithm likelihood criteria for Joe copula when       

Joe 
Method RMSE AIC LOGL 

Sample size 

32 
PTE 0.42297 -20.1695 11.94385 

WCDE 0.53243 -19.6327 11.63855 

64 
PTE 0.41975 -55.5584 29.87232 

WCDE 0.48461 -45.4424 25.01778 

128 
PTE 0.47773 -138.883 71.77869 

WCDE 0.41914 -154.231 79.1561 

256 
PTE 0.45859 -217.66 111.6068 

WCDE 0.37908 -250.979 127.8033 

512 
PTE 0.42731 -399.153 202.6058 

WCDE 0.22915 -445.204 225.2306 

 

Table 9: Root-mean square error,(AIC)criterion and logarithm likelihood criteria for Gaussian copula when       

Gaussian 
Method RMSE AIC LOGL 

Sample size 

32 
PTE 0.90599 -8.0097 6.17241 

WCDE 0.71163 -10.79708 7.51427 

64 
PTE 0.80242 -25.8767 15.42052 

WCDE 0.55352 -48.6918 26.3745 

128 
PTE 0.73139 -27.7824 17.43187 

WCDE 0.42452 -109.671 56.80845 

256 
PTE 0.71448 -86.0686 46.49385 

WCDE 0.41359 -271.17 137.6521 

512 
PTE 0.66743 -112.706 60.65348 

WCDE 0.34671 -694.429 349.3544 

 

Table 10: Root-mean square error,(AIC)criterion and logarithm likelihood criteria for Frank copula when       

Frank 
Method RMSE AIC LOGL 

Sample size 

32 
PTE 0.90599 -10.0097 7.17241 

WCDE 0.7231 -10.2541 7.32794 

64 
PTE 0.80242 -25.8767 15.42052 

WCDE 0.66538 -26.0737 15.78511 
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128 
PTE 0.73139 -27.7824 17.43187 

WCDE 0.59807 -65.7989 35.52795 

256 
PTE 0.71448 -86.0686 46.49385 

WCDE 0.44442 -253.352 128.7044 

512 
PTE 0.66743 -112.706 60.65348 

WCDE 0.3717 -415.229 209.8027 

 

 

Table 11: Root-mean square error,(AIC)criterion and logarithm likelihood criteria for Tawn copula when       

Tawn 
Method RMSE AIC LOGL 

Sample size 

32 
PTE 0.7151 -9.30299 6.94363 

WCDE 0.66441 -11.8305 8.07624 

64 
PTE 0.71314 -21.1549 13.43301 

WCDE 0.64268 -21.6373 13.47802 

128 
PTE 0.6932 -56.5897 31.11079 

WCDE 0.60952 -63.3696 33.94843 

256 
PTE 0.69094 -104.666 55.57158 

WCDE 0.46535 -223.006 113.7815 

512 
PTE 0.67853 -171.691 90.04039 

WCDE 0.15607 -854.443 428.785 

 

Table 12: Root-mean square error,(AIC)criterion and logarithm likelihood criteria for Joe copula when       

Joe 
Method RMSE AIC LOGL 

Sample size 

32 
PTE 0.71841 -5.35054 5.12134 

WCDE 0.62913 -12.0969 8.09585 

64 
PTE 0.68521 -21.1653 13.1342 

WCDE 0.49163 -42.0206 23.06409 

128 
PTE 0.6379 -42.2662 24.05792 

WCDE 0.41235 -113.394 58.62762 

256 
PTE 0.72761 -115.09 60.9177 

WCDE 0.39105 -409.191 206.0382 

512 
PTE 0.71878 -232.741 119.9393 

WCDE 0.39068 -334.387 169.9307 

 

The figures 1,2,3 and 4 are explain the behavior for all four copula 

 
Figure (1) three dimension Gaussian copula density when ( n=128, tau=0.7) 
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Figure (2) three dimension for Frank copula density when (n=128, tau=0.7) 

 
Figure (3) three dimension for Tawn copula density when (n=128, tau=0.7) 

 

 
Figure (4) three dimension for Joe copula density when (n=128, tau=0.7) 

 

A copula functions were also drawn for the 

data that were generated at several levels of 

correlation. There are many drawing 

methods to describe, interpret and analyze 

the nature of the associative functions, but 

the circular form, which is based on a 

normal distribution, and the three-

dimensional form were chosen because they 

are considered one of the most common and 

used shapes in this field. The normal of the 

probability density functions of the assumed 

copula at the correlation level (0.7) can be 

more clearly understood through three-

dimensional drawings. 

Figure (1) above represents the assumed and 

estimated three-dimensional shapes of the 

Gaussian function when tau = 0.7 and n = 

128. It is clear from it that the Gaussian 

function is characterized by similar 

dependency at the center and at the edges, 

and that the observations of the probability 

density function estimated by the (WCDE) 

method are characterized by flatness. 

Clearly at the center, but at the edges, the 

smoothing was identical to the assumed 

copula function. 

Figure (2) above represents the estimates of 

the Frank function when (n = 128 and 

tau=0.7) and it shows that the Frank 

function is characterized by similar 

dependency at the center and at the edges, 

noting that the difference in the distribution 

of observations between the Gaussian and 

Frank functions It is that the observations at 
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the center in the Frank function are less flat 

than in the Gaussian function 

As for smoothing using the WCDE method, 

we notice that the distribution of 

observations fluctuates at the edges, but it is 

better at the center. 

Figure (3)above represents the assumed and 

estimated probability density function of the 

copula (Tawn) at the high level of 

correlation and the sample size (128), and it 

is clear from it that the copula function 

(Tawn) is characterized by a large 

concentration of observations at the right 

side. the (WCDE) method are characterized 

by flatness. Clearly at the center, but at the 

edges, the smoothing was identical to the 

assumed copula function. 

Figure (4) above represents the probability 

density function for the Joe association 

when ( tau=0.7 and n=128), and it is clear 

from it (that the assumed Joe copula 

function has a right tail and that the 

concentration of observations was clearly on 

the left side, while the distribution of 

observations in the middle appears flat) 

Estimation using the PTE method: It is clear 

that there is instability in the flatness of the 

observations at the center, and that the 

flatness of the observations at the right tail 

and the left edge was more identical. As for 

the (WCDE) method, the performance was 

not good at the center, which was 

characterized by instability because the 

observations were too flat, or at the right 

tail, where the concentration of observations 

was greater, but the concentration of 

observations at the left end was more similar 

to the assumed form of the association. 

 

6.Conclusion: 

    This study introduced copula estimation 

using probit and wavelet transforms, 

specifically employing Daubechies wavelets 

of four degrees. The simulation results, were 

obtained by employing four copulas 

(Gaussian, Frank, Tawn, and Joe), for five 

different sample sizes (n = 32, 64, 128, 256, 

512) and evaluated based on three criteria 

(RMSE, AIC, and LOGL), provide a 

statistical measure for selecting the copula 

that exhibits the best performance when 

wavelets are used to estimate the copula 

density function at high, medium, and low 

correlation levels (tau = 0.7, 0.5, 0.3).  

1- For all the copula functions that have 

been studied for all nonparametric 

estimation methods referred to in the 

theoretical part and for all sample sizes and 

at correlation levels, the value of the square 

root of the mean square error (RMSE) 

decreases as the sample size increases, while 

the (LogL) criterion is as maximum as 

possible, As for the Akaike criteria as 

minimum as possible. 

2-Estimation and identification of Copula 

density functions based on rank-dependent 

wavelets. 

3- Presented the root mean square error and 

developed a linear wavelet estimator. 

4-Wavelet algorithms are quick to compute, 

and simple to update and adapt to your 

model. 

5-The suggested linear wavelet density 

estimator's numerical performance was 

shown on simulated datasets. 

6-Comparisons of generated data for various 

sample sizes were also explained. However, 

wavelet-based copula function estimators for 

the underlying dependency structure, do not 

cover the basic criteria of parametric 

models. 

7- The method of estimating the copula 

density function using (PTE) is the best 

method for the Frank and Joe copulas 

function. 
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