INTERNATIONAL SYMPOSIUM

Print: ISSN 2344 - 4118 CD-ROM: ISSN 2344 - 4126 Online: ISSN 2537 - 3773 ISSN-L 2344 - 4118

AGRICULTURAL AND MECHANICAL ENGINEERING

Bucharest 5-6 October 2023

AGRICULTURAL AND MECHANICAL ENGINEERING

Bucharest 2023

ORGANIZING COMMITTEE

- Ph.D. Eng. Valentin VLĂDUŢ INMA Bucharest (RO);
- Ph.D. Eng. Mihai MATACHE INMA Bucharest (RO);
- Prof. Ph.D. Eng. Sorin-Ştefan BIRIŞ P.U. Bucharest (RO);
- Prof. Ph.D. Eng. Edmond MAICAN P.U. Bucharest (RO);
- Prof. Ph.D. Eng. Gigel PARASCHIV -P.U. Bucharest (RO);
- Prof. Ph.D. Eng. Gheorghe VOICU P.U. Bucharest (RO);
- Ph.D. Eng. Iuliana GĂGEANU INMA Bucharest (RO);
- Assoc. Prof. Ph.D. Eng. Nastasia BELC IBA Bucharest (RO);
- PhD. Eng. Marian VINTILĂ Horting Bucharest (RO);
- PhD. Eng. Cătălin DUMITRESCU INOE 2000 IHP (RO);
- Lect. PhD. Eng. Nicoleta UNGUREANU P.U. Bucharest (RO);
- Lect. PhD. Eng. Gabriel CONSTANTIN P.U. Bucharest (RO);
- Eng. Mariana EPURE INMA Bucharest (RO);
- Eng. Mihai CONSTANTINESCU- INMA Bucharest (RO);

SECRETARY

Tech. Tania Ţicu - INMA Bucharest (RO);

Eng. Tăbăraşu Ana-Maria - INMA Bucharest (RO);

Tech. Marian CHIRIŢESCU - INMA Bucharest (RO)

SUPPORT AND TRANSLATION

Prof. Daniela-Cristina RADU - INMA Bucharest (RO);
 Lect. PhD. Eng. Nicoleta UNGUREANU - P.U. Bucharest (RO)
 PhD. Eng. Iuliana GĂGEANU - INMA Bucharest (RO)

PROGRAMME COMMITTEE

.

- Assoc. Prof. Ph.D. Eng. Atanas ATANASOV University of Rouse (BG)
- Assoc. Prof. Ph.D. Mihaela BEGEA P.U. Bucharest (RO)
- Assoc. Prof. Ph.D. Eng. Nastasia BELC IBA Bucharest (RO)
- Prof. Ph.D. Eng. Sorin-Ştefan BIRIŞ P.U. Bucharest (RO)
- Assoc.Prof.Ph.D. Eng. Sorin BORUZ University of Craiova (RO)
- Assoc.Prof. Ph.D. Eng. Sorin BUNGESCU USAMVB Timisoara (RO)
- Ph.D. Eng. Luminiţa CATANĂ IBA Bucharest (RO)
- Assoc.Prof.Ph.D. Eng. Petru Marian CÂRLESCU lasí University of Life Sciences (RO)
- Ph.D. Eng. Valerian CEREMPEI MECAGRO, Agrarian University (MD)
- Prof. Ph.D. Eng. Leonardi CHERUBINO Universita degli Studi di Catana (IT)
- Prof. Ph.D. Eng. Lucian-lonel CIOCA, Lucian Blaga University of Sibiu (RO)
- Prof. Ph.D. Eng. Sorin CÎMPEANU USAMV Bucharest (RO)
- Prof. Laura CLARIZIA, University of Naples Federico II (IT)
- Lect. Ph.D. Eng. Gabriel CONSTANTIN P.U. Bucharest (RO)
- Ph.D. Eng. Florica CONSTANTINESCU IBA Bucharest (RO)
- Ph.D. Eng. Mihnea COSTOIU P.U. Bucharest (RO)
- Assoc. Prof. Ph.D. Eng. Cristina COVALIU P.U. Bucharest (RO)
- Prof. Ph.D. Eng. Andrei CRAIFĂLEANU P.U. Bucharest (RO)
- Prof. Vasyl DMYTRIV Lviv Polytechnic National University (UA)
- Ph.D. Eng. Cătălin DUMITRESCU INOE 2000 IHP (RO)
- Prof. Ph.D.Eng. Adam EKIELSKI Warsaw University of Life Sciences (PL)
- Prof. María Cruz López Escalante, University of Malaga (ES)
- Prof. Ph.D.Eng. Inacio Maria dal FABRO Campinas State University (BR)
- Prof. Pri.D.Eng. Inacto Wana dai FADRO Campinas State University (BR Assoc.Prof.Ph.D.Eng. Lucian FECHETE - Technical University Cluj Napoca (RO)
- Assoc. Prof. Ph.D. Eng. Mariana FERDES P.U. Bucharest (RO)
- Prof. Ph.D. Eng. Nicolae FILIP Technical University Cluj Napoca (RO)
- Prof. Ph.D. Eng. Iuliana GĂGEANU INMA Bucharest (RO)
- Assoc.Prof.Ph.D.Eng. Marius GHEREŞ Technical University Cluj (RO)
- Prof. Ph.D. Eng. Omar GONZÁLEZ Central University "Marta Abreu" de las Villas, (CU)
- Prof.Ph.D.Eng. David HERAK Czech University of Life Sciences Prague (CZ)
- Prof. Francisco de Paula Martin Jimenez, University of Malaga (ES)
- Ph.D. Eng. Blaziu Carol LEHR INCD ECOIND (RO)
- Assoc. Prof. Ph.D. Eng. Önder KABAŞ Akdeniz University, Antalya (TR)
- Assoc. Prof. Ph.D. Eng. Imre KISS P.U. Timișoara (RO)

- (BG) Prof. Ph.D. Eng. Silvio KOSUTIC Zagreb University (HR)
 Dr. sc. Igor KOVAČEV Zagreb University (HR)
 - Assoc. Prof. Ph.D. László MAGÓ Szent Istvan University (HU)
 - Prof. Ph.D. Eng. Edmond MAICAN P.U. Bucharest (RO)
 - Ph.D. Eng. Eugen MARIN INMA Bucharest (RO)
 - Ph.D. Eng. Gabriela MATACHE INOE 2000 IHP (RO)
 - Ph.D. Eng. **Mihai MATACHE** INMA Bucharest (RO)
 - Assoc.Prof. Ph.D.Eng. Gheorghe MATEI University of Craiova (RO)
 - Prof. Ph.D. Eng. Nikolai MIHAILOV University of Rouse (BG)
 - Ph.D. Eng. Vasile MOCANU ICDP Braşov (RO)
 - Ph.D. Eng. Vergil MURARU INMA Bucharest (RO);
 - Ph.D. Eng. Parish NALAVADE Punjabrao Deshmukh Krishi Vidhyapeeth (IN)
 - Ph.D. Eng. Florin NENCIU INMA Bucharest (RO)
 - Prof. Ph.D. Eng. Gigel PARASCHIV -P.U. Bucharest (RO)
 - Ph.D. Eng. Anişoara PĂUN INMA Bucharest (RO)
 - Ph.D. Eng. Lorena-Diana POPA ARDS Secuieni (RO)
 - Assoc.Prof.Ph.D.Ch. Carmen POPESCU Vasile Goldiş" Western University (RO)
 - Prof. Ph.D. Eng. Tudor PRISECARU P.U. Bucharest (RO)
 - Ph.D. Eng. Elena Cristina Rada Insubria University (IT)
 - Prof. Ph.D. Eng. Marco RAGAZZI University of Trento (IT)
 - Prof. Ph.D. Biol. Ioan ROŞCA ICDPP Bucharest (RO)
 - Prof. Ph.D. Eng. Radu ROŞCA lasi University of Life Sciences (RO)
 - Assoc.Prof.Ph.D.Eng. Carmen RUSĂNESCU P.U. Bucharest (RO) Prof. Ph.D. Eng. Ion SĂRĂCIN - University of Craiova (RO)
 - Assoc.Prof. Ph.D. Eng. Lazar SAVIN University of Novi Sad (SR)
 - Assoc.Prof. Ph.D. Eng Kemal SELVI Ondokuz Mayıs Üniversity (TR)
 - Ph.D. Eng. Cristian SORICĂ INMA Bucharest (RO)
 - Ph.D. Eng. Dorin Ioan SUMEDREA INCDBH Stefanesti-Arges (RO)
 - Prof. Ph.D. Eng. Răzvan TEODORESCU USAMV Bucharest (RO)
 - Prof. Ph.D. Eng. Vincenzo TORRETTA Insubria University (IT)
 - Ph.D. Eng. Elena TROTUŞ ARDS Secuieni (RO)
 - Prof. Ph.D. Eng. Ion **TENU** lasi University of Life Sciences (RO)
 - Ph.D. Eng. Marian VINTILĂ Horting Bucharest (RO)
 - Ph.D. Eng. Valentin VLĂDUŢ INMA Bucharest (RO)
 - Ph.D. Eng. Iulian VOICEA INMA Bucharest (RO)
 - Prof. Ph.D. Eng. Gheorghe VOICU P.U. Bucharest (RO)
 - Assoc.Prof. Ph.D. Eng. Tomasz ŻELAZIŃSKI Warsaw University of Life Sciences (PL)

HONORARY COMMITTEE

- Prof. PhD. Valeriu TABĂRĂ ASAS of Romania (RO);
 Ph.D. Eng. Ion PIRNĂ -
- Ph.D. Eng. Aurel BADIU- ASAS of Romania (RO);
- Prof. Ph.D. Eng. Ioan Jelev- ASAS of Romania (RO);
- Ph.D. Eng. Ion PIRNĂ ASAS of Romania (RO);
- Ph.D. Eng. Mihai NICOLESCU ASAS of Romania (RO)
- Ph.D. Eng. Vergil GÂNGU ASAS of Romania (RO)

Conținutul și formularea articolelor publicate în prezentul volum aparțin în totalitate autorilor și nu reprezintă punctele de vedere ale INMA și/sau ISB, sau ale editorilor simpozionului. Potrivit legii, responsabilitatea pentru conținutul articolelor aparține **exclusiv** autorilor articolelor.

CONTENTS

No.	Article Title & Authors	page
	THE UTILITY OF ROBOTIC SYSTEMS IN AQUACULTURE	
1.	UTILITATEA SISTEMELOR ROBOTICE ÎN ACVACULTURĂ	14
	Dan CUJBESCU, Alexandru IONESCU, Cătălin PERSU, Ana Maria TĂBĂRAȘU, Dragoș ANGHELACHE	
	TECHNICAL SOLUTIONS REGARDING UNDERWATER INSPECTION METHODS ACCORDING TO THE AQUACULTURE	
	4.0 CONCEPT	
2.	SOLUȚII TEHNICE PRIVIND METODELE DE INSPECȚIE SUBACVATICĂ CONFORM CONCEPTULUI DE	20
Ζ.	ACVACULTURĂ 4.0	20
	Dan CUJBESCU, Dragoș ANGHELACHE, Alexandru IONESCU, Ana Maria TĂBĂRAȘU, Robert CRISTEA,	
_	Dragoș DUMITRU	
	SIMULATION OF PLANT GROWTH IN DIFFERENT CONDITIONS	
3.	SIMULAREA CREȘTERII PLANTELOR ÎN DIFERITE CONDIȚII	26
	Iuliana GĂGEANU, Ana-Maria TĂBĂRAȘU, Oana-Elena MILEA, Gabriel GHEORGHE, Mihaela NIȚU	
	MAXIMISING PRECISION AND ACCURACY IN SOIL SAMPLING USING AUTOMATED	
	TECHNOLOGICAL PROCESSES	
4.	MAXIMIZAREA PRECIZIEI ȘI ACURATEȚEI ÎN PRELEVAREA DE PROBE DE SOL CU AJUTORUL	32
	PROCEDEELOR TEHNOLOGICE AUTOMATIZATE	
	Alexandru IONESCU, Mario CRISTEA, Mihai MATACHE, Costin MIRCEA, Gheorghe STROESCU, Iulian DUMITRU	
	OPTIMIZATION OF THE WORKING PROCESS OF THE TECHNICAL EQUIPMENT	
	INTENDED FOR THE EXTRACTION AND REPLANTING OF PLANTS WITH SOIL PALE	
5.	AT THE ROOT	40
	OPTIMIZAREA PROCESULUI DE LUCRU AL ECHIPAMENTELOR TEHNICE DESTINATE	
	EXTRAGERII ȘI REPLANTĂRII PLANTELOR CU SOLUL DESCHIS LA CULOARE LA RĂDĂCINI	
	Gheorghe STROESCU, Alexandru, IONESCU, Mihaela NAGHY, Cătălin PERSU, Alexandru ZAICA, Ana ZAICA	
	NEW TECHNOLOGIES AND TEHNICAL EQUIPMENT FOR FRUIT FARMS	10
6.	TEHNOLOGII ȘI ECHIPAMENTE TEHNICE NOI DESTINATE FERMELOR POMICOLE	48
	Gheorghe STROESCU, Alexandru IONESCU, Cătălin PERSU, Lucreția POPA, Cristian SORICĂ, Costin MIRCEA	
	EVALUATION OF THE THERMAL BEHAVIOR OF PLANTS IN THE MICROGREENHOUSE WITH	
_	MICROBOLOMETRIC IMAGE SENSORS EVALUAREA COMPORTARII TERMICE A PLANTELOR IN MICROSERA CU SENZORI DE IMAGINE	50
7.	EVALOAREA COMPORTARII TERMICE A PLANTELOR IN MICROSERA CO SENZORI DE IMAGINE MICROBOLOMETRICI	58
	George IPATE, Constantin Daniel COTICI, Daiana Alina IONESCU, Viorel FATU, Iuliana GAGEANU, Dan CUJBESCU	
	EVOLUTION OF AGRICULTURE IN THE CONTEXT OF CLIMATE CHANGES	
	EVOLUȚIA AGRICULTURII ÎN CONTEXTUL SCHIMBĂRILOR CLIMATICE	
8.	Ana-Maria TĂBĂRAȘU, Iuliana GĂGEANU, Dragoș-Nicolae ANGHELACHE, Cătălin PERSU, Dan CUJBESCU,	66
	Oana-Elena MILEA	
	THE CONCEPT OF AQUAPONIC AGRICULTURE	-
	CONCEPTUL DE AGRICULTURA ACVAPONICĂ	
9.	Iulian VOICEA, Nicoleta VANGHELE, Florin NENCIU, Cătălin PERSU, Dan CUJBESCU, Remus OPRESCU, Viorel FATU,	72
	Roxana ZAHARIA, Elena SIRBU, Vlad Nicolae ARSENOAIA	
	CURRENT STAGE OF AQUAPONIC SYSTEMS	
	STADIUL ACTUAL AL SISTEME ACVAPONICE	
10.	Iulian VOICEA, Andreea MATACHE, Florin NENCIU, Cătalin PERSU, Dan CUJBESCU, Remus OPRESCU, Roxana ZAHARIA,	78
	Viorel FATU, Elena SIRBU, Vlad Nicolae ARSENOAIA	
	CONSIDERATIONS ON THE IMPORTANCE OF VERMICOMPOST PRODUCTION	
11.	CONSIDERATII PRIVIND IMPORTANTA PRODUCERII VERMICOMPOSTULUI	88
	Costin MIRCEA, Alexandru IONESCU, Iulian DUMITRU	00
	CONSIDERATIONS REGARDING THE TYPES OF FLAT AND CYLINDRICAL SIEVES INTENDED	
	FOR SEED SEPARATION	
	CONSIDERAȚII PRIVIND TIPURILE DE SITE PLANE ȘI CILINDRICE DESTINATE SEPARĂRII	
12.		92
	Costin MIRCEA, Alexandru IONESCU, Iulian DUMITRU	
L		4

No.	Article Title & Authors	page
	ASPECTS REGARDING THE BASIC ELEMENTS OF THE GAS COLLECTION SYSTEM AT	ľ
	MUNICIPAL WASTE LANDFILLS	
13.	ASPECTE PRIVIND ELEMENTELE DE BAZĂ ALE SISTEMULUI DE COLECTARE A GAZULUI LA	98
	DEPOZITELE DE DEȘEURI MUNICIPALE	
	Gheorghe VOICU, Sorin MATEI, Bianca-Stefania ZABAVA, Paula TUDOR, Gabriel Alexandru CONSTANTIN	
	AWARENESS OF THE IMPORTANCE OF APPROACHING PRODUCTION EQUIPMENT	
	MAINTENANCE IN A STRUCTURED WAY	
14.	CONSTIENTIZAREA IMPORTANTEI ABORDARII MENTENANTEI ECHIPAMENTELOR DE	104
	PRODUCTIE INTR-UN MOD STRUCTURAT	
	Carmen BRACACESCU, Oana-Diana CRISTEA, Raluca-Veronica BRACACESCU	
	ESTIMATION OF THE THERMAL EFFECT OF SUNFLOWER OIL PHOSPHATIDE CONCENTRATE	
	DEGREASING PROCESS WITH ISOPROPYL ALCOHOL ON THE INACTIVATION OF PHOSPHOLIPID	
15.	РНОЗРНОЦІРІВ ОЦІНКА ТЕРМІЧНОГО ВПЛИВУ ПРОЦЕСУ ЗНЕЖИРЕННЯ ФОСФАТИДНОГО КОНЦЕНТРАТУ	110
	СОНЯШНИКОВОЇ ОЛІЇ ІЗОПРОПІЛОВИМ СПИРТОМ НА ІНАКТИВАЦІЮ ФОСФОЛІПІДІВ	
	Maryna LUTSENKO, Viktoriia KALYNA, Mykola KHARYTONOV, Svitlana LEMISHKO	
	COMPARATIVE ANALYSIS OF PNEUMATIC TRANSPORT TECHNOLOGIES: A REVIEW OF	
	DESIGN, PERFORMANCE, AND ENERGY EFFICIENCY	
16.	ANALIZA COMPARATIVĂ A TEHNOLOGIILOR DE TRANSPORT PNEUMATIC: UN REVIEW AL	118
	PROIECTĂRII, PERFORMANȚEI ȘI EFICIENȚEI ENERGETICE	
	Neluş-Evelin GHEORGHIȚĂ, Sorin-Ștefan BIRIȘ, Raluca-Adriana ZOTA, Nicoleta UNGUREANU	
	SOWING MACHINE FOR EXPERIMENTAL PLOTS, MSCE 9 TYPE	1
17.	MAȘINĂ DE SEMĂNAT CÂMPURI EXPERIMENTALE, TIP MSCE 9	124
	Tudor Adrian ENE, Vasile MOCANU	
	EXPERIMENTAL RESEARCHES ON ENERGY CONSUMPTION FOR OBTAINING ROSEHIP	
	POWDER USING A MILL FOR HARD PRODUCTS	
18.	CERCETĂRI EXPERIMENTALE PRIVIND CONSUMUL DE ENERGIE LA OBȚINEREA PULBERII DE	130
	MĂCEȘE UTILIZÂND O MOARĂ PENTRU PRODUSE DURE	
	Alina-Daiana IONESCU, Gheorghe VOICU, Mihaela BEGEA, Mariana-Gabriela MUNTEANU, Neluş-Evelin GHEORGHIŢĂ, Gabriel-Alexandru CONSTANTIN	
	DIGITALIZATION IN THE AGRICULTURAL SECTOR	
19.	DIGITALIZAREA ÎN SECTORUL AGRICOL	138
	Vlad Nicolae ARSENOAIA, Iulian VOICEA, Florin NENCIU, Catalin PERSU, Dan CUJBESCU, Viorel FATU	
	ECOLOGICAL ASSESSMENT OF OVERBURDEN ROCKS AFTER A LONG PHYTOMELIORATION	
	PROCESS ЕКОЛОГІЧНА ОЦІНКА РОЗКРИВНИХ ГІРСЬКИХ ПОРІД ПІСЛЯ ТРИВАЛОГО ПРОЦЕСУ	
20.	φΙΤΟΜΕΛΙΟΡΑЦΙΪ	144
	Mykola KHARYTONOV, Mykhailo BABENKO, Nadia MARTYNOVA, José D. RUIZ SINOGA, Marina López CLAROS,	
	ANALYSIS OF THE NATURAL FRAMEWORK IN THE MUNICIPALITY OF ROSIORI DE VEDE-TELEORMAN	
21.	ANALIZA CADRULUI NATURAL DIN MUNICIPIUL ROȘIORI DE VEDE-TELEORMAN	152
2 1.	Maria-Magdalena CERNAT POPA, Carmen-Otilia RUSĂNESCU, Gigel PARASCHIV, Gheorghe VOICU,	102
	VEGETABLE WASTE MANAGEMENT IN DOLJ COUNTY	
~	MANAGEMENTUL DEȘEURILOR VEGETALE DIN JUDEȚUL DOLJ	450
22.	Maria MONDESCU (CIOBANU), Raluca Lucia DINCULOIU, Carmen-Otilia RUSĂNESCU, Gigel PARASCHIV, Gheorghe VOICU,	158
	Irina Aura ISTRATE	
	DYNAMIC ANALYSIS OF THE PERFORMANCE OF THE WASTEWATER TREATMENT STATION IN THE MUNICIPALITY OF ALEXANDRIA	
23.	ANALIZA DINAMICII PERFORMANȚELOR STAȚIEI DE EPURARE A APELOR UZATE DIN	164
		.01
	Eugen MARIN, Dana Madalina MARIN, Carmen Otilia RUSANESCU, Gigel PARASCHIV, Irina Aura ISTRATE	
	A CORELATTION BETWEEN THE COEFFICIENT OF FRICTION AND BRAKING DISTANCE AND	
A 4	TIME	470
24.	O CORELAȚIE ÎNTRE COEFICIENTUL DE FRECARE ȘI DISTANȚA ȘI TIMPUL DE FRÂNARE	172
	Andreea-Catalina CRISTESCU, Ilie FILIP, George IPATE, Gheorghe VOICU, Lucretia POPA, Vasilica STEFAN, Catalin PERSU	

No.	Article Title 9 Authors	-
NO.	Article Title & Authors	page
	REMEDY OF SOILS CONTAMINATED WITH PETROLEUM HYDROCARBONS USING	
	BIODEGRADABLE ABSORBENT	
	REMEDIEREA SOLURILOR POLUATE CU HIDROCARBURI PETROLIERE UTILIZAND	400
25.	ABSORBANT BIODEGRADABIL	180
	Carmen - Otilia RUSĂNESCU, Irina-Aura ISTRATE, Gabriel Alexandru CONSTANTIN, Gigel PARASCHIV, Gheorghe VOICU,	
	Sorin Stefan BIRIS, Georgiana MOICEANU, Andra Claudia BRATU	
	INTELLIGENT DEVICES FOR THE REMOVAL OF PEST BIRDS FROM ORCHARDS AND	
26.	DISPOZITIVE INTELIGENTE PENTRU ÎNDEPĂRTAREA PĂSĂRILOR DĂUNĂTOARE DIN LIVEZI ȘI	186
	POTGORII	
	Nicoleta - Alexandra VANGHELE, Andreea MATACHE, Augustina PRUTEANU, Florin NENCIU	
	WASTE RECOVERY FOR ENVIRONMENTAL PROTECTION	
	VALORIFICAREA DESEURILOR IN VEDEREA PROTECTIEI MEDIULUI	
27.	Gabriel POPESCU, Nicoleta Raluca JIANU, Ioana Corina MOGA, Iulian VOICEA, Aneta CHIVOIU, Mirela SIMION,	192
	Elena Laura TROANCĂ	
	INCREASING PERFORMANCE IN AGRICULTURE THROUGH THE USE OF RENEWABLE ENERGY	
	SOURCES	
28.	CREȘTEREA PERFORMANȚELOR ÎN AGRICULTURĂ PRIN UTILIZAREA SURSELOR	198
	REGENERABILE DE ENERGIE	
	Gabriel POPESCU, Ioana Corina MOGA, Iulian VOICEA, Lavinia UDREA	
	DESIGN OF AN EXPERIMENTAL MODEL FOR A RAS MONITORING SYSTEM	
29.	PROIECTAREA UNUI MODEL EXPERIMENTAL PENTRU UN SISTEM DE MONITORIZARE RAS	202
23.	Vasile GHERMAN, Radu POPA, Ioana Corina MOGA, Vily Marius CIMPOIASU	202
	THE IMPACT OF SOIL PROPERTIES ON LEACHATE CHARACTERISTICS AND AVOCADO	
	SEEDLINGS GROWTH	
30.	EL IMPACTO DE LAS PROPIEDADES DEL SUELO EN LAS CARACTERÍSTICAS DE LOS	206
	LIXIVIADOS Y EL CRECIMIENTO DE LAS PLÁNTULAS DE AGUACATE	200
	Paloma HUESO GONZALEZ, José D. RUIZ-SINOGA, Concepción Moreno AlarcóN,	
	Manuel PERALES VALLEJO, Jose Jorge GONZÁLEZ FERNANDEZ, Mykola KHARYTONOV	
	THE IMPORTANCE OF SAFFLOWER (CARTHAMUS TINCTORIUS L., ASTERACEAE FAM.)	
31.	IMPORTANȚA ȘOFRĂNELULUI (CARTHAMUS TINCTORIUS L., FAM. ASTERACEAE)	212
01.	Adriana MUSCALU, Cătălina TUDORA, Cristian SORICĂ, Dragoș ANGHELACHE, Alexandru IONESCU, Oana MÎRZAN	212
	EXTRACTION METHODS AND USES OF SAFFLOWER (CARTHAMUS TINCTORIUS L.,	
32.	METODE DE EXTRACTIE ȘI UTILIZĂRI ALE ULEIULUI DE ȘOFRĂNEL (CARTHAMUS TINCTORIUS	218
U <u>L</u> .	L., FAM. ASTERACEAE)	210
	Adriana MUSCALU, Cătălina TUDORA, Cristian SORICĂ, Dragoș ANGHELACHE, Alexandru IONESCU,	
	Mihai CONSTANTINESCU, Margareta NAIE	
	NANOTECHNOLOGIES IN PLANT PROTECTION AS PART OF ENVIRONMENT PROTECTION AND	
	SUSTAINABLE DEVELOPMENT	
33.	NANOTEHNOLOGII ÎN PROTECȚIA PLANTELOR CA PARTE A PROTECȚIEI MEDIULUI	226
55.	ŞI A DEZVOLTĂRII DURABILE	220
	•	
	Sergiu FENDRIHAN, Marian LIXANDRU, Garbis VASILIGHEAN	
	RESISTANCE TO TREATMENTS OF OVERWINTERING FORMS OF DOWNY MILDEW	
	PLASMOPARA VITICOLA AND CONSEQUENCES FOR ITS CONTROL	
34.	REZISTENTA LA TRATAMENTE A FORMELOR DE IERNARE A MANEI VITEI DE VIE	236
	(PLASMOPARA VITICOLA) SI CONSECINTELE PENTRU COMBATEREA MANEI	
	Marian LIXANDRU, Sergiu FENDRIHAN	
	WAYS TO REDUCE/ELIMINATE ALLERGENICITY OF THE WHEAT GLUTEN THROUGH	
	DIFFERENT BIO-PROCESSING METHODS	
	MODALITĂȚI DE REDUCERE/ELIMINARE A ALERGENICITĂȚII GLUTENULUI DIN GRÂU PRIN	
35.	Mihai Bogdan NICOLCIOIU, Alina CULEŢU, David Lucian COMANICIU	242

No.	Article Title & Authors	page
110.	DETERMINING THE NOISE EMISSION PRODUCED BY A CHAIN SAW AND HIGHLIGHTING THE	page
	DIRECTIONS OF NOISE PROPAGATION	
	DIRECTIONS OF NOISE PROFAGATION DETERMINAREA EMISIEI DE ZGOMOT PRODUSĂ DE UN MOTOFERĂSTRĂU ȘI PUNEREA ÎN	
49.		356
_	EVIDENȚĂ A DIRECȚIILOR DE PROPAGARE A ZGOMOTULUI	
	Elena SORICĂ, Gabriel Valentin GHEORGHE, Cristian SORICĂ, Carmen BRĂCĂCESCU, Andreea – Iulia GRIGORE,	
	Laurentiu VLADUȚOIU, Gheorghe Valentin NAE	
	RESEARCH ON THE DEVELOPMENT OF AN AGRICULTURAL PLOUGH WITH TRACKS EQUIPPED	
	WITH DRILLERS	
50	CERCETĂRI PRIVIND DEZVOLTAREA UNUI PLUG AGRICOL CU TRUPIȚE ECHIPATE CU	200
50.	SCORMONITORI	362
	Eugen MARIN, Dragos MANEA, Gabriel-Valentin GHEORGHE, Marinela MATEESCU, Carmen BĂLŢAŢU,	
	Elena-Melania CISMARU, Dragoş-Nicolae DUMITRU	
	RESEARCH ON THE DEVELOPMENT OF A TECHNICAL EQUIPMENT FOR THE INCORPORATION	
	INTO THE ARABLE SUBSTRATE OF A BIOFERTILIZER FORMULATED BASED ON SOIL	
	BENEFICIAL MICROORGANISMS	
	CERCETĂRI PRIVIND DEZVOLTAREA UNUI ECHIPAMENT TEHNIC DE ÎNCORPORAT ÎN	
51.		368
	SUBSTRATUL ARABIL A UNUI BIOFERTILIZANT FORMULAT PE BAZĂ DE MICROORGANISME	
	BENEFICE SOLULUI	
	Eugen MARIN*, Dragoș MANEA, Gabriel-Valentin GHEORGHE, Marinela MATEESCU, Carmen BĂLȚATU, Elena-Melania	
	CISMARU, Dragoș-Nicolae DUMITRU	
	UTILIZATION OF DIGESTATE RESULTED FROM BIOGAS PLANTS AS FERTILIZER IN	
	AGRICULTURE	
52.	UTILIZAREA DIGESTATULUI REZULTAT DE LA STAȚIILE DE BIOGAZ CA FERTILIZANT ÎN	376
	AGRICULTURĂ	
	Mirela DINCĂ, Irina ISTRATE, Gigel PARASCHIV, Mariana FERDEȘ, Mariana IONESCU, Bianca - Ștefania ZĂBAVĂ	
	ORGANIC WASTE COMPOSTING, A PRACTICE FOR SUSTAINABLE AGRICULTURE	
	COMPOSTAREA DEȘEURILOR ORGANICE, O PRACTICĂ PENTRU AGRICULTURA DURABILĂ	
53.	Mirela DINCĂ, Gabriel - Alexandru CONSTANTIN, Mariana FERDEŞ, Gigel PARASCHIV, Mariana IONESCU,	384
	Georgiana MOICEANU, Nicoleta UNGUREANU	
	MICROBIAL SOIL BIOREMEDIATION WITH LACCASES-PRODUCING FUNGI	
54.	BIOREMEDIEREA MICROBIANĂ A SOLULUI CU FUNGI PRODUCATORI DE LACAZE	392
	Mariana FERDEȘ, Irina ISTRATE, Mirela DINCĂ, Bianca - Ștefania ZĂBAVĂ, Mariana IONESCU	
	INTEGRAL VALORIZATION OF OLEAGINOUS CROPS - A REVIEW	
55.	VALORIFICAREA INTEGRALA A CULTURILOR OLEAGINOASE – REVIEW	398
55.	Mariana IONESCU, Gigel Paraschiv, Mariana FERDEŞ, Mirela DINCĂ, Bianca - Ștefania ZĂBAVĂ, Georgiana MOICEANU,	550
	Nicoleta UNGUREANU	
	STUDY OF THE EFFECTS OF VIBRATION TRANSMISSION IN OPERATORS OF ELECTRIC	
	TRACTORS DRIVEN AT CONSTANT SPEED ON DIFFERENT TYPES OF ROADS	
56.	STUDIUL EFECTELOR TRANSMISIEI VIBRAȚIILOR LA OPERATORII DE TRACTOARE ELECTRICE	406
	CONDUSE CU VITEZĂ CONSTANTĂ PE DIFERITE TIPURI DE DRUMURI	
	Teofil - Alin ONCESCU, Ioan Cătălin PERSU, Daniela TARNIȚĂ, Marius Valentin VÎLCELEANU, Sorin Ștefan BIRIȘ	
	THE MEASUREMENT AND EVALUATION OF THE LARGE AGRICULTURAL TRACTOR	
	OPERATOR'S WHOLE-BODY VIBRATION FOR FOUR TYPES OF LAND AND TWO RUNNING	
	SPEEDS	
	SFEEDS MĂSURAREA ȘI EVALUAREA VIBRAȚIILOR ASUPRA ÎNTREGULUI CORP AL OPERATORULUI DE	440
57.		412
	TRACTOAR AGRICOL MARE PENTRU PATRU TIPURI DE TEREN ȘI DOUĂ TIPURI DE VITEZE DE	
	LUCRU	
	Teofil-Alin ONCESCU, Cătălin PERSU, Daniela TARNIȚĂ, Sorin BIRIȘ, Nicolae TUNSOIU, Ovidiu Constantin FUDULACHE	
	ASPECTS REGARDING THE PHYSICAL CHARACTERISTICS OF BLUE MOLD CHEESE DURING	
	RIPENING PROCESS	
	ASPECTE PRIVIND CARACTERISTICILE FIZICE ALE BRÂNZETURILOR CU MUCEGAI ALBASTRU	
50	LA MATURARE	40.4
58.	Gratiela-Florinela PANA, Paula TUDOR, Alexandru CIRIC, Elena-Madalina STEFAN, Mihaela BEGEA, Gheorghe VOICU	424

No.	Article Title & Authors	page
	CONSIDERATIONS REGARDING THE USE OF MULCH IN SOIL MAINTENANCE TECHNOLOGY IN	
	ARID AREAS	
	CONSIDERAȚII PRIVIND UTILIZAREA MULCILOR ÎN TEHNOLOGIA DE ÎNTREȚINERE A SOLULUI	
59.	ÎN ZONELE ARIDE	430
	Mariana EPURE, Iulian DUMITRU, Costin MIRCEA, Cristinel DUMITRU, Monica CATANĂ, Mihai OLAN, Nicoleta UNGUREANU,	
	Sorin-Ştefan BIRIŞ, Oana-Elena MILEA, Lorena-Diana. POPA, Simona ISTICIOAIA, Sorin BUNGESCU, Gheorghe MATE,	
	Sorin BORUZ, Atanas ATANASOV, Nicolae-Valentin VLĂDUŢ	

EFFECT OF OZONE TREATMENT AND STORAGE TEMPERATURE ON THE STORAGE ABILITY OF DATE PALM FRUITS (*PHOENIX DACTYLIFERA* L.) CV. MEDJOOL

1

تأثير المعاملة بالأوزون ودرجة حرارة الخزن في القابلية الخزنية لثمار النخيل صنف مجهول

Hamza Abbas HAMZA, Enas Riyad MAJEED, Dhia Ahmed TAAIN, Ibtihal Issa HAMZAH* Department of Horticulture and Landscape Design, College of Agriculture University of Basrah / Iraq *E-mail:golden_fruitb@yahoo.com

Keywords: Date palm fruits, Medjool cultivar, storage, decay percentage, water content

ABSTRACT

This study was conducted during the agricultural season 2021-2022 on the fruits of date palm, Medjool cultivar, where the fruits were brought from one of the private orchards belonging to the Shatt AI-Arab district in Basrah Governorate, on 9/3/2021, and the experiment was carried out as a factorial experiment according to the Complete Randomized Design (CRD), with three replicates for each treatment .The experiment included three factors, the first was the evaporation with ozone gas at concentrations of 0, 2.500 and 5000 ppm, the second factor was the storage of fruits at three temperatures (5°C, 10 °C and 25°C), while the third factor was the storage period which extended six months .Fruits were packed in plastic containers with a capacity of 250 g before storage and the obtained results showed that the treatment with ozone at a concentration of 5000 ppm was superior in reducing the percentage of decay and retaining the water content, the percentage of total soluble solids, and the total acidity of the fruits. The results also showed that fruits stored at 5°C were the best in reducing decay and retained the water content, the percentage of total soluble solids compared to 10°C and 25°C. Stored fruits retained most of their studied characteristics despite the advanced storage period, which reached six months.

ملخص

أجريت هذه الدراسة خلال الموسم الزراعي 2021-2021 على ثمار نخيل التمر صنف المجهول حيث تم جلب الثمار من أحد البساتين الخاصة التابعة بواقع ثلاث مكررات (CRD) نفذت التجربة كتجربة عاملية وفق التصميم العشوائي الكامل . لقضاء شط العرب في محافظة البصرة بتاريخ 2021/3/9 و2021/3/9 جزء في المليون، أما العامل الثاني فكان تخزين لكل معاملة. وتضمنت التجربة ثلاثة عوامل أولها التبخير بغاز الأوزون بتراكيز 0 و 2.500 و 5000 و 5000 الثمار عند ثلاث مكررات (CRD) نفذت التجربة كتجربة عاملية وفق التصميم العشوائي الكامل . لقضاء شط العرب في محافظة البصرة بتاريخ 2021/3/9 بجزء في المليون، أما العامل الثاني فكان تخزين لكل معاملة. وتضمنت التجربة ثلاثة عوامل أولها التبخير بغاز الأوزون بتراكيز 0 و 2.500 و 5000 الثمار عند ثلاثة عند ثلاث مدرجات حرارة (5 درجات مئوية، 10 درجات مئوية، 25 درجة مئوية)، أما العامل الثالث فهو مدة التخزين التي امتدت لستة أشهر. وتم وأظهرت النتائج المتحصل عليها تفوق المعاملة بالأوزون بتركيز 5000 جزء بالمليون في . غم قبل التخزين 2000 تعنوات بلاستيكية سعة وأظهرت النتائج المتحصل عليها تفوق المعاملة بالأوزون بتركيز 5000 جزء بالمليون في . غم قبل التخزين 25 تعبئة الثمار في عبوات بلاستيكية سعة أظهرت النتائج المتحصل عليها تفوق المعاملة بالأوزون بتركيز 5000 جزء بالمليون في . غم قبل التخزين 2500 تعبئة الثمار في عبوات بلاستيكية سعة كما أظهرت النتائج المتحصل عليها تفوق المعاملة بالأوزون بتركيز 5000 جزء بالمليون في . غم قبل التخزين 2500 تعبئة الثمار في عبوات بلاستيكية سعة أظهرت النتائج المتحصل عليها تفوق المعاملة بالأوزون بتركيز 5000 جزء بالمليون في . غم قبل التخزين 2500 تعبئة الثمار في عبوات الاستيكية سعة أظهرت النتائج المتحصل عليها تفوق المعاملة بالأوزون بتركيز 5000 جزء بالمليون في . غم قبل التخزين 250 تعبئة الثمار في عبوات بلاستيكية معة أطهرت النتائج المدول المزائبة الكلية، والحموضة الكمار أطهرت النتائج المتار في عبوات بلاستيكية الثمار وأظهرت الزمار من أدان الثمار المخزنة برجمة 5 م كمن تعابل التلف واحتفاظها بالمحتوى المائي والمواد الصلية الذائبة معارنة بدرجة 5 م كم كوم من أم و 25°م الموني والمال المغزنة برجمة 5 م كمان الخورين الى يستة أشهر المائم والمول مومال مؤم من وصول مدة التخزين الى ستته أشهر الموليم والموال المول مول مالي المنور م

INTRODUCTION

The date palm (*phoenix dactylifera* L.) is considered an evergreen fruit tree, belongs to the family Arecaceae and to the order Arecales. It is one of the monocotyledonous fruit trees and the Arabian Gulf region is considered one of the largest and most important areas of date palm trees in the world. Among them, the cultivation of date palm trees spread to all regions with suitable weather (*Al-Jubouri, 2002*).

In view of the importance of Medjool cultivar, which is one of the Moroccan cultivars, that entered Iraq recently through tissue culture technique, and is characterized by good taste and the large fleshy layer compared to the small seed, which makes it a desirable for the consumer.

Storing fruits at low temperatures is a good way used to reduce or delay the decay percentage of fruits. As low temperatures work to inhibit the activity of microorganisms that cause damage to the fruits and reduce the vital activities in the climacteric fruits, especially the rate of respiration and the production of ethylene and thus delay ripening processes (*Taain, 2005; 2014, Al-Amiri, 2010*).

Ozone (O3) is a natural substance in the atmosphere and one of the powerful disinfectants against a wide range of microorganisms (*Khadre and Yousef, 2001*). Applied either as a gas or dissolved in water, it can destroy chemical residues on the surface of the fruit and effectively reduce post-harvest losses during storage for several crops (*Taain et al., 2019*).

The aim of the current study is to improve the storage ability of date palm fruits Cv. Medjool by treating them with ozone and stored at different temperatures.

MATERIALS AND METHODS

This study was conducted during the agricultural season 2021-2022 on the fruits of date palm, Medjool cultivar. The fruits in the tamir stage were brought from one of the private orchards belonging to the Shatt Al-Arab district in Basrah Governorate, on 9/3/2021, then transferred in the morning to a laboratory of storage technologies in the Department of Horticulture and Landscape Design. The small and damaged fruits were excluded while the selected fruits were evaporated with ozone at concentrations of 0, 2.500, 5000 ppm, then packed in plastic containers of 250g, then divided into three parts. The first was stored in a cold incubator at a temperature of 5°C, the second stored at 10° C. and the third was stored at a room temperature of 25°C for a period of six months from the date of 9/3/2021 until 3/3/2022.

Studied parameters

1. The percentage of decay was calculated as a percentage during storage according to the following formula Weight of damaged fruits per package

> Percentage of decay= _____ × 100 Total weight of damaged fruits per package

2. Water content of fruits was calculated as a percentage as follows

Fresh weight of the sample (gm) - Dry weight of the sample (gm) Water content %= ______ ×100 Fresh weight of the sample (gm)

3. Total soluble solids (T.S.S.) of fruit pulps were determined by using hand refractometer and the results were corrected to 20° C (*Shirokov, 1968*).

4. Total titratable acidity (%) determined according to A.O.A.C. (1992).

Complete Randomized Design (CRD) was used with three replicates. The results were analyzed by the analysis of variance and mean values were compared using the Revised Least Significant Difference Test at 0.05 probability level. (*Al-Rawi and Khalf Allah, 1980*).

RESULTS AND DISCUSSION

The percentage of decay

The results of table .1 showed the effect of ozone treatment, temperature, storage period and the interaction among them on the percentage of decay of date palm fruits cv. Medjool. Where it is noted that the ozone treatment had a significant effect in reducing the percentage of decay, as the lowest percentage was 1.33% for fruits treated with 5000 ppm ozone, while the highest percentage of decay was 5.74% for fruits treated with 0ppm ozone. The treatment maintained the quality of the date palm fruits and significantly reduced the percentage of decay, compared to the fruits of 0 ppm concentration. Ozone gas reduces the percentage of post-harvest decay and reduces the loss of the quality and nutritional value of the fruits during cold storage due to the role of ozone in inhibiting the growth of pathogenic fungi that cause fruit decay (*Amiri, 2016, Taain, 2014*).

The lowest percentage of decay was 1.95% for the fruits stored at a temperature of 5°C, with a significant difference from the rest of the treatments, while the highest percentage of total damage was 5.51% for the fruits stored at a temperature of 25°C. The decrease in the percentage of decay to the fruits stored at a temperature of 5°C, was due to the fact that the low temperatures work to preserve fruit quality compared to storage at room temperature, and the results are consistent with (*Taain, 2005; Al-Amri, 2010; Taain, 2011*). The duration of storage had a significant effect, as it was noted from the table that the percentage of decay increased with the length of the storage period, as the highest percentage reached 11.80% for fruits after six months of storage. As for the effect of the interaction between ozone treatment and temperature, the results indicated that the fruits treated with ozone at a concentration of 5000 ppm and stored at a temperature of 5°C had excelled in reducing the percentage of percentage of decay and recorded the lowest percentage which was 0.55%. As for the percentage of decay for the fruits treated with a concentration of 5000 ppm and stored at a temperature of 10°C recorded 0.88%, while the percentage of decay was 9.31% for fruits treated with ozone at a temperature of 25°C.

The results also showed that the interaction between the ozone treatment and the storage period had a significant effect, as the lowest percentage of decay was 0.00% for the fruits treated with ozone at a concentration of 2.500, 5000 ppm after four months of storage. The highest percentage of decay was 16.64% for fruits treated with 0ppm ozone after six months of storage. As for the interaction between the temperature and the storage period, that had a significant effect on the percentage of decay, as the lowest percentage of decay fruits was 0.00% for the fruits stored at a temperature of 5°C after four months of storage, whereas the highest percentage of decay, which was 5.51% recorded in fruits stored at a temperature of 25 °C after six months of storage. The effect of the interaction between the three studied factors had significant effect on percentage of decay, the highest percentage of decay, for fruits treated with 0 ppm ozone, stored at a temperature of 25°C, after six months of storage, which reached 25.31 %.

Table 1

Ozone	storage temperatur	e		St	orage pe	eriod (mo	nth)		Ozone x
OLONO		1		2	3	4	5	6	temperature
0	5° C	0.0	00	0.00	0.00	0.00	7.26	9.29	2.76
ppm	10° C	0.0	00	0.00	0.00	5.37	10.27	15.33	5.16
	25° C	0.0	00	0.00	5.18	10.14	15.22	25.31	9.31
2.500	5° C	0.0	00	0.00	0.00	0.00	6.14	9.20	2.55
ppm	10° C	0.0	00	0.00	0.00	0.00	8.18	12.58	3.46
	25° C	0.0	00	0.00	0.00	0.00	12.36	15.68	4.67
	5° C	0.0	00	0.00	0.00	0.00	0.00	3.32	0.55
5000 ppm	10° C	0.0	00	0.00	0.00	0.00	0.00	5.31	0.88
PPIII	25° C	0.0	00	0.00	0.00	0.00	5.14	10.23	2.56
									Mean values of ozone
Ozone	0 ppm	0.0	00	1.72	0.00	5.17	10.92	16.64	5.74
x Storage	2.500ppm	0.0	00	0.00	0.00	0.00	8.89	12.48	3.56
period	5000ppm	0.0	00	0.00	0.00	0.00	1.71	6.28	1.33
		·				·			Mean values of temperature
temperature	5° C	0.	00	0.00	0.00	0.00	4.47	7.27	1.95
x Storage	10° C		00	0.00	0.00	1.79	6.15	11.07	3.17
period	25° C	0.	00	1.72	0.00	3.38	10.91	17.07	5.51
Mean values	s of storage perio	od 0.	00	0.00	0.57	1.72	7.17	11.80	
		01	1		. (0.05)	T			
Ozone	storage temperature	Storage period	x t	Ozone emperature	e x S	zone Storage eriod	temperatur x Storage period	x t	Ozone emperature torage period
0.03	0.03	0.05	1	0.06	C	0.09	0.09	0.09	

Effect of ozone treatment, storage temperature and storage period on the percentage of decay of Medjool date palm fruits.

The percentage of water content

Table. 2 showed the effect of ozone treatment, storage temperature, storage period and their interactions on the percentage of water content of Medjool date palm fruits. The results indicated that the ozone treatment had a significant effect on retaining water content in fruits, as the concentration of 5000 ppm gave the highest percentage of water content reached 64.00%, while the lowest percentage of water content

was 60.13% recorded in fruits treated with 0 ppm ozone. The ozone treatment retained the water content of date palm fruits.

As for the effect of storage temperature, the highest percentage of water content was 70.33% for fruits stored at a temperature of 5°C, while the lowest percentage was 52.2% for fruits stored at 25°C. It is clear that the percentage of water content decreased with the elongation of the storage period, reaching the lowest percentage of 60.69% after six months of storage, This is due to the fact that the water content of the fruits decreases due to the evaporation of water from the fruits as a result of the difference in vapor pressure between the moisture of the fruits and the humidity of the storage atmosphere (*Taain, 2014*). The result of this study agreed with (*Al-Barrak, 2009; Attaha and Taain, 2009; Taain, 2011*).

The table also showed the effect of the interaction between ozone treatment and storage temperature, as the fruits treated with ozone at a concentration of 5000 ppm and stored at a temperature of 5°C significantly excelled in retaining the percentage of water content, reaching 71.14% as compared to the lowest percentage that was recorded in fruits of 0 ppm ozone stored at 25°C that reaching 49.36%.

The interaction between the ozone treatment and the storage period was significant, where the highest percentage of water content was 65.68% for fruits treated with 5000 ppm ozone after one month of storage, while the lowest percentage of water content was 57.90% for fruits treated with 0 ppm ozone after six months of storage. Regarding to the interaction between the storage temperature and the storage period, the highest percentage of water content was in fruits stored at5°C after a month of storage which was 72.25%, while the lowest percentage was in fruits stored at 25°C after six months of storage which was 50.74%.

As for the interaction among the three factors, the highest percentage of water content was 72.90% for fruits treated with ozone at a concentration of 5000 ppm after one month of storage at a temperature of 5°C, while the lowest percentage of water content was 50.03% for fruits treated with 0 ppm ozone after six months of storage at 25°C.

Table 2

Ozone		storage temperature			S	Storage period (month)								
				1	2	3	4	5	6	_ x temperature				
0	Ę	5° C	7	1.16	70.96	68.43	68.06	67.33	66.43	68.73				
ppm	1	0° C	6	5.66	64.10	62.40	62.30	60.16	59.23	62.31				
	2	5° C	5	1.20	50.23	49.26	49.10	48.36	48.03	49.36				
2.500	Ę	5° C	7	2.70	71.76	71.10	71.13	70.63	69.46	71.13				
ppm	1	0° C	6	9.20	68.13	67.40	66.66	65.23	64.73	66.89				
	2	5° C	5	4.76	54.13	54.10	53.16	52.80	51.86	53.47				
5000	Ę	5° C		2.90	71.96	71.13	70.80	70.13	69.93	71.14				
ppm	1	10° C		9.06	68.93	67.53	66.50	65.16	64.20	66.90				
	2	25° C		5.10	55.00	54.60	53.70	53.06	52.33	53.96				
				I_			1		I	Mean values of ozone				
Ozor		0 ppm	ı	62.67	61.76	60.03	59.82	58.62	57.90	60.13				
x Stor peric	0	2.500pp	om	65.55	64.67	64.20	63.65	62.88	62.02	63.83				
		5000pp	m	65.68	65.30	64.42	63.66	62.78	62.15	64.00				
									1	Mean values of temperature				
tempera	ature	5° C		72.25	71.5	6 70.22	70.00	69.36	68.61	70.33				
x Stor	0	10° C	;	67.97	67.0	5 65.77	65.15	63.52	62.72	65.36				
peric	a	25° C	;	53.68	53.1	2 52.65	51.98	51.41	50.74	52.26				

Effect of ozone treatment, storage temperature and storage period on the percentage of water content of Medjool date palm fruits.

Mean v	alues of storage p	eriod	64.64	63.91	62.88	62.38	61.43	60.69						
	L.S.D. (0.05)													
Ozone	storage	Stora	age	Ozone	Ozone	temperature Ozone								
	temperature perio		bd	х	х	x Stor	age period	x temp	erature					
				temperatur	0			x Stora	ge period					
					period									
0.10 0.10 0.1			5	0.18	0.26		0.26	0.4	46					

The percentage of total soluble solids

It is clear from table. 3 that ozone treatment had a significant effect on the percentage of total soluble solids, as the lowest percentage was recorded at 40.27% at a concentration of 5000 ppm, while the highest one was 43.18% at a concentration of 0 ppm. This results indicate the role of ozone treatment in reducing the loss of the water content of the fruits, as it was negatively reflected on the total soluble solids (*Burton, 1982, Taain, 2005*).

The temperature significantly affected the percentage of total soluble solids, as the lowest percentage was recorded for the fruits stored at 5° C which was 39.41%, while the highest percentage for fruits stored at a temperature of 25° C which reached 45.26%. Studies have shown that the percentage of total soluble solids started to increment gradually until the end of the storage period (*Al-Amri, 2010; Taain, 2011; Taain et al., 2019*). Results indicate that the percentage of total soluble solids increased with the increment of a storage period reached 43.95% after six months of storage. The results are in the same line with (*Benjamin et al., 1985; Youssef and Abu Ali, 1993; Taain, 2010; 2011; 2014; Al-Amri, 2010*), where the results of storage experiments for different cultivars of date palm fruits showed that the total soluble solids in the fruits increased with the elongation of storage period, that mainly due to the reduction of water content and the increment of sugars with the progression of fruits towards ripening.

The interaction between ozone and the storage temperature had a significant effect, as the lowest percentage of total soluble solids was recorded at 44.72% for fruits treated with ozone at a concentration of 5000 ppm and stored at a temperature of 5°C, while the highest percentage was for fruits treated with ozone at a concentration of 0 ppm and stored at a temperature 25°C. As for the interaction between ozone and the storage period, date of the same table showed that the lowest percentage of total soluble solids was 38.81% for fruits treated with 5000 ppm ozone after one month of storage, while the highest percentage reached 44.62% for fruits treated with ozone at a concentration of 0 ppm after six months of storage. The interaction between the storage temperature and the storage period significantly affected the percentage of total soluble solids, as the lowest percentage of total soluble solids was 72.26 after six months of storage at temperature 25° C. The effect of the triple interaction was significant, where the lowest percentage of total soluble solids was 35.92% for fruits treated with ozone at a concentration of 5000 ppm after a month of storage at a temperature of 5°C. The highest percentage of total soluble solids was 52.13% for fruits treated with ozone at a concentration of 0 ppm after six months of storage at a temperature of 5°C.

Table 3

Ozone	storage Storage period (month) temperature							Ozone x
	•••••	1	2	3	4	5	6	temperature
0	5° C	37.31	38.42	39.44	40.17	41.03	42.91	39.88
ppm	10° C	38.26	39.67	40.31	41.22	42.98	44.72	41.19
	25° C	40.52	41.11	43.25	45.21	46.14	52.13	44.72
2.500	5° C	36.81	37.21	38.14	39.76	40.23	41.23	38.87
ppm	10° C	37.23	38.02	39.72	40.02	41.10	42.93	39.84
	25° C	40.10	41.33	42.43	42.86	43.33	44.23	42.38
5000	5° C	35.92	36.56	37.53	38.72	39.43	40.92	38.18

Effect of ozone treatment, storage temperature and storage period on the percentage of total soluble solids of Medjool date palm fruits.

	40% 0		00 7	4	07.00	00.00	00.04	40.44	44.00	00.44
ppm	10° C		36.7	1	37.33	39.22	39.91	40.44	41.02	39.11
	25° C		39.2	2	40.03	40.55	42.23	43.53	44.06	41.60
						1				Mean values of
										ozone
Ozone x	0 ppm		41.3	32	42.13	43.03	43.85	44.14	44.62	43.18
^ Storag	2.500pp	m	40.	09	40.71	41.39	42.12	42.95	43.13	41.73
e period	5000ppi	m	38.	81	39.35	39.92	40.56	41.05	41.95	40.27
					•			•		Mean values of
										temperature
tempe	5° C		37.4	42	38.21	39.14	39.99	40.46	41.23	39.41
rature x	10° C		39.	10	40.26	41.45	42.42	43.65	44.74	41.94
Storag e	25° C		42.	22	43.45	45.66	46.20	46.78	47.26	45.26
period										
Mean v	alues of sto period	rage	38	.74	39.59	40.75	41.68	42.48	43.81	
					•	L.S.D. (0.05)	•		
Ozone	storage	Stora	age	С	zone	Ozone	tempe	erature		Ozone
	temperat	peri	iod	x ter	nperature	x Storage	x Stora	ge period	x t	emperature
	ure					period			x S	torage period
0.09	0.09	0.1	13	(0.16	0.23	0.	23		0.40

The percentage of total titratable acidity

The results of the table. 4 showed the effect of ozone treatment, storage temperature, storage period and the interaction among them on the percentage of total titratable acidity of Medjool date palm fruits.

The results showed that the highest percentage of total titratable acidity was 0.259% for fruits treated with ozone at a concentration of 5000 ppm, while the lowest percentage was for fruits treated with ozone at a concentration of 0 ppm which reached 0.208%.

The effect of storage temperature was significant, as the highest percentage of total titratable acidity was recorded at 0.281% for fruits stored at a temperature of 5° C, while the lowest percentage of total titratable acidity was 0.233% for fruits stored at a temperature of 25° C, and this is may be a result of the progress of fruit ripening which is faster with the temperature rise which results in a higher rate of respiration and, consequently, a greater consumption of organic acids, as well as their conversion into sugars (*Burton, 1982; Al-Ani, 1985*).

The storage period had a clear effect, as it was noted from the same table that the percentage of total titratable acidity decreased with the elongation of the storage period, reaching the percentage of 0.215% at the end of the storage period. The reason for the decrease in the total acidity content of the fruits with the elongation of the storage period may be due to the consumption by the respiration process or converted into sugars (*Dessouki et al., 2011*).

The use of ozone led to the preservation of the total titratable acidity during the cold storage period and the results are consistent with Jassim *et al.*, (2016) and Taain *et al.*, (2019).

As the table showed the effect of the interaction between the ozone treatment and the storage temperature, the results indicated that fruits treated with 5000 ppm ozone and stored at a temperature of 5° C, had a significant increase of total acidity, reached 0.312%, while the lowest percentage of the total acidity was in the treated fruits with 0 ppm ozone and stored at a temperature of 25° C, reached 0.185%.

The results of the table also showed the effect of the interaction between the ozone treatment and the storage period, where the highest percentage of total acidity reached 0.288% for fruits treated with ozone at a concentration of 5000 ppm after a month of storage, while the lowest percentage reached 0.191% for the treated fruits with 0 ppm ozone after six months of storage.

The table also shows the interaction between the storage temperature and the storage period, as the highest percentage of the total acidity reached 0.312% after a month of storage at a temperature of 5°C, while

the lowest percentage of the total acidity reached 0.196% at the end of the storage period at a temperature of 25°C.

As for the interaction between the three factors, it was noted that the highest percentage of total acidity was 0.343% for fruits treated with ozone at a concentration of 5000 ppm after a month of storage at a temperature of 5° C. While the lowest percentage of total acidity was 0.167% for fruits treated with 0 ppm ozone, after six months of storage at a temperature of 25°C.

Table 4

Effect of ozone treatment, storage temperature and storage period on the percentage of total titratable acidity of Medjool date palm fruits.

Ozone		orage erature		Stor	age period (ı	month)			Ozon X	
	tomp	oracaro	1	2	3	4	5	6	temperature	
0	5° C		0.273	0.256	0.253	0.250	0.240	0.233	0.251	
ppm	10)° C	0.242	0.235	0.227	0.213	0.202	0.197	0.219	
	25	5° C	0.201	0.198	0.182	0.189	0.175	0.167	0.185	
2.500	5	°C	0.320	0.320	0.286	0.276	0.240	0.216	0.276	
ppm	10)° C	0.270	0.240	0.226	0.210	0.203	0.193	0.223	
	25	5° C	0.240	0.232	0.224	0.214	0.203	0.192	0.217	
5000	5	°C	0.343	0.330	0.313	0.300	0.300	0.283	0.312	
ppm	1()° C	0.303	0.286	0.270	0.250	0.250	0.240	0.267	
	25	5° C	0.231	0.227	0.217	0.210	0.209	0.199	0.215	
	1					11			Mean values of ozone	
Ozor x	ne	0 ppm	0.227	0.216	0.211	0.205	0.200	0.191	0.208	
Stora perio	ge 2.500 ppm 5000		0.266	0.256	0.235	0.223	0.214	0.200	0.232	
P			0.288	0.276	0.262	0.250	0.244	0.234	0.259	
		ppm							Mean values of temperature	
tempera	ature	5°C	0.312	0.302	0.284	0.275	0.260	0.251	0.281	
x Stora	an	10°C	0.285	0.276	0.266	0.257	0.243	0.232	0.260	
perio		25°C	0.267	0.253	0.241	0.228	0.213	0.196	0.233	
M		-4	period 0.271	0.26	0.246	0.007	0.000	0.045		
wean va	lues of	storage p			0.246 .S.D. (0.05)	0.237	0.226	0.215		
Ozone	sto	rade	Storage	Ozone	Ozone	tem	perature	1	Ozone	
Ozone storage temperature		•	period	x temperatur	х	x Storage period			x temperature x Storage period	
0.003	0.	003	0.004	0.005	0.008	0.008			0.014	

CONCLUSION

It is concluded from the current study that the treatment with ozone at a concentration of 5000 ppm was superior in improving qualitative characteristics of date palm fruits Cv. Medjool during storage at 5°C.

REFERENCES

- [1] Al-Amiri, H. A. H. (2010). The effect of storage temperature, packing method and bio-disc on the storage ability of date palm fruits (*Phoenix dactylifera* L.) Cvs. Halawi and Sayer in rutab stage. Master thesis, College of Agriculture, University of Basrah, Iraq.
- [2] Al-Amiri, H. A. H. (2016). The effect of some natural control treatments before and after harvest in improving the quality characteristics and storage ability of date palm fruits (*Phoenix dactylifera* L.) of the two cultivars Barhi and Braim. PhD thesis, College of Agriculture, University of Basrah.
- [3] Al-Ani, A.M. (1985). Postharvest Physiology of Horticultural Crops. Ministry of Higher Education and Scientific Research. Baghdad University. Iraq.
- [4] Al-Barrak, S. H. T. (2009). The effect of storage temperature and calcium on the storage ability of date palm fruits Cvs. Medjool and Hilali at khalal stage. Master thesis, College of Agriculture, University of Basrah.
- [5] Al-Jubouri, H. J. (2002). The importance of date palm trees (*Phoenix dactylifera* L.) in the State of Qatar. National course on the applications of plant tissue culture in improving plant production: 25 1.
- [6] A.O.A.C. (1992). Official method of analysis. Association of Official Analytical Chemists, Washington D.C.
- [7] Al-Rawi K.M., Khalf Allah M. (1980). Design and analysis of agricultural experiments, MosulUniversity, Iraq, p. 488.
- [8] Attaha, H.M. and D.A. Taain. (2009). Effect of cycocel on fruit development and chemical changes during ripening of Sayer cv. date palm. J. Thi-Qar. Univ. 5:79-94.
- [9] Benjamin, N. D.; Al-Khalidi, M. S.; Shabana, H. R. and Aseel, S. M. (1985). The effect of cold storage on the qualitative characteristics of six cultivars of date palm fruits at rutab stage. Date Palm Journal 1 (4): 1-17.
- [10] Burton, W. G. (1982). Postharvest physiology of food crops. Longmann and Scientific, New York, 310.
- [11] Dessouki I.M., Algizawi A.M., Abdel Azim M.M. and Ahmed S. (2001). Technology of storage and export of horticultural crops, College of Agriculture, Ain Shams University, Egypt.
- [12] Jassim, A. M.; D.A. Taain and H. A. Hamza. (2016). Effect of some natural and post-harvest control treatments in the storage behavior of date palm fruits. Journal of the Euphrates for Agricultural Sciences, Agricultural Conference III.
- [13] Khadre, M. A., &Yousef, A. E. (2001). Sporicidal action of ozone and hydrogen peroxide: a comparative study. International Journal of Food Microbiology, 71: 131–138.
- [14] Shirokov, E. P. (1968). Practical Course in Storage and Processing of Fruit and Vegetable. USDA: INSF Publication, Washington, D. C: 161.
- [15] Taain D. A. (2005). The effect of package kind and storage temperature on the quality and storage behavior of date palm fruit cv. Barhi. Basra J. Date Palm Res.; 4(201):55-71.
- [16] Taain, D.A. (2010). Effect of NAA on physiology of growth and ripening of date palm fruits (*Phoenix dactylifera* L) cv. Barhi. J. Karbala Univ. 8:156-175.
- [17] Taain, D. A. (2011). Effect of storage temperatures and postharvest calcium salts treatments on storability of jujube fruits (*Zizphus mauritiana* Lam.Cv.Tufahi). Annals of Agri. Sci. J., Moshtohor, 49(4): 447-453.
- [18] Taain D. A. (2014). The role of some plant extracts and storage temperature in improving storageability of Date palm fruits cv. Dayri (*Phoenix dactylifera* L. cv. Dayri), AAB Bioflux 6(1):26-32.
- [19] Taain, D.A, Hamza HA, Jaber FN. (2019), the effect of cultivar, chitosan and storage period on qualitative charactetristics of date palm fruits (*Phoenix dactylifera* L.) and their infection with the sawtoothed grain beetle. IOP Conf. Series: Journal of Physics: Conf. Series. 2019; 1294: 092004.
- [20] Youssef, M. K. and Abu Ali M. (1993). The date palm fruits at rutab stage suitability of some Saudi date cultivars for preservation using refrigeration and freezing techniques. Publications of the Third Palm Symposium, Part Two, King Faisal University - Saudi Arabia: 290-298.