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Abstract
Probiotics can functionally improve fish wellbeing and are suggested as antioxidative agents to protect fish from xenobiotics toxicity. 
Herein, dietary Lactobacillus casei (IBRC-M 10,711) was included in the diets of goldfish (Carassius auratus) to protect against malathion 
toxicity. Fish (12.47 ± 0.06 g) were randomly allocated to six groups (triplicates), as follows: T1) control; T2) fish exposed to 50% of mala-
thion 96 h LC50; T3) L. casei at 106 CFU/g diet; T4) L. casei at 107 CFU/g diet; T5) fish exposed to 50% of malathion 96 h LC50 + L. casei 
at 106 CFU/g diet; T6) fish exposed to 50% of malathion 96 h LC50 + L. casei at 107 CFU/g diet. After 60 days, goldfish fed T4 had the high-
est final body weight (FBW), weight gain (WG), and specific growth rate (SGR), and the lowest feed conversion ratio (FCR) among the 
groups (P<0.05). However, the T2 group showed lower FBW, WG, and SGR and higher FCR than fish in T1 (P<0.05). Fish in the T4 group 
had the highest blood total proteins, albumin, and globulin, while fish in T2 had the lowest levels (P<0.05). Fish in the group T2 had the 
highest triglycerides, cholesterol, cortisol, lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), and alkaline phosphatase (ALP) levels in the blood, while fish fed T4 had the lowest values (P<0.05). The superoxide dismutase 
(SOD) and catalase (CAT) showed the highest activities in T3 and T4 groups, and the lowest SOD was seen in the T2 group, whereas the 
lowest CAT was seen in the T2, T5, and T6 groups (P<0.05). Fish in the T5 and T6 groups had higher glutathione peroxidase (GSH-Px) 
activities than fish in T1 and T2 groups but T3 and T4 groups showed the highest values (P<0.05). T2 group had the highest malondial-
dehyde (MDA) level, while T3 and T4 groups had the lowest MDA level (P<0.05). Blood immunoglobulin (Ig) and lysozyme activity were 
significantly higher in T3 and T4 groups and lower in the T2 group than in the control (P<0.05). The alternative complement pathway 
(ACH50) was significantly higher in T2, T3, T4, T5, and T6 groups than in the T1 group (P<0.05). Skin mucus Ig was significantly higher 
in T3 and T4 groups and lower in the T2 group than in the control (P<0.05). The highest lysozyme activity, protease, and ACH50 in the 
skin mucus samples were in the T4 group, while the lowest values were in the T2 group (P<0.05). In conclusion, dietary L. casei protects 
goldfish from malathion-induced growth retardation, oxidative stress, and immunosuppression.
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	 The aquatic ecosystem is threatened with sev-
eral challenges involved in the reduction of aquatic ani-
mals’ health and productivity (FAO, 2020). Water-borne 
insecticides are toxic compounds used to fight against 
harmful insects in the agriculture sector (Zheng et al., 
2021). However, the remaining derivatives can reach 
the eco-system leading to toxicity and adverse effects on 
the living organisms (Bharti and Rasool, 2021). Organo-
phosphorus compounds such as malathion have been 
widely used in agriculture activities to eliminate harmful 
insects (Chang et al., 2020). The continuous application, 

especially in developing countries, increases the residu-
als in the water bodies and thereby the fish and aquatic 
ecosystem (Ma et al., 2019). Adversely, high accumula-
tion levels of malathion caused cellular DNA damage, 
oxidative stress, and hepatic failure (Poorbagher et al., 
2018; Bautista-Covarrubias et al., 2020; Rahbar et al., 
2020). The lipid peroxidation of cellular membranes 
is also another negative feature attributed to malathion 
toxicity (Chorehi et al., 2013; Olakkaran et al., 2020; 
Ullah et al., 2018). Consequently, an imbalance in the 
physiological function and immune capacity results from 
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malathion toxicity (Silva de Souza et al., 2020). The 
toxicity of malathion induced oxidative stress and liver 
failure in rohu (Labeo rohita, Hamilton) (Ullah et al., 
2018), goldfish (Carassius auratus gibelio) (Huculeci 
et al., 2009), and Channa punctatus (Bloch) (Bharti and 
Rasool, 2021). Further, tambaqui (Colossoma macropo-
mum) exposed to malathion showed neurotoxicity and 
homeostasis (Souza et al., 2021). Ortiz-Delgado et al. 
(2021) also reported that malathion toxicity induced 
failure of gills, intestines, liver, and kidney tissues and 
inhibition of cholinesterase activities in Senegalese sole 
(Solea senegalensis). In white shrimp (Litopenaeus 
vannamei), malathion toxicity caused oxidative stress 
and immunosuppression, as Bautista-Covarrubias et al. 
(2020) reported.

Beneficial bacterial cells known as probiotics, such as 
lactic acid bacteria (LAB), are increasingly used in aqua-
culture for their potential roles (Mugwanya et al., 2021). 
Markedly, LAB possesses several pharmaceutical prop-
erties associated with antioxidative and immunomodula-
tion roles (Saide and Gilliland, 2005). More specifically, 
Lactobacillus strains showed several powerful effects in 
aquatic animals. The prohibition of lipid peroxidation 
and the scavenging effect against excessive free radicals 
were recently proved for Lactobacillus strains (Gao et 
al., 2011; Zhai et al., 2013). Interestingly, Lactobacillus 
casei alleviated the toxic effects of malathion in Caeno-
rhabditis elegans nematodes via the reduction of oxida-
tive stress (Kamaladevi et al., 2013).

Goldfish (Carassius auratus) is a highly valued com-
mercial fish species mainly used as ornamental fish spe-
cies (Chen et al., 2020; Romano et al., 2020). It can also 
be used as a bioindicator to test the negative impacts of 
insecticides on the aquatic ecosystem. In this study, possi-
ble protective roles of L. casei against malathion-induced 
oxidative stress and immunosuppression in goldfish were 
investigated.

Material and methods

Experimental animals and setup
Goldfish (Carassius auratus (fingerlings were pur-

chased from a fish farm in Karaj, Iran, and shortly trans-
ported to the laboratory. Fingerlings were acclimatized to 
experimental conditions and diet in 1000 L tanks under 
controlled conditions. They were hand-fed a commercial-
ly available diet (Faradaneh Co., Shahrekord, Iran; con-
taining 38% crude protein, 6% crude fat, 7% moisture, 
8% ash, 3% crude fiber, and 1.25% phosphorus) thrice 
daily at 3% of body weight. Water was replaced every  
24 h at a rate of 40% of tank volume. After two weeks, 
360 healthy fish weighing 12.47±0.06 g (mean ± SE) 
were randomly allocated in 18 (150 L) fiberglass tanks 
(20 fish/tank), supplied with continuous aeration. Six ex-
perimental groups with triplicates were designed, as fol-
lows: T1) control; T2) fish exposed to 50% of malathion 
96 h LC50; T3) probiotic at 106 CFU/g diet; T4) probi-

otic at 107 CFU/g diet; T5) fish exposed to 50% of mala-
thion 96 h LC50 + probiotic at 106 CFU/g diet; T6) fish 
exposed to 50% of malathion 96 h LC50 + probiotic at 107 
CFU/g diet. The experiment lasted for 60 days. During 
experiment, the levels of temperature (24.5 ± 1.05°C); 
pH (7.29 ± 0.52); total ammonia nitrogen (<0.2 mg/L); 
dissolved oxygen (6.49 ± 0.41 mg/L); total hardness 
(188.24 ± 11.49 mg/L) were recorded. 

Malathion 
The commercial organophosphorus insecticide mal-

athion (57% EC) was supplied from Kavosh Co., Iran. 
Malathion stock solution was generated using water and 
then it was further diluted to obtain the experimental 
concentration in the study tanks. Water in melatonin-
treated tanks was exchanged (40%) every 24 h with wa-
ter having the same malathion concentration. The water 
of control and malathion-free groups was replaced with 
normal chlorine-free tap water (Karmakar et al., 2016). 
The concentration of malathion was selected based on  
a previous study, where the 96 h LC50 value of malathion 
for goldfish was determined to be 4.71 mg/L (Shahbazi 
Naserabad et al., 2015). 

Probiotic and diet preparation 
The probiotic Lactobacillus casei (IBRC-M 10,711) 

used in this study was obtained from Persian Type Cul-
ture Collection, Iran. The initial bacterial stock was in-
cubated under anaerobic conditions at 30°C in a de Man, 
Rogosa and Sharpe (MRS) broth medium (Merck, Ger-
many). After 24 h, the medium containing probiotic was 
centrifuged (4000 × g, 10 min) and the precipitates were 
washed with sterile phosphate-buffered saline (PBS) 
three times. Then, bacterial cells were resuspended in 
PBS and serially diluted and probiotic density was de-
termined using McFarland standards. Finally, probiotic 
solutions were separately sprayed into a well-grounded 
basal diet. The combinations were finely mixed and pel-
letized again (Hedayati et al., 2021). The concentration 
of probiotic L. casei in the supplemented diets (106 or 107 
CFU/g) was assured by growing feed samples on MRS 
agar (Merck, Germany). The basal commercial diet (Far-
adaneh Co., Shahrekord, Iran) was without any prebiotic 
or probiotic additives. The probiotic supplemented diets 
were freshly prepared every 10 days. Fish were hand-fed 
thrice daily at 3% of body weight.

Growth assessment
At the end, experimental fish were not fed for 24 h 

and then all fish were accurately weighed and counted 
to determine the following growth-related parameters: 
Weight gain (WG) = [final weight (g) – initial weight (g)] 
÷ initial weight (g); Specific growth rate (SGR; %) = Ln 
[final weight (g)] – Ln [initial weight (g)] ÷ test days × 
100; Feed conversion ratio (FCR) = weight gain (g) ÷ 
feed consumed (g); Survival (%) = (fish harvested counts 
÷ stocked counts) × 100 (Mani and Ebrahimi, 2021; Mo-
hammadi et al., 2021 a).
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Serum isolation
At the end of the trial, fish were anesthetized using 

clove powder (150 mg/L) and blood was sampled from 
the caudal vein of three fish (n=9), poured into sample 
tubes, and allowed to clot for 3 h at room temperature. 
Serum was isolated from freshly sampled blood by al-
lowing it to clot for 3 h at room temperature then cen-
trifugation at 3000 × g for 10 minutes at 4°C. Finally, the 
supernatant was transferred into new tubes and stored at 
–70°C for later analysis. 

Serum biochemicals 
Total protein (TP), albumin (ALB), glucose (Glu), 

alkaline phosphatase (ALP), alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), cholesterol 
(Chol), lactate dehydrogenase (LDH), and triglycerides 
(Tri) were measured in serum sample using commercial 
kits (Pars Azmun Co., Iran) on an automatic biochemical 
analyzer (LXTM20; Beckman Coulter, USA) (Moham-
madi et al., 2020 b; Yousefi et al., 2021). The globulin 
(Glo) levels were obtained by subtracting the amount of 
albumin from the total protein in the same sample (Vali 
et al., 2020). An enzyme-linked immunosorbent assay 
kit (ZellBio Co., Germany) was used to detect cortisol 
(Cort) levels in serum samples at 450 nm, following the 
kit’s manual (Hajirezaee et al., 2020).

Serum antioxidants
Serum samples were checked for the enzymatic ac-

tivities of superoxide dismutase (SOD), catalase (CAT), 
glutathione peroxidase (GSH-Px), and malondialdehyde 
(MDA) using corresponding commercial diagnostic kits 
purchased from ZellBio Co., Germany (Mohammadi et 
al., 2021 b). In brief, MDA levels were measured using 
thiobarbituric acid assay at 535 nm (Dawn-Linsley et al., 
2005). GSH-Px was measured using 2-nitro-5-thioben-
zoic acid formation method at 412 nm (Beutler, 1963). 
CAT was measured by monitoring the rate of H2O2 disin-
tegration at 405 nm (Beutler, 1963). Nitro-blue-tetrazoli-
um dye was used to measure SOD levels by reading the 
absorbance at 420 nm (Marklund and Marklund, 1974). 

Serum immune responses 
Serum total immunoglobulin (Ig) concentrations 

were quantified based on the descriptions of Siwicki and 
Anderson (1993). In brief, total protein levels of serum 
samples were determined using a commercial kit (Pars 
Azmun Co., Iran), and then samples were treated with 
12% polyethylene glycol (Sigma) and checked again for 
total protein concentrations. The difference between the 
two measurements is the serum total Ig content. 

Serum alternative complement activity (ACH50) was 
measured using the hemolysis of rabbit red blood cells 
(RaRBC) and recording the absorbance at 414 nm. An 
amount of samples causing 50% hemolysis was used to 
compute ACH50 activity following Yano (1992).

Serum samples were checked for lysozyme (LYZ) 
activity as described by Ellis (1990). In summary, sam-

ples were mixed with Micrococcus lysodeikticus sus-
pension (75 µg/mL; Sigma) in wells of a 96-well plate 
and incubated at room temperature while continuously 
shaken. The absorbance was monitored at 450 and one 
unit of LYZ activity was defined as the concentration 
that declines 0.001 of absorbance per minute. Lysozyme 
obtained from hen’s egg (Sigma) was used to plot the 
standard curve (Vali et al., 2020). 

Mucus separation and analysis
Skin mucus was collected from previously sedated 

fish (4 fish/tank) following the method of Ross et al. 
(2000). In short, fish were individually rinsed with ster-
ile NaCl solution (50 mM), and skin mucosal excretions 
were sampled by gentle hand-rubbing of individuals in 
polyethylene bags filled with 10 mL of sterile NaCl solu-
tion (50 mM). The collected mucus samples were kept in 
sterile test tubes, debris was precipitated by centrifuga-
tion at 6000 × g for 8 min at 4°C, and the supernatant was 
stored (–70°C) until later use in the analysis of mucus 
immune-related parameters.

Skin mucus was evaluated in terms of ALP, total Ig, 
LYZ, and ACH50 levels based on the same methods 
outlined above for serum samples (Mohammadi et al., 
2020 a). However, skin mucus protease activity was de-
termined through azocasein hydrolysis assay detailed by 
Ross et al. (2000). 

Statistical analysis
The statistical analysis of data was accomplished us-

ing SPSS version 26 (SPSS Inc., USA). The data were 
confirmed in terms of normal distribution and homogene-
ity of variances by the Shapiro-Wilk and Levene’s tests, 
respectively. The results are presented as mean ± S.E. 
(standard error) and significant differences were detected 
with the significance level set at P<0.05 using one-way 
ANOVA followed by Tukey HSD.

Results

Growth performance and survival rate
Goldfish fed L. casei at 107 cfu/g diet (T4) had mark-

edly the highest final body weight (FBW), weight gain 
(WG), and specific growth rate (SGR), and the lowest feed 
conversion ratio (FCR) among the groups (P<0.05) (Table 
1). However, fish exposed to malathion (T2) showed lower 
FBW, WG, and SGR and higher FCR than fish in the con-
trol group (T1) (P<0.05). Fish fed L. casei at 106 cfu/g diet 
(T3) had higher FBW than T1 and T2 groups but lower 
than T4 group (P<0.05) while no significant differences 
were shown with fish fed L. casei and exposed to mala-
thion (T5 and T6) (P>0.05). Further, the groups of fish fed 
L. casei and exposed to malathion (T5 and T6) showed 
non-significant differences with fish in control (T1) and T3 
groups (P>0.05) in terms of WG, SGR, and FCR. The sur-
vival rate showed the highest values in T3 and T4 groups 
(100%) and the lowest value in the T2 group (88.33%) 
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(P<0.05), while fish in the T1, T5, and T6 groups had no 
significant differences (P>0.05) (Table 1). Also, no sig-
nificant differences were seen between T3, T4, T5, and 
T6 groups regarding the survival rate at the end of the 
feeding trial (P>0.05).

Blood biochemical traits
Table 2 presents the blood biochemical profile of 

goldfish fed L. casei and exposed to malathion for 60 
days. Fish in the T4 group had the highest blood to-
tal proteins (TP), albumin (ALB), and globulin (GLO), 
while fish in T2 had the lowest TP, ALB, and GLO 
(P<0.05). Further fish in T3 and T4 groups treated with 
L. casei without malathion toxicity had similar TP, ALB, 
and GLO without significant differences (P>0.05). Fish 
in T1, T3, and T6 groups had similar TP levels without 
significant differences (P>0.05). Fish in the T3 and T4 
groups had the lowest blood cholesterol, triglycerides, 

glucose, and cortisol, while fish in T2 presented the 
highest values (P<0.05). Probiotic administration in T5 
and T6 groups significantly reduced serum cholesterol, 
triglycerides, glucose, cortisol, and LDH levels as com-
pared to T2 group (P>0.05). The lowest levels of LDH 
were noticed in the T5 group (P<0.05). Further, T6 
group showed statistically similar levels of cholesterol, 
triglycerides, glucose, and LDH levels as compared to 
T1 (P<0.05). Fish in the group T2 exposed to malathion 
without L. casei feeding had the highest ALT, AST, and 
ALP levels in the blood, while fish fed L. casei at 107 
cfu/g diet (T4) had the lowest values (P<0.05). Besides, 
fish in the T3 group had higher ALT than the T4 group 
and lower than the remaining groups (P<0.05). Fish 
in T1, T5, and T6 groups showed similar AST levels 
(P>0.05). Fish in T5 and T6 groups had higher ALT 
than fish in T1, T3, and T4 groups but lower than the T2 
group (P<0.05).

Table 1. Growth parameters of goldfish (C. auratus) fed L. casei and exposed to malathion

Parameter T1 T2 T3 T4 T5 T6

IBW (g) 12.51±0.18 12.56±0.10 12.59±0.19 12.33±0.20 12.39±0.14 12.44±0.20

FBW (g) 19.27±0.09 c 16.70±0.10 d 20.61±0.38 b 22.18±0.25 a 19.83±0.10 bc 20.18±0.16 bc

WG (g) 6.75±0.13 b 4.14±0.19 c 8.02±0.57 b 9.85±0.44 a 7.44±0.24 b 7.74±0.30 b

SGR (% day–1) 0.72±0.02 b 0.47±0.02 c 0.82±0.06 ab 0.98±0.04 a 0.78±0.03 b 0.81±0.03 b

Survival rate (%) 93.33±1.67 b 88.33±1.67 c 100.00±0.00 a 100.00±0.00 a 96.67±1.67 ab 98.33±1.67 ab

FCR 4.47±0.09 b 7.32±0.34 a 3.78±0.25 bc 3.06±0.14 d 4.07±0.13 b 3.91±0.13 bc

IBW: Initial body weight, FBW: Final body weight, BWI: Body weight increment, SGR: Specific growth rate, FCR: Feed conversion ratio. T1: Control; 
T2: 50% of malathion LC50; T3: L. casei at 106 cfu/g diet; T4: L. casei at 107 cfu/g diet; T5: 50% of malathion LC50 + L. casei at 106 cfu/g diet; T6: 50% of 
malathion LC50 + L. casei at 107 cfu/g diet. Values are expressed as means ± S.E. (n =3). Bars bearing different letters are significantly different at P≤0.05.

Table 2. Blood biochemical parameters of goldfish (C. auratus) fed L. casei and exposed to malathion

Parameter T1 T2 T3 T4 T5 T6

TP (g/dL) 4.72±0.06 bc 4.35±0.06 d 4.86±0.06 ab 5.02±0.05 a 4.43±0.06 d 4.57±0.03 cd

ALB (g/dL) 3.23±0.06 ab 3.12±0.06 b 3.40±0.03 a 3.39±0.03 a 3.14±0.03 b 3.16±0.03 b

GLO (g/dL) 1.49±0.11 ab 1.23±0.00 b 1.46±0.03 ab 1.63±0.08 a 1.30±0.03 b 1.41±0.01 ab

Triglycerides (mg/dL) 209.35±1.01 c 227.35±2.64 a 196.02±2.19 d 194.30±2.14 d 219.75±1.87 ab 216.42±1.61 bc

Cholesterol (mg/dL) 98.63±1.12 b 114.29±1.50 a 81.78±1.06 c 76.56±0.99 c 104.08±1.73 b 102.39±1.68 b

Glucose (g/dL) 56.92±0.97 c 65.20±0.99 a 51.75±0.94 d 48.62±0.76 d 61.41±0.61 ab 58.93±0.74 bc

Cortisol (ng/mL) 76.73±1.07 c 86.73±1.10 a 66.41±1.12 d 69.19±0.55 d 78.83±0.71 bc 82.11±0.87 b

LDH (U/mL) 112.03±1.32 b 120.29±1.21 a 114.97±1.83 ab 96.76±1.70 c 83.37±1.60 d 108.75±0.79 b

ALT (U/mL) 70.60±0.78 c 81.32±0.96 a 66.33±0.60 d 62.69±0.71 e 75.34±0.45 b 73.49±0.55 bc

AST (U/mL) 102.28±1.10 c 113.87±1.74 a 94.64±1.29 b 91.70±0.97 b 106.66±1.15 c 105.15±1.50 c

ALP (U/mL) 80.06±1.00 c 94.46±1.25 a 80.30±0.62 c 77.73±0.78 c 91.25±0.50 b 88.07±1.06 b

TP: total protein; ALB: albumin; GLO: globulin; LDH: lactate dehydrogenase; ALT: alanine aminotransferase; AST: aspartate transaminase; ALP: 
alkaline phosphatase; T1: Control; T2: 50% of malathion LC50; T3: L. casei at 106 cfu/g diet; T4: L. casei at 107 cfu/g diet; T5: 50% of malathion LC50 + L. 
casei at 106 cfu/g diet; T6: 50% of malathion LC50 + L. casei at 107 cfu/g diet. Values are expressed as means ± S.E. (n =3). Bars bearing different letters are 
significantly different at (P≤0.05). 
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Oxidative status
Superoxide dismutase (SOD), catalase (CAT), glu-

tathione peroxidase (GSH-Px), and malondialdehyde 
level (MDA) are shown in Figure 1. The SOD showed 
the highest activities in T3 and T4 groups, and the lowest 
SOD was seen in the T2 group (P<0.05). T1 had higher 
SOD than T2, T5, and T6 groups and lower than T3 and T4 
groups (P<0.05). Markedly, the T5 group had higher SOD 
than the T2 group (P<0.05). The CAT showed the highest 
activities in T4 groups, and the lowest CAT was recorded in 
the T2, T5, and T6 groups (P<0.05). T3 group also showed 
higher CAT than T1, T2, T5, and T6 groups and lower 
than T4 group (P<0.05). Fish in the T5 and T6 groups had 
higher GSH-Px activities than fish in T1 and T2 groups but 
were lower than fish in T3 and T4 groups (P<0.05). Fish in 
T2 group recorded the highest serum MDA concentrations 
(P<0.05). In contrast, the lowest serum MDA levels were 

observed in fish of T3 and T4 groups (P<0.05). The MDA 
level was higher in the T1 group than T3 and T4 groups 
and lower than T5 and T6 groups (P<0.05).

Blood immunity 
Blood immunoglobulin (Ig) and lysozyme activity 

were significantly higher in T3 and T4 groups and lower 
in the T2 group than in the control (P<0.05) (Figure 2). 
Serum Ig and lysozyme activity were higher in T5 and 
T6 groups than in the T2 group and lower than in the 
control group. Interestingly, fish in the T1, T5, and T6 
showed non-significant differences in lysozyme activity 
(P>0.05). The alternative complement pathway (ACH50) 
was significantly higher in T2, T3, T4, T5, and T6 groups 
than in the T1 group (P<0.05) (Figure 2). T2 group had 
higher blood ACH50 than the T1 group and lower than 
T3, T4, T5, and T6 groups (P<0.05).

Figure 1. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) of goldfish (C. auratus) 
fed L. casei and exposed to malathion. T1: Control; T2: 50% of malathion LC50; T3: L. casei at 106 cfu/g diet; T4: L. casei at 107 cfu/g diet; T5: 
50% of malathion LC50 + L. casei at 106 cfu/g diet; T6: 50% of malathion LC50 + L. casei at 107 cfu/g diet. Values are expressed as means ± S.E. 

(n =3). Bars bearing different letters are significantly different at (P≤0.05)
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Skin mucus immunity
Skin mucus total Ig was significantly higher in T3 

and T4 groups and lower in the T2 group than in control 
(P<0.05) (Figure 3). Fish in T1, T5, and T6 showed non-
significant differences in skin mucus total Ig (P>0.05). 
The highest lysozyme activity, protease, and ACH50 in 
the skin mucus samples was in the T4 group, while the 
lowest lysozyme activity, protease, and ACH50 was in 
the T2 group (P<0.05) (Figure 3). Further, fish in the T3 
group had lower lysozyme activity than T4 and higher 
than the remaining groups (P<0.05). Fish in T1 had lower 
lysozyme activity than T3 and T4 groups and higher than 
T2, T5, and T6 groups (P<0.05). Markedly, fish in the T6 
group had higher lysozyme activity than in the T2 group 
(P<0.05). Non-significant differences were seen between 
fish in T1, T3, and T6 groups in terms of protease and 
ACH50 (P>0.05).

Discussion

Toxicological studies are needed to detect the direct 
and indirect impacts of pesticides and insecticides on the 
health status of humans (Abdel-Warith et al., 2021). Fish 
are recognized as bioindicators in toxicological studies due 
to their sensitivity to contamination, pollution, and toxicity 
(Khabbazi et al., 2015; Hedayati et al., 2021). Malathion is 
a highly toxic pesticide that abundantly exists in the water 
bodies, sediments, and ecosystems (Ortiz-Delgado et al., 
2021). The studies showed that toxicity with malathion is 
involved in many environmental hazards and severe im-
pacts on aquatic animals (Souza et al., 2021). On the other 
hand, probiotics are known for their beneficial role in per-
formance and health status (Romano, 2021). Hence, in this 
study, we hypothesized that dietary L. casei could relieve 
the impacts of malathion toxicity in goldfish (C. auratus).

Figure 2. Serum total immunoglobulin (Ig), lysozyme activity, and alternative complement pathway (ACH50) of goldfish (C. auratus) fed L. casei 
and exposed to malathion for 60 days. T1: Control; T2: 50% of malathion LC50; T3: L. casei at 106 cfu/g diet; T4: L. casei at 107 cfu/g diet; T5: 
50% of malathion LC50 + L. casei at 106 cfu/g diet; T6: 50% of malathion LC50 + L. casei at 107 cfu/g diet. Values are expressed as means ± S.E. 

(n =3). Bars bearing different letters are significantly different at (P≤0.05)
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The growth performance of goldfish improved by  
L. casei but deteriorated by malathion toxicity. Further 
dietary L. casei relieved the impacts of malathion toxic-
ity and restored the growth performance similar to the 
control and higher than malathion exposed group. In 
line with this study, convict cichlid Fish (Amatitlania 
nigrofasciata) (Mohammadiazarm and Maniat, 2021), 
goldfish (C. auratus) (Kong et al., 2020 b), shabot fish 

(Tor grypus) (Mohammadian et al., 2020), and channel 
catfish (Zhang et al., 2019) fed dietary L. casei showed 
improved growth performance. Enhanced growth perfor-
mance is probably attributed to the potential role of L. ca-
sei on the intestinal microbiota (Mohammadiazarm and 
Maniat, 2021). Probiotics can colonize in the GIT and 
protect from pathogenic invaders leading to improved 
digestion and good absorption of nutrients (Brown et al., 

Figure 3. Mucus total immunoglobulin (Ig), lysozyme activity, protease activity, and alternative complement pathway (ACH50) of goldfish  
(C. auratus) fed L. casei and exposed to malathion for 60 days. T1: Control; T2: 50% of malathion LC50; T3: L. casei at 106 cfu/g diet; T4:  
L. casei at 107 cfu/g diet; T5: 50% of malathion LC50 + L. casei at 106 cfu/g diet; T6: 50% of malathion LC50 + L. casei at 107 cfu/g diet. Values 

are expressed as means ± S.E. (n =3). Bars bearing different letters are significantly different at (P≤0.05)
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2021; Dawood, 2021). In this context, dietary L. casei 
reduced FCR value indicating enhanced feed digestibil-
ity and utilization in goldfish. However, goldfish exposed 
to malathion had impaired growth performance, and 
FCR compared with L. casei fed to fish. The deteriora-
tion of growth performance and FCR can be attributed 
to the negative impact of malathion on the GIT micro-
bial population (Gao et al., 2018; Huculeci et al., 2009). 
Waterborne malathion reaches the fish intestines and dis-
rupts the microbial balance, thereby feed digestion and ab-
sorption (Huculeci et al., 2009). Furthermore, continuous 
toxicity led to intestinal damage, cellular oxidative stress, 
and lipid peroxidation (Olakkaran et al., 2020; Ullah et 
al., 2018). Pesticide toxicity can initially pass through the 
gills and deteriorate their function via inflammatory and 
oxidative stress features (Cengiz and Unlu, 2006). Con-
sequently, fish suffer from low respiration capacity, meta-
bolic function, and general health weakness (Abdo et al., 
2021). Thus, reduced growth performance and feed diges-
tion can be related to the negative impact of malathion on 
the physiological function of fish (Abarghoei et al., 2015). 
In this regard, the survival rate of goldfish exposed to mal-
athion is higher than fish fed L. casei either with or with-
out malathion. The high mortality rate in the group treated 
with malathion is also related to oxidative stress and the 
impaired health status of goldfish (Hedayati et al., 2015).

Blood biochemical traits are commonly detected to 
reveal the impact of toxicity, feeding strategies, and en-
vironmental effects on the physio-chemical status of fish 
(Coz-Rakovac et al., 2008; Khodadadi et al., 2018). In 
this study, goldfish fed L. casei and exposed to malathion 
showed effects on blood biochemical traits. In terms of 
blood protein profile, including total protein, albumin, 
and globulin, fish fed L. casei had higher values than fish 
exposed to malathion. The enhancement in blood pro-
teins refers to regulated metabolic function and available 
proteins for physiological processes as well as enhanced 
immunity status (Yousefi et al., 2022). Indeed, L. casei 
feeding was earlier proved to be a functional supplement 
involved in fortifying blood proteins in barramundi (Lates 
calcarifer) (Siddik et al., 2022). However, reduction of 
blood protein profile in goldfish is probably related to the 
malnutrition, oxidative stress, and immunosuppression 
caused by malathion exposure (Ullah et al., 2018). Simi-
larly, toxicity with malathion reduced the blood protein 
and globulin in Persian sturgeon (Acipenser persicus) 
(Rahbar et al., 2020). In the present study, the cholesterol 
level was higher in malathion exposed fish than L. casei 
fed to fish. These results are similar to previous investiga-
tions that indicated reduced cholesterol in fish fed dietary 
probiotics (Kong et al., 2020 a). Regulated cholesterol 
levels refer to the balance of metabolic function in fish 
fed dietary L. casei, while increased levels refer to lipid 
vacuolation and accumulation of lipids associated with 
malathion toxicity. However, the authors suggest further 
investigation in this regard.

Cortisol and glucose axis are involved in regulating 
organism response towards abiotic and biotic stressors 

(Rotllant and Tort, 1997). In fish, stressful conditions, 
including low feed value and toxicity with waterborne 
insecticides, led to a high release of cortisol that induces 
high production of glucose as a primary source of en-
ergy required to cope with the stress (Brun et al., 2019; 
Wendelaar Bonga, 1997). Concisely, goldfish fed L. casei 
had lower glucose and cortisol levels than fish exposed 
to malathion, indicating a lack of stress in fish treated 
with L. casei. Similar to this study, common carp (Cypri-
nus carpio) fed L. casei had reduced glucose and cortisol 
levels (Hedayati et al., 2021) while A. persicus exposed 
to malathion had increased glucose and cortisol levels 
(Rahbar et al., 2020). Markedly, fish fed L. casei and ex-
posed to malathion had similar blood protein and lipid 
profiles and the glucose and cortisol levels that confirm 
the functional role of L. casei in regulating the physi-
ological function of goldfish.

Liver function-related biomarkers (e.g., ALT, AST, 
and ALP) are vital indicators for liver function, especial-
ly when fish are exposed to pesticides and insecticides 
(Dawood et al., 2020; Oyeniran et al., 2021). The liver’s 
function is to detoxify the toxins and reduce their impact 
on the internal body (De Anna et al., 2021). However, 
high toxicity levels led to high production of free radi-
cals, which induce lipid peroxidation and damage of cel-
lular membranes in the liver tissue (Lackner, 1998; Qu et 
al., 2014). Hence, the liver secretes high amounts of ALT, 
AST, and ALP, referring to damaged liver function and 
less detoxification role (Dawood et al., 2020; Oyeniran et 
al., 2021). The obtained results showed high ALT, AST, 
and ALP levels in goldfish exposed to malathion while 
reduced by dietary L. casei. The results are similar to Ul-
lah et al. (2018), who stated elevated ALT, AST, and ALP 
levels in rohu exposed to malathion. However, dietary  
L. casei regulated the levels of ALT, AST, and ALP, 
which can be associated with the liver protective role of 
L. casei. Similarly, feeding L. casei reduced ALT, AST, 
and ALP levels in common carp (Hedayati et al., 2021) 
and L. calcarifer (Siddik et al., 2022).

Oxidative stress is the main feature of malathion 
toxicity that can explain the impairment of aquatic ani-
mals’ growth performance and health status (Huculeci 
et al., 2009). The high production of free radicals and 
reactive oxygen species (ROS) associated with severe 
toxicity with pesticides is the primary inducer for lipid 
peroxidation in cellular membranes (Mohammadi et al., 
2022). The lipid peroxidation is evaluated by detecting 
the amount of malondialdehyde (MDA) involved in ap-
optosis and DNA damage (Üner et al., 2006; Ghafarifar-
sani et al., 2021 a, b, c). Antioxidative defenses includ-
ing superoxide dismutase (SOD), catalase (CAT), and 
glutathione peroxidase (GSH-Px) can overcome the high 
production of MDA in case of acute short term malathion 
exposure as indicated by Ullah et al. (2018). However, 
in this study, goldfish were exposed to malathion for 60 
days which may explain the increased MDA levels and 
reduced SOD, CAT, and GSH-Px activities. Similarly, 
toxicity with malathion reduced the antioxidative capac-
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ity in tambaqui (Colossoma macropomum) (Souza et al., 
2021). Interestingly, L. casei feeding regulated the an-
tioxidation capacity of goldfish exposed to malathion 
through the activation of SOD, CAT, and GSH-Px and 
the reduction of MDA concentration. Similarly, the incor-
poration of L. casei enhanced the antioxidation capacity 
in common carp (Hedayati et al., 2021) and largemouth 
bass (Micropterus salmoides) (Wang et al., 2021).

Oxidative stress induced by malathion toxicity is also 
associated with impaired immunity in fish (Lee et al., 
2019). The serum and skin mucus immune responses are 
vital tools to protect fish against infection with pathogen-
ic microorganisms (Xu et al., 2013). The results revealed 
lowered total immunoglobulin (total Ig), lysozyme, and 
complement pathway (ACH50) activities in serum and 
skin mucus samples of goldfish exposed to malathion. 
Nevertheless, dietary L. casei enhanced the serum and 
skin mucus total Ig, lysozyme, and ACH50. In the same 
line, Hedayati et al. (2021) stated that common carp fed 
dietary L. casei had enhanced serum and skin mucus im-
mune responses. Further, Hedayati et al. (2021) related 
increased resistance of common carp to iron oxide na-
noparticles toxicity and enhanced antioxidative and im-
munity resulting from L. casei feeding. Also, Mohamma-
diazarm and Maniat (2021) reported that A. nigrofasciata 
fed dietary L. casei displayed enhanced serum and skin 
mucus immune responses. Total proteins including 
lysozyme, total Ig, globulins, protease, and complement 
play pivotal roles in the fish immune system through bac-
tericidal activity and antigen neutralization (Magnadóttir, 
2006; Whyte, 2007; Sadat Hoseini Madani et al., 2018; 
Adorian et al., 2019; Ghafarifarsani et al., 2021 d). The 
enhancement of blood total proteins, antioxidation capac-
ity, serum, and skin mucus immune responses of goldfish 
fed dietary L. casei may explain the high protection to 
malathion toxicity.

Conclusion
In summary, goldfish exposed to 50% of malathion 

96 h LC50 showed poor growth performance, blood bio-
chemical traits, antioxidative capacity, and immune re-
sponses. However, L. casei protects goldfish from altera-
tions induced by malathion toxicity through modifying 
the growth performance, blood biochemistry, antioxida-
tive capacity, serum, and skin mucus immunity.
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