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A B S T R A C T   

We introduce silver-copper nanoparticles incorporated into polyaniline (PANI) nanotubes using a straightfor-
ward and efficient reduction process. In this regard, PANI nanotubes with amine groups were fabricated through 
oxidation polymerization, followed by the attachment of Ag and Cu precursors to enable the synthesis of Ag-Cu 
bimetallic nanoparticles (NPs) on the pre-formed PANI nanotubes with the use of hydrazine as a reducing agent. 
The structural characterization of the synthesized NPs was investigated by UV–Vis spectrophotometer (UV–Vis), 
Dark-field emission, (EDX), X-ray diffraction (XRD) and field emission (FESEM), while the electrochemical 
properties were estimated by (CV) and differential pulse voltammetry (DPV). The findings indicated that the Ag- 
Cu NPs were present in the nanoscale range, well-dispersed, and attached to the surface of PANI nanotubes. 
Electrochemical investigations revealed that the Ag-Cu@PANI nanotube electrode demonstrated efficient elec-
trooxidation of dopamine and hydroquinone without any interfering reactions, suggesting its potential use as an 
electrochemical biosensor for simultaneous detection of dopamine and hydroquinone. The proposed NPs-based 
biosensor was connected to concurrently identify dopamine and hydroquinone, illustrating moo distinguish 
Confinements of 0.46 µM for dopamine and 0.23 mM for hydroquinone, separately. Additionally, the manu-
factured sensor identified on a wide direct run the dopamine (5–25 µM), and hydroquinone (0.5–2.5 mM). 
Alongside these promising comes about, the Ag-Cu@PANI nanotube actualized great solidness and reproduc-
ibility, making it a favorable stage for electrochemical biosensing of dopamine and hydroquinone.   

1. Introduction 

Dopamine (DA) and hydroquinone (HQ) are two well-known mate-
rials with significant biomedical applications [1]. Hydroquinone could 
be a phenolic compound show broadly and has favorable redox char-
acteristics [2]. It postures a critical natural and wellbeing hazard due to 
its moo biodegradability and tall harmfulness [3]. Its expansion in 
pharmaceuticals, cosmetics and the human diet exacerbates ecological 

defilement and is dangerous to human health [4]. Administrative bodies 
such as the EU and EPA have recognized hydroquinone as an essential 
poison, and China has built up a satisfactory emission level of 0.5 mg/ 
mL for this substance. Within the field of medication, dopamine serves 
as a significant neurotransmitter included in different physiological 
forms, counting discernment and feeling. Unsettling influences in 
dopamine levels are embroiled in various therapeutic conditions, such as 
anorexia and schizophrenia [5]. Untimely revelation can altogether 
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Fig. 1. Producer of steps Ag-Cu@PANI nanotubes.  

Fig. 2. UV–Vis spectrum of prepared nanocomposite.  
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make strides treatment results, in this way requiring the improvement of 
particular techniques for overseeing and checking dopamine levels. 
Subsequently, exact and solid location of dopamine and hydroquinone is 
vital for clinical determination and natural assurance. 

Until presently, an assortment of characterization and expository 
strategies, counting HPLC [6], GC [7], and fluorescence [8], have been 
created for the measurement of dopamine and hydroquinone. Electro-
chemical strategies are known for their quick reaction, effortlessness, 
favorable results, and cost-effectiveness, making them well-suited for 
reasonable and versatile applications [9,54–57]. Current reports do not 
provide evidence of synchronous electrochemical location for dopamine 
and hydroquinone. Hence, it is fundamental to carefully consider the 
improvement and determination of reasonable cathode modifiers for 
their electroanalytical assurance. The bimetallic framework is antici-
pated to show not as it were the combined characteristics of two metals, 
but moreover modern properties coming about from the synergistic 
interaction between distinctive metals [10,58–61]. The agreeable 
impact of bimetallic compounds can illustrate expanded action in 
comparison to monometallic compounds, indeed at low concentrations. 

Different bimetallic compounds, such as Au-Pt [11], Au-Ag [12], and 
Pd/Au [13], have been recognized as heterogeneous catalysts. It has 
been recommended that the action of bimetallic compounds is on a very 
basic level connected to their scattering and measure. Bimetallic com-
pounds with a contract run of molecule sizes and great scattering are 
considered best for accomplishing tall action due to their lifted surface- 
to-volume proportion [14]. Be that as it may, nanoparticles tend to total 
when subjected to electrolytic applications due to their tall surface vi-
tality, possibly restricting their viability [15,16]. As a result, elective 
compounds like CNTs and polymers are utilized to back and stabilize 
these compelling nanoparticles [17,61–65]. 

Polymer-based materials, such as polyaniline nanotubes (PANI 
nanotubes), possess inherent carrier mobility, exceptional surface area, 
and environmental stability, making them crucial for withstanding 
external electric field interference during the electric field disclosure 
process [18–20]. PANI nanotube sensors exhibit strong response and 
exceptional selectivity [21,36–40]. Conversely, bimetallic nano-
composites have been widely studied among metallic nanoparticles 
[21,64–69]. Guo et al. employed the ion exchange method in the 

Fig. 3. Dark field-emission of Ag-Cu bimetallic nanoparticles.  

Fig. 4. EDX spectrum of Ag-Cu nanoparticles.  
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preparation of well-structured (Co-Ni) OH for energy-related applica-
tions [22,41–43], while Song et al. developed Co-Ni-based carbonates by 
optimizing the Co/Ni atomic ratio, demonstrating excellent rate per-
formance in asymmetrical solid-state supercapacitors [23,49]. Liao et al. 
reported using rGO/Ni@Co in electrochemical sensor application for 
determining of dopamine [24]. These studies showed the bimetallic 
composites potential could be used in electrochemical sensing. The 
research involved the synthesis of bimetallic Ag-Cu@PANI nano-
composites using co-precipitation and hydrothermal methods, followed 
by electrochemical testing. The Ag-Cu@PANI nanocomposite is ex-
pected to exhibit enhanced sensitivity for the simultaneous detection of 
dopamine and hydroquinone. Polyaniline and its derivatives modified 
with bimetallic have already been employed in biosensor and electro-
chemical applications because of their sensing features and the possi-
bility of tuning their structure via a suitable choice of materials. Since 
PANI enjoys from two couples of redox, there is no requirement for any 

mediator in biosensor application, such that it is a self-contained 
mediator. In the present work the nanosensor (PANI/Cu-Ag) was syn-
thesized and examined for selectivity and sensitivity towards dopamine 
and hydroquinone, and its performance was compared to different re-
ported electrodes. 

2. Materials and method 

2.1. Chemical materials 

All chemical materials were supplied from Merck Co., analytical 
grade and utilized without future purification. Aniline (98 %), hydro-
chloric acid (35 %), ammonium persulphate (97 %), ethanol (70 %), 
copper nitrate were supplied from Merck & Co.,. Sliver nitrate (99 %), 
hydrazine (98 %) and phosphate buffer solution (97 %) were purchased 
from Sigma-Aldrich. 

Fig. 5. XPS spectrum of PANI/Cu-Ag (a) Ag, (b) Cu and (c) survey spectrum.  
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2.2. Synthesis of polyaniline nanotube (PANI nanotube) 

Briefly, 0.5 g, 0.2 g, and 10 ml of copper nitrate, silver nitrate and 
hydrazine were added to the pretreated PANI and 100 ml distilled water 
in a 200 ml round bottom flask. Then, the mixture was refluxed for 3 h at 
80 ◦C. The formed precipitate was isolated and washed with acetone and 
distilled water, followed by drying at 70 ◦C for 5 h. Full procedure is 
shown in Fig. 1. 

2.3. Synthesis of Ag-Cu@PANI tubes 

Briefly, 0.5 g of PANI was dispersed in 50 ml absolute ethanol ul-
trasonically for 30 min. After that, 0.5 g, 0.2 g, 10 ml of copper nitrate, 
silver nitrate and hydrazine were added to pretreated PANI and 100 ml 
distilled water in a 200 ml round. Then, the mixture was refluxed for 3 h 
at 80 ◦C. The formed precipitate was isolated and washed by acetone and 
distilled water, followed via drying at 70 ◦C for 5 h. Full procedure is 
shown in Fig. 1. 

Fig. 6. XRD spectrum of PANI, and Ag, Cu and Ag-Cu@PANI nanocomposite.  

Fig. 7. TGA of PANI and PANI/Cu-Ag nanocomposite.  
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2.4 Electrochemical measurement 

In this consider, a Normal three-electrode setup comprising of an Ag/ 
AgCl (immersed KCl) reference anode, a platinum wire counter cathode, 
and an altered smooth carbon working anode was utilized, with a 0.1 M 
phosphate buffer arrangement at pH 7 serving as the electrolyte. The 
glassy carbon working electrode was cleaned by deionized water and 
polished it by alumina slurry. Electrochemical estimations were con-
ducted utilizing cyclic voltammetry over the run of − 0.2 to 1.2 V at a 
check rate of 50 mV/s, and differential beat voltammetry with a voltage 
step of 5 mV. Earlier to experimentation, the electrochemical cell was 
cleansed with N2 gas to dispense with O2, empowering the era of stan-
dard bends based on unmistakable flag reactions for changing concen-
trations of dopamine and hydroquinone. 

3. Results and discussion 

3.1. Bimetallic nanoparticle characterization 

The UV–Vis spectrum of synthesized Ag, Cu, PANI, Ag-Cu bimetallic 
and PANI/Cu-Ag nanoparticles are shown in Fig. 2. The spectrum 

exhibited a broad adsorption band located between 380 to 580 nm with 
maximum adsorption peak at 425 nm related to Ag nanoparticles. The 
Cu metal show (red spectrum) a broad absorption band with a weak 
peak about 585 nm [25]. The spectrum of PANI (blue spectrum) appears 
two peaks at 317 and 573 back to p-p* and n-p* transitions, that assign 
to benzenoid and quinonoid rings structure, respectively [25]. For Ag/ 
Cu bimetallic (green spectrum), the absorption results show a broad 
band at range of 300–800 nm with two weak peaks at 410 nm and 585 
nm corresponding to Ag and residues of Cu and collective oscillation of 
Cu surface Plasmon [26]. As can be shown, a distinctive spectrum was 
exhibited when the Ag and Cu were measured separately. However, for 
Ag-Cu NPs, a spectrum matching Cu NPs was noted, proposing the 
production of Ag-Cu core shell NPs. Similar findings have been noted in 
various bimetallic NPs synthesis [27]. In comparison with PANI, the two 
peaks at 317 and 573 nm were shifted to 379 and 687 nm in PANI/Ag-Cu 
(orange spectrum). These changes are related to the presence of high 
intensity band formed by the reaction between the PANI chains and Ag/ 
Cu NPs. Because of the electrostatic reaction, Ag/Cu bimetallic have a 
large quantity of free electrons, that facilely coordination with N atoms 
in PANI chains. Once PANI chains gets coordinated or imbibed with Ag/ 
Cu, an electron cloud between PANI and Ag/Cu is formed facilely, 

Fig. 8. TEM of (A) PANI, (B) PANI-Ag, (C) PANI-Cu, (D) PANI@Ag-Cu nanocomposite.  
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leading to red shift in spectra of PANI/Ag-Cu. The electron cloud formed 
polarons that it caused high conductivity for fabricated electrode and 
enhance the sensitivity [27]. 

Dark-field microscopy was utilized for the validation of prepared Ag- 
Cu bimetallic nanoparticles. The results (Fig. 3) revealed a clear coex-
istence of Cu and Ag within the selected field, thus facilitating the for-
mation of Ag-Cu bimetallic nanoparticles. Furthermore, additional 
examination involving energy-dispersive X-ray spectroscopy (EDX) was 
conducted to demonstrate an elemental spectrum in the synthesized 
sample. Fig. 4 exhibits the EDX spectra of prepared Ag-Cu NPS. The 
results show the binding energy at 3, 3.1, 21.4 keV and 0.51, 7.8 keV 

corresponding to Ag and Cu. The elemental composition of the bime-
tallic NPs was determined using energy-dispersive X-ray spectroscopy 
(EDX), revealing that the Ag/Cu composition consisted of 59 % silver 
and 41 % copper. 

XPS technique was used to determine the oxidation state and 
composition of Ag/Cu bimetallic nanoparticles. As shown in Fig. 5a, two 
peaks located at 368.09 and 373.04 eV back to the 3d5/2 and 3d3/2 Ag 
(0) electronic state, respectively. The binding energy difference between 
two splitting confirms the zero-oxidation state of silver in bimetallic 
[27]. As displayed in Fig. 5b, two binding energy related to Cu located at 
932.4 and 952.6 eV was also noted, which corresponding to 2p3/2 and 

Fig. 9. CV curves of Ag-Cu@PANI (A) bare GCE, (B) in (0.01 M, pH 7) PBS at 50 mV/s scan rate, along with the DPV curves for Ag-Cu@PANI (C) bare GCE, (D) in 
(0.01 M, pH 7) PBS. 
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2p1/2 zero electronic state of copper [27]. The existence of other 
binding energy peaks (Fig. 5C, survey spectrum) at 285.03, 531.04, 
400.34 could be related to C 1s, O1s and N 1s of polyaniline. 

The X-ray diffraction (XRD) technique was used to study the crys-
talline characteristics of PANI nanotubes prepared with pure silver (Ag), 
copper (Cu), and Ag-Cu incorporation. The findings are presented in 
Fig. 6. For PANI nanotubes (Black spectrum), the XRD pattern show only 
wide diffraction peak centered at 2θ (17.1o), indicating PANI nanotubes. 
However, PANI nanotube incorporated Ag nanoparticles XRD spectrum 
(Red spectrum) shows four diffraction peaks located at 38.5, 44.7, 64.8 
and 77.8o, corresponding to Ag face centered cubic FCC (JCPDF no. 04- 
0783). Fig. 6 (purple spectrum) illustrates the X-ray diffraction (XRD) 
spectrum of Ag-Cu@PANI nanotubes, indicating no significant shifts in 
peaks. This suggests that the Ag-Cu nanoparticles maintain the same 
phase, and also implies that their crystal structure remains unchanged 
during the polymerization process with PANI [28]. 

The thermogravimetric analysis (TGA) was used to investigated the 
thermal properties of PANI, and PANI/Cu-Ag. The results appear (Fig. 7) 

that the reduce in mass under 100 ◦C assign to the humidity removal 
[28]. At range of 100–300 ◦C, the loss of mass is small, which is at most 
because of the volatilization of oligomer dopants with low molecular 
weight of Cl that used through polymerization of aniline and it change in 
molecular weight of PANI and increase in crystallinity. At 400 ◦C, the 
PANI chains starts to thermally degrade to produce a large quantity of 
weight loss, leading to interior structure breakdown, large quantities of 
dopants and degradation of chains [28]. After that, from 600-800 ◦C, it 
become to be stable and the loss of mass is considerably decreased. The 
PANI/Cu-Ag exhibits a comparable degradation temperature of poly-
aniline at 250.5 ◦C, but less mass loss at 400 ◦C, indicating an 
improvement in the thermal stability of PANI due to the presence of Cu 
metal in PANI. The adding Ag-Cu to PANI worked to enhance the 
thermal stability because of interaction Ag-Cu bimetallic nanoparticles 
with NH2/N––N groups in PANI chains and this caused inhibits PANI 
chains transfer, which is useful to enhance the thermal features of PANI/ 
Ag-Cu nanocomposite. 

The PANI nanotubes appear as short rods with a diameter of 

Fig. 10. CV of (A, C) dopamine and hydroquinone on Ag-Cu@PANI in 0.1 M PBS, (B,D) correlation relationship between redox peak and scan rate for dopamine and 
hydroquinone. 
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300–400 nm, exhibiting a noticeable degree of twisting possibly 
attributed to the presence of NH groups on their surface. Analysis of 
TEM images reveals that the PANI nanotubes are hollow, forming a 
tubular structure with an internal diameter of 350–400 nm. Clearly, it’s 
important to note that the end of PANI nanotube are closed, which may 
be back to high energy used through the ultrasonic irradiation reaction. 
After that, the PANI nanotube was used as support to the Ag-Cu NPs by 
using hydrazine. Then, hydrazine was used as the reducing agent and 
the synthesized PANI nanotubes were used as supports for Ag-Cu NPs. 
The PANI nanotubes containing Ag-Cu bimetallic were examined using 
TEM, and the findings are depicted in Fig. 8a–d. The results indicated 
that the diameter of the Cu-Ag NPs falls within the range of 10–20 nm. 
Furthermore, it was observed that Ag-Cu was uniformly distributed on 
the outer wall of the PANI nanotubes, maintaining the original 
morphology of PANI without aggregation during hydrazine co- 
reduction. This suggests that the prepared nanotubes possess abundant 
OH groups, providing numerous sites for coordination with Ag-Cu 
bimetallic nanoparticles [29]. 

3.2. Electrochemical characterization 

The electrochemical behavior of dopamine and hydroquinone were 
explored utilizing cyclic voltammetry (CV) and Differential pulse vol-
tammetry (DPV), as shown in Fig. 9. Both dopamine and hydroquinone 

displayed distinct redox peaks on the Ag-Cu@PANI electrode, showing 
significantly enhanced peak currents compared to GCE, as illustrated in 
Fig. 9A and B. In contrast, dopamine did not exhibit distinct peaks on the 
bare GCE, while hydroquinone displayed a broad peak in CV measure-
ments. Fig. 9A shows that the electrochemical reaction of dopamine and 
hydroquinone on the Ag-Cu@PANI is considerably improved, with a 
higher current of oxidation peak compared with GCE. The dopamine 
oxidation peak is observed at 196 mV, and a distinct oxidation peak at 
100 mV is indicative of the improved reversibility of hydroquinone on 
the Ag-Cu@PANI. These findings suggest that the electron transport on 
the Ag-Cu@PANI electrode is more efficient compared to the bare GCE, 
indicating that Ag-Cu can facilitate electron transfer. Furthermore, the 
96 mV differentiation in oxidation between dopamine and hydroqui-
none could indicate the promising selectivity and reversibility of the Ag- 
Cu@PANI electrode for analyzing these compounds [30–32]. The DPV 
response (Fig. 9C and D) revealed overlapping reduction peaks for 
dopamine and hydroquinone, challenging their distinctiveness. This 
observed electrochemical behavior is attributed to the superior con-
ductivity and extensive electrochemically active surface area of the Ag- 
Cu@PANI electrode. 

Examining the kinetics of the electrode provides valuable insights 
into the influence of scan rate on the Ag-Cu@PANI modified electrode. 
The comprehensive cyclic voltammetry (CV) analysis in a 0.01 M 
phosphate buffer solution reveals that the currents associated with the 

Fig. 11. DVP response of (A,C) dopamine and hydroquinone on Ag-Cu@PANI electrode with (B,D) current relationship.  
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peak redox reactions of dopamine and hydroquinone exhibit an increase 
when the scan rates are expanded within the range of 10–100 mV/s, as 
depicted in Fig. 10A and C. The results exhibited (Fig. 10B and D) a 
linear relationship depicted via the two equation ip = 2.76 + 0.27*v (R2 

= 0.97) and ip = 10.64 + 0.34*v (R2 = 0.99) assigned to dopamine and 
hydroquinone respectively. The findings suggest that the 

electrochemical interplay between dopamine and hydroquinone on the 
Ag-Cu@PANI modified surface is linked to the adsorption-controlled 
model, and these results align with previous research [33]. 

Fig. 12. DVP curve of Ag-Cu@PANI electrode for (A,C) 20–40 μM of DA and 0.2–2.5 μM of HQ and (B,D) linear oxidation peak current-DA and HQ relationship.  
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3.2.1. Electrodetermination of dopamine and hydroquinone on the Ag- 
Cu@PANI electrode 

DPV measurements provides more sensitivity and selectivity 
compared to CV measurements as displayed in Fig. 11A and C. By uti-
lizing DPV, we measured and estimated a broad range of dopamine and 
hydroquinone concentration from (5–25 μM) and (0.5–2.5 mM) 

respectively, in incrementally boosting batches. As shown in Fig. 11B 
and D, a linear relationship was noted between the current of oxidation 
peak and concentration of dopamine and hydroquinone, obtained via 
two following equations i (10− 6A) = 1.88 + 30.4*c (R2 = 0.98) and i 
(10− 6 A) = 42.08 + 70.24 *c (R2 = 0.99) [34,35]. 

Fig. 13. (A) Biosensor response under 5 ◦C storage condition, (B) Storage stability impact on five similar fabricated biosensor (C) the relative activity of fabricated 
sensor in different amino acid. 

Table 1 
Electrochemical detection of dopamine with different biosensor.  

No. Electrode LoD Linear range Method Reference 

1 rGO/Mn-TPP/ 
GCE 

8 nM 0.3–188.8 
μA 

Amperometry [45] 

2 Porphyrin-rGO/ 
GCE 

0.009 
μM 

1–70 μM DPV [46] 

3 MWCT/Ag 0.27 μM 0–8 μM DPV [47] 
4 CuTPP/rGO/ 

GCE 
0.58 μM 2–200 μM CV, DPV [48] 

5 PANI/Cu-Ag 0.46 μM 5–25 μM CV, DPV Our study   

Table 2 
Electrochemical detection of hydroquinone with different biosensor.  

Modified electrode Analyte Linear range 
(mM) 

Method Reference 

AuNPs-CNF/Au hydroquinone 9–500 DPV [50] 
Au/pAMT-MWNTs hydroquinone 7.2–391.2 CV [51] 
AuNPs/Fe3O4- 

APTESGO/GCE 
hydroquinone 3–137 DPV, 

CV 
[52] 

PDA-RGO/GCE hydroquinone 1–230 DPV, 
CV 

[53] 

PANI/Cu-Ag hydroquinone 0.5–25 CV, 
DPV 

Our study  
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3.2.2. Simultaneous determination of dopamine and hydroquinone using 
Ag-Cu@PANI electrode 

The calibration curves and limit of detection for Ag-Cu@PANI elec-
trode in dopamine and hydroquinone simultaneous sensing were initi-
ated by using DPV measurements in 0.1 M PBS. At a consistent 
hydroquinone concentration of 0.002 M, the response of differential 
pulse voltammetry (DPV) to dopamine displayed a linear correlation 
within the 2–40 µm range. The results (Fig. 12B) show linear equations 
as described i (10− 6A) = 2.77 + 34.3x (R2 = 0.99) and i = 2.40 + 51.04x 
(R2 = 0.98). Furthermore, as depicted in Fig. 12c, at a consistent 
dopamine concentration of 1*10− 5 M, the differential pulse voltamme-
try (DPV) response to hydroquinone demonstrated a direct correlation 
within the same concentration range of 0.2–2.5 µM, as indicated by the 
following equation i (10− 6 A) = 28.69 + 88.11x (R2 = 0.98) (0.002 M) 
(Fig. 12D). The findings suggest that the Ag-Cu@PANI modified elec-
trode may be effectively utilized for the concurrent detection of dopa-
mine and hydroquinone, yielding positive outcomes. 

3.2.3. Stability and reproducibility of the suggested electrochemical sensor 
To assess the reproducibility of the Ag-Cu@PANI electrode, five 

electrodes were fabricated using a consistent method and tested for their 
oxidation peak current values for dopamine and hydroquinone. The 
observed currents exhibited minimal variations, with relative standard 
deviations (RSD) of 1.54 % for dopamine and 2.45 % for hydroquinone, 
indicating favorable reproducibility. Additionally, cyclic voltammetry 
(CV) measurements were conducted over 20 cycles in a 0.2 M PBS so-
lution containing 20 μM dopamine and 0.002 M hydroquinone. It is 
noteworthy that the redox peak currents for dopamine and hydroqui-
none remained stable throughout the measurements, with the final cycle 
retaining over 98 % of the initial peak current value, confirming the 
precision of the Ag-Cu@PANI sensor. On the other side, to evaluate the 
stability of the fabricated PANI/Cu-Ag electrode with time, the current 
response was estimated via storing it at 5 ◦C. The results (Fig. 13A) 
display that the fabricated electrode kept 50 % of the primary activity 
after employing it 100 times for 120 days, demonstrating significant 
agreement with earlier reported [44]. Five dopamine and hydroquinone 
electrodes were fabricated and investigated separately for the impact of 
storage at 5 ◦C. The results (Fig. 13B) appeared high stability for fabri-
cated sensor, which indicate to a reproducible performance. To observe 
the interference impact of different compounds on the sensing capability 
of PANI/Ag-Cu to dopamine, different amino acid such as leucine, 
proline, tyrosine and glycine were added at pH 7 buffer. The results 
shown no observable interference concerning the increasing or reduce in 
relative activity for the dopamine (Fig. 13C). Hence, its concluded that 
the fabricated sensor can selectivity reveal or detect in biological 
samples. 

Table 1 displays some reported dopamine sensor-based nano-
composite and their comparison with our fabricated sensor in linear 
range, LoD and sensitivity. The results show that displayed better 
execution and nearly comparable performance with relate to range of 
concentration, LoD and sensitivity. 

Table 2 displays some reported hydroquinone sensor-based nano-
composite and their comparison with our fabricated sensor in linear 
range. The results show that displayed better execution and nearly 
comparable performance with relate to range of concentration 
sensitivity. 

4. Conclusions 

In this study, we can list the main point as following:  

1- bimetallic Ag-Cu doped PANI nanotubes composite (Ag-Cu@PANI) 
was successfully prepared by reduction method.  

2- The electrochemical analysis demonstrated that the Ag-Cu@PANI 
electrode exhibited efficient electrooxidation of dopamine and 

hydroquinone, making it a potential candidate for use as an elec-
trochemical sensor for the simultaneous detection of these 
substances.  

3- The as-suggested electrode demonstrates low limits of estimation of 
dopamine and hydroqiunone, while also offering a wide linear range 
for these substances. 

4- The proposed biosensor was enhanced to concurrently detect dopa-
mine and hydroquinone, demonstrating low detection limits of 0.46 
μM for dopamine and 0.23 mM for hydroquinone, respectively.  

5- Moreover, the fabricated sensor shows broad linear ranges for 
dopamine (5–25 μM), and hydroquinone (0.5–2.5 mM). 
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