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Abstract: A unique aspect of this research lies in the combination of polyethylene terephthalate (PET)
nanofibers with Auo@PPh2-PIILP to create a nanogold composite (NGC). This NGC has proven to be
highly efficient in removing methylene blue (MB) from wastewater. The prepared nanogold composite
NGC was characterized by Fourier-transform infrared spectroscopy (FTIR), Field Emission Scanning
Electron Microscopy (FE-SEM), transmission electron microscopy (TEM), Energy Dispersive X-ray
Spectroscopy (EDAX), and Elements Distribution Mapping (EDM). Several factors were examined in
batch adsorption experiments to determine their impact on dye adsorption. These factors included
the initial pH range of four to eight, the dosage of NGC adsorbent ranging from 0.001 to 0.008 g, the
initial concentration of MB dye ranging from 10 to 50 mg L−1, and the contact period ranging from 10
to 80 min. It has been observed that NGC is more efficient in removing MB from polluted water. The
results of the pseudo-second-order model show good agreement between the calculated adsorption
capacity (qe)cal. (4.3840 mg g−1) and the experimental adsorption capacity (qe)exp. (4.6838 mg g−1)
values. Experimental findings suggest a monolayer capping of MB dye on the NGC surface with a
maximum adsorption capacity Qm of 18.622 mg g−1 at 20 ◦C, indicating that it is well-fitted to the
Langmuir isotherm.

Keywords: polyethylene terephthalate; nanofiber; nanogold; methylene blue; nanocomposite

1. Introduction

Over the last decades, water pollution has emerged as a significant global challenge,
posing a crucial threat to both the planet and human well-being as a result of increased indus-
trialization activity around the world and attendant discharges of toxic substances directly into
water sources without any treatment, which have led to a decrease in the amount of water
suitable for human consumption [1,2]. A report released by UN-Water anticipated that by 2025
approximately two-thirds of the global population will experience water stress. The report
further projected that approximately 1.8 billion individuals would experience absolute water
scarcity in their living conditions [3]. Thus, wastewater treatment has become crucial for a
sustainable existence. Many techniques have been used for this purpose, including photodegra-
dation [4,5], adsorption [6,7], distillation [8,9], electrolysis [10,11], and membranes [12,13].
Adsorption is the most commonly used method for treating dye-containing wastewater dyeing
wastewater due to its simple operation, low cost, and effectiveness, according to the litera-
ture [14]. Adsorbents such as zeolites, activated carbon (AC), polymers, and biomaterials have
long been utilized in traditional wastewater treatment processes. However, these materials
have a limited adsorption efficiency. Finding more effective adsorbents has therefore become
crucial [15,16]. Based on the literature, it is evident that the incorporation of nanomaterials
in membranes has shown a remarkable improvement in their properties, such as water per-
meability, mechanical strength, and separation efficiency, in addition to reducing fouling of
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the membrane [17–19]. Polymer nanofibers have been explored in recent years as one of the
most promising materials for water treatment membranes due to their unique physicochemical
properties, such as nanoscale size, high surface area, and large porosity [20]. In this regard, an
electrospinning technique has been used to generate nanofibers from various types of polymers.
Moreover, by introducing nanomaterials as additives into polymer nanofiber membranes, the
prepared nanocomposite membrane can possess additional features [21]. The eventual com-
posites are expected to have a huge potential to purify water. This perhaps is due to their
cost-effectiveness, high chemical reactivity, and surface area, in addition to excellent mechanical
strength [22]. The present research involves repurposing PET cups for the production of
PET nanofibers through electrospinning. Despite their prior use, their efficiency was lacking.
Consequently, a concept emerged to merge them with gold nanoparticles to enhance their
efficacy and optimize their performance in eliminating methylene molecules. This process aims
to eliminate PET and methylene waste, thereby contributing to environmental improvement.
There have been reports on the utilization of phosphine-ligand-stabilized, modified gold-coated
magnetic nanoparticles as catalysts for the reduction and subsequent extraction of methylene
blue in wastewater from the textile industry. These nanomaterials exhibit the ability to not
only reduce the presence of toxic methylene blue dye in textile wastewater but also effectively
eliminate the dye from the wastewater solution [23].

Gupta and Kulkarni have successfully prepared a porous foam of poly (dimethyl-
siloxane) (PDMS) embedded with Au nanoparticles for the purpose of eliminating organic
compounds from water. The results showed that Au-PDMS nanocomposite foam was
significantly effective against odorous sulfur-containing contaminants and was resistant to
harsh chemical environments [24].

Methylene blue (MB) is a heterocyclic aromatic chemical that exists as a dark green
powder. It is widely used in biology, chemistry, and the textile dyeing industry. It has
been present in human and veterinary pharmacopeia for a long time. In the end, MB is
discharged into the nearby environment causing real health problems. Exposure to MB
can cause injuries to humans and animals [25]. It can also cause nausea, vomiting, and
mental confusion. Direct contact can lead to eye burns, while inhalation leads to rapid or
difficult breathing [26]. In this research, our objective is to incorporate Auo@PPh2-PIILP
into nanofibers of polyethylene terephthalate (PET) in order to create a nanogold composite
(NGC) capable of efficiently eliminating methylene blue (MB) from wastewater. The whole
process is illustrated in Scheme 1.
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2. Materials and Methods
2.1. Preparation of Auo@PPh2-PIILP

Auo@PPh2-PIILP was synthesized following established protocols and was fully
characterized in previous studies (Figure 1) [27–29].
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Figure 1. Reaction scheme for polymer-immobilized ionic liquids, and their [AuCl4]− and nanogold-
loaded counterparts.

2.2. Preparation of PET Nanofibers

PET nanofibers were produced by electrospinning using post-used PET cups as we
described previously [30]. The electrospinning process was modified by adjusting several
factors. The flow rate was established at 1 mL/h, the needle-to-collector distance was set at
15 cm, the PET concentration was maintained at 5%, and an applied voltage of 15 kV was
utilized [31].

2.3. Preparation of Nanogold Composite NGC

Nanogold composite NGC was prepared by treating (0.03 g) of PET-NF with (1 mL,
0.5 M sodium hydroxide (NaOH, 98%) followed by 5 mL of distilled water. The purpose of
NaOH treatment is to activate the fiber surface to be hydrophilic, allowing the coating of NF
by Auo@PPh2-PIILP in an aqueous solution [32]. The mixture was allowed to agitate at an
ambient temperature for a duration of 30 min. Following the treatment process, the fibers
were washed thoroughly with distilled water multiple times and subsequently air-dried
at room temperature for a duration of 24 h. After drying, PET–NF was immersed in an
aqueous solution of 0.003 g Auo@PPh2-PIILP and 3 mL D.W Distilled water in a glass petri
dish (Ø18 cm) and left to dry at room temperature for 48 h.

2.4. Characterization of Nanogold Composite NGC

The functional groups present in the synthesized nano-adsorbents were analyzed
using Fourier-transform infrared spectroscopy (FTIR). The analysis was carried out using
a Shimadzu-IR Prestige-21 spectrophotometer (Columbia, MD, USA) with KBr powder
pellets. Field Emission Scanning Electron Microscopy (FE-SEM) (Quanta 4500, Hillsboro,
OR, USA) was utilized to investigate morphology and particle spreading. To determine
morphology and size formation, transmission electron microscopy (TEM) was utilized
using a Jeo l/JEM 2100 electron microscope type Jeo l/JEM 2100 (Akishima, Japan) was
utilized. The synthesized nanostructures underwent chemical characterization through
analysis by Energy Dispersive X-ray Spectroscopy (EDAX) and Elements Distribution
Mapping (EDM).

2.5. MB Adsorption Batch Studies

Batch adsorption experiments were carried out to assess the capacity of NGC to adsorb
methylene blue (MB) dye. The impact of different experimental factors was analyzed to
determine the efficiency of NGC in eliminating MB dye.
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2.5.1. pH Effect

To examine the impact of the initial pH of the solution on the adsorption of MB, 3 mL
of a 10 mg L−1 MB solution was introduced to 0.006 g of NGC at varying pH levels (4.0,
5.0, 6.0, and 8.0) while being stirred at a rate of 150 rpm for 1 h utilizing a DLAB magnetic
stirrer model MS7-H550-pro. The solution was permitted to settle, and subsequently, the
residual MB concentration in the supernatant solution was quantified using a JANEWAY
7315 Spectrophotometer (Vernon Hills, IL, USA) with a λmax of 660 nm. The concentrations
of MB were calculated by comparing the resulting absorbance values with the MB standard
calibration curve. Equations (1) and (2) were used to calculate the adsorption capacity of
MB adsorbed onto NGC (q) at equilibrium and at a specific time, respectively. Equation (3)
was used to calculate MB percent removal (R%) [33]:

qe =
(C i − Ce) ∗ V

M
(1)

qt =
(C i − Ct) ∗ V

M
(2)

R% =
Ci − Ce

Ci
× 100 (3)

The equilibrium and specific time adsorption capacities of MB are denoted as qe
and qt, respectively. The initial and equilibrium concentrations of MB in the solution are
represented by Ci and Ce (mg L−1). V refers to the volume (L) of the experimental solution.
M indicates the weight (g) of the NGC, while R% represents the removal percentage.

2.5.2. Initial Concentration Effect on MB Adsorption

The influence of initial concentration on the adsorption of MB onto NGC was investi-
gated by combining 0.006 g of NGC with 3 mL of various initial MB concentrations (10, 20,
30, and 40 mg L−1). The resulting mixture was subjected to stirring at a rate of 150 rpm for
a duration of 1 h, maintaining a pH of 8 and room temperature conditions.

2.5.3. Adsorbent Dosage Effect on MB Adsorption

The influence of the amount of adsorbent used on the removal of MB was investi-
gated by mixing different dosages of NGC (0.001, 0.002, 0.006, and 0.008 g) with 3 mL of
10 mg L−1 MB at pH 8. The mixture was stirred for 1 h at a rate of 150 rpm under room
temperature conditions.

2.6. Kinetic Studies

In this study, adsorption kinetic experiments were conducted under different time
intervals ranging from 10 to 80 min. The pH was maintained at 8, while the amount of NGC
used was 0.006 g, and the temperature remained constant throughout the experiments.
The main objective of this investigation was to gain insights into the adsorption kinetics
of MB on NGC by exploring four fundamental kinetic mechanisms. These mechanisms
included the pseudo-first-order Equation (4), the pseudo-second-order Equation (5), the
Elovich Equation (6), and the intraparticle diffusion Equation (7). By examining these
mechanisms, a comprehensive understanding of the adsorption kinetics of MB on NGC
could be achieved [34–36].

log(qe − qt) = logqe −
(

k1

2.303

)
t (4)

t
qt

=
1

k2 q2
e
+

1
qe
(t) (5)

qt =
1
β

ln (αβ) +
1
β

ln (t) (6)
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qt = Kdi f t
1
2 + BL (7)

In the time frame denoted as t, the rate constants for the pseudo-first-order and
pseudo-second-order models are denoted as k1 (min−1) and k2 (g mg−1 min−1), respectively.
Furthermore, α represents the initial adsorption rate (mg g−1), while β represents the
desorption constant (g mg−1). Additionally, Kdif signifies the intraparticle diffusion rate
constant (mg g−1 min−1/2), and BL refers to the boundary layer thickness.

2.7. Effect of Different Concentrations and Temperatures

The study examined the impact of different concentrations (10, 20, 30, and 40 mg L−1) and
temperatures (20, 30, 40, and 50 ◦C) on batch MB adsorption experiments on NGC at pH 8. To
effectively analyze the adsorption isotherms, four distinct models were employed: Langmuir
Equation (8), Freundlich Equation (9), Temkin Equation (10), and Dubinin–Radushkevich
Equation (11). Understanding patterns in adsorption isotherms is essential for optimizing
adsorption systems and improving mechanisms of the adsorption process [35,37].

1
qe

=

(
1

kL Qm

)
1

Ce
+

1
Qm

(8)

log qe = log K f +
1
n

log Ce (9)

qe = BT ln AT + BT lnCe (10)

lnqe = ln Qm − KD−R (11)

where Qm refers to the maximum monolayer capacity (mg g−1), while KL (L mg−1), Kf (L g−1),
AT (L mg−1), and KD-R represent the equilibrium rate constants for Langmuir, Freundlich,
Tempkin, and Dubinin–Radushkevich, respectively. The parameter 1/n represents the
intensity of the adsorption process.

3. Results and Discussion
3.1. Characterization of Nanogold Composite NGC
3.1.1. Fourier-Transform Infrared Spectroscopy (FTIR)

The FTIR spectrum of NGC before MB adsorption shows that five bands are observed,
as in Figure 2, which reveal stacked spectra of NGC after adsorption (black) and before
adsorption (red). The characteristic bands highlight alterations in band intensities rather
than any noticeable shifts. For instance, the 3400 cm−1 bands denote V (O–H) stretching, the
2921 cm−1 bands denote V (C–H) stretching, and the band at 1700 cm−1 can be assigned to
(C–N) stretching. The band at 1261 cm−1 indicates V (C=O) stretching, while 1095 cm−1 in-
dicates V (C=C aromatic) stretching. Notably, the band related to (C=O) stretching displays
a downward shift at 1243 cm−1 of approximately 20 cm−1 in frequency after adsorption.
This suggests a significant hydrogen-bonding interaction between C=O and MB [38]. The
vibrational modes of the (C=C aromatic) stretching band before adsorption shifted to
1044 cm−1 implying modification of ring vibration, which is indicative of interactions like
pi–pi interactions with MB [39].

As the composite structure comprises polymers, the movement of these polymer
frameworks could potentially immobilize the nanogold. This dual functionality is antici-
pated to hinder the aggregation of nanoparticles and fibers and contribute to maintaining
small particle size and stability [40].
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Figure 2. FTIR spectra obtained both before and after adsorption of MB by NGC.

3.1.2. Field Emission Scanning Electron Microscopy (FE-SEM)

The surface morphologies of Auo@PPh2-PIILP, PET-NF, and NGC were characterized
by FE-SEM (Figure 3a–c). Figure 3a revealed a smooth surface architecture and this assured
the successful preparation of Auo@PPh2-PIILP [28]. Figure 3b shows that the diameter
of a PET-NF electrospun nanofiber is less than 100 nm [41]. Figure 3c suggests that self-
assemblies are formed between PET–NF and Auo@PPh2-PIILP. Also, the micrographs
demonstrate PET-NF coated by Auo@PPh2-PIILP molecules over the PET-NF surface under
reaction conditions.
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3.1.3. Transmission Electron Microscopy (TEM)

The utilization of TEM measurement provides advantages in visualizing the mor-
phology and structure of individual nanocomposites resulting from the combination of
Auo@PPh2-PIILP and PET-NF. Figure 4 serves as evidence confirming the successful for-
mation of the composite. NGC composites exhibit distinct morphologies and decrease in
particle size for each specimen due to an increased quantity of gold particles (Figure 4a);
this characteristic may also be linked to the polyphenolic composition of PPh2-PIILP [42].
A higher quantity of MB absorbed onto NGC reveals heterogeneous, uneven particles of
varying sizes and shapes. (Figure 4b).
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3.1.4. Energy Dispersive X-ray Spectroscopy (EDAX) and Elements Distribution
Mapping (EDM)

Chemical composition analysis of NGC was carried out using Energy Dispersive X-ray
Spectroscopy (EDAX) and Elements Distribution Mapping (EDM). The EDAX spectra of
NGC (Figure 5a) displayed elemental peaks corresponding to oxygen, carbon, and gold,
with weight compositions of 47.268%, 21.076%, and 31.654%, respectively, confirming the
composite nature of the material. Subsequent analysis of atomic compositions unveiled
that oxygen, carbon, and gold accounted for 49.839%, 26.106%, and 24.053% of the total
composition, respectively. The images obtained through EDAX and EDM indicated a
uniform distribution of gold within the composite material (Figure 5b,c) [43].
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3.2. Batch Studies
3.2.1. Effect of pH on Adsorption

Figure 6 demonstrates a comparison of NGC’s capacity to absorb MB at different
pH levels. The removal efficiency R% of MB increased from 3.134% to 83.647% as the
pH level rose from 4 to 8, with the highest adsorption of MB (83.647%) achieved at pH 8.
The increase in pH resulted in the deprotonation of the composite material, leading to
a negative charge. This change in charge enhanced the material’s electrostatic attraction
affinity towards the cationic MB dye, consequently, increasing the adsorption capacity.
Conversely, at low pH levels, protonation of the composite material created a competitor to
the cationic MB dye, reducing adsorption capacity. These observations can be explained by
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the protonation and deprotonation processes of the composite material, which align with
previous studies [44–46].
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3.2.2. Effect of Concentration on MB Adsorption

The impact of the initial concentration of MB, ranging from 10 to 40 mg L−1, on
the process of adsorption was investigated. Figure 7 displays the relationship between
MB adsorption and adsorbent concentration. It is clear that as the concentration of the
adsorbent increases, the amount of MB adsorbed also increases. However, the percentage
of MB removal decreases with higher initial concentrations of MB. An increase in the initial
concentration of MB promotes a stronger interaction between MB and NGC, resulting in a
higher uptake of adsorption. These findings are consistent with previous studies [47,48].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 17 
 

3.2.2. Effect of Concentration on MB Adsorption 
The impact of the initial concentration of MB, ranging from 10 to 40 mg L−1, on the 

process of adsorption was investigated. Figure 7 displays the relationship between MB 
adsorption and adsorbent concentration. It is clear that as the concentration of the adsor-
bent increases, the amount of MB adsorbed also increases. However, the percentage of MB 
removal decreases with higher initial concentrations of MB. An increase in the initial con-
centration of MB promotes a stronger interaction between MB and NGC, resulting in a 
higher uptake of adsorption. These findings are consistent with previous studies [47,48]. 

 
Figure 7. The impact of concentration on the adsorption of MB on NGC. 

3.2.3. Effect of Dosage on MB Adsorption 
The information presented in Figure 8 demonstrates changes in qe values with vary-

ing doses of NGC. It was noted that as the NGC dose increased, the adsorption capacity 
qe decreased. Specifically, the decrease in qe from 25.709 to 3.207 mg g−1 was observed as 
the adsorbate dose rose from 0.001 to 0.008 g. This decline can be explained by the com-
petition among adsorbates for adsorption and the distribution of the concentration gradi-
ent between the solute in solution and the solute at the adsorbate’s surface. Moreover, the 
covering of adsorption sites due to a decrease in available surface area for adsorption and 
an increase in the diffusion pathway also played a role in this reduction. Consequently, 
the quantity of MB adsorbed per unit weight of NGC decreased, leading to a decrease in 
adsorption capacity [49,50]. 

 
Figure 8. The impact of varying dosages on the adsorption of MB onto NGC. 

  

Figure 7. The impact of concentration on the adsorption of MB on NGC.

3.2.3. Effect of Dosage on MB Adsorption

The information presented in Figure 8 demonstrates changes in qe values with varying
doses of NGC. It was noted that as the NGC dose increased, the adsorption capacity
qe decreased. Specifically, the decrease in qe from 25.709 to 3.207 mg g−1 was observed
as the adsorbate dose rose from 0.001 to 0.008 g. This decline can be explained by the
competition among adsorbates for adsorption and the distribution of the concentration
gradient between the solute in solution and the solute at the adsorbate’s surface. Moreover,
the covering of adsorption sites due to a decrease in available surface area for adsorption
and an increase in the diffusion pathway also played a role in this reduction. Consequently,
the quantity of MB adsorbed per unit weight of NGC decreased, leading to a decrease in
adsorption capacity [49,50].
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3.2.4. Effect of Contact Time on MB Adsorption

The study examined the adsorption of MB dye at varying contact times (10–80 min)
and discovered that the uptake of dye increased as contact time increased. Equilibrium
was reached after 15 min (as shown in Figure 9). Based on these discoveries, the adsorp-
tion process initiates swiftly on the outer surface of the adsorbent, succeeded by a more
gradual internal diffusion process, which ultimately governs the adsorption rate. Initially,
adsorption occurs quickly due to the availability of numerous surface sites. However, as
time progresses, accessibility of the remaining surface sites diminishes, causing the solute
molecules in the solid and bulk phases to repel each other. Consequently, it takes a longer
period to achieve equilibrium [51].
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3.3. Kinetic Study of Adsorption

The progression of time reveals the nature of adsorption capability through adsorption
kinetics. It is of utmost importance to determine the specific type of adsorption mechanism
within a given system [52]. Table 1 provides a summary of the kinetic studies conducted on
the adsorption of MB by NGC. Figure 10a illustrates kinetic plots for the pseudo-first-order
adsorption of MB on NGC at constant temperatures and initial MB concentrations. The
correlation coefficient R2 value, which is 0.8951 as presented in Table 1, indicates a moderate
fit. However, the calculated equilibrium sorption capacity qe of 1.4949 does not align with
the experimental data of 4.6838, as shown in Table 1. This discrepancy suggests that a
pseudo-first-order model is not suitable for accurately predicting MB adsorption kinetics on
NGC [53,54]. On the other hand, Figure 10b displays kinetic plots for the pseudo-second-
order sorption kinetics of MB onto NGC. The calculated R2 value of 0.9996 indicates an
excellent fit, and the computed value of the equilibrium adsorption capacity, qe, aligns well
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with the experimental data. Therefore, the results strongly suggest that the adsorption of
MB onto NGC follows a pseudo-second-order equation [55].

Table 1. The kinetic parameters related to the adsorption of MB onto NGC.

Pseudo-First-Order Pseudo-Second-Order Elovich Intraparticle Diffusion
K1 (qe)exp. (qe)calc. R2 K2 (qe)exp. (qe)calc. R2 α β R2 BL Kdif R2

0.0078 4.6838 1.4949 0.8951 0.1893 4.6838 4.3840 0.9996 1.964 × 1012 8.0775 0.9525 3.7679 0.0752 0.8912

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 17 
 

 
Figure 10. Pseudo-first-order (a), pseudo-second-order (b), Elovich (c), and intraparticle diffusion 
(d) kinetics of the adsorption of MB on NGC. 

The Elovich Equation, which is commonly used to describe adsorption capacity, is 
presented in Table 1. A graphical representation in Figure 10c showcases the relationship 
between qt and ln (t). The Elovich constants, α and β, were determined by analyzing the 
intercept and slope, respectively, and their values are documented in Table 1. The corre-
lation coefficient value of 0.9252 indicates the suitability of the Elovich model [56]. Figure 
10d illustrates the kinetics of MB intraparticle diffusion. From the plot of qt against t½, the 
values of Kdif and R2 were determined as 0.0752 and 0.8912, respectively. The linearity ob-
served in the plots (Figure 10d) suggests that intraparticle diffusion significantly contrib-
utes to the uptake of MB by NGC. This further confirms that the adsorption of MB onto 
NGC involves a multi-step process within its interior [57]. 

Furthermore, this interdependent relationship also suggests that the adsorption of 
MB on NGC occurred through a complex series of steps. When these steps are clearly 
distinguishable, the graph typically exhibits multiple intersecting lines. The initial line 
represents adsorption on the surface, while the subsequent lines illustrate intraparticle 
diffusion. Conversely, the absence of such distinct features in the graph indicates that the 
steps are not easily discernible, implying that intraparticle diffusion has been the predom-
inant process right from the beginning of the interaction between MB and NGC.  However, 
this information alone does not provide sufficient details to determine which of these two 
phases serves as the rate-limiting step [58]. Additionally, the intercept BL value reveals 
that as the thickness of the boundary layer increases, the impact of the boundary layer 
becomes more pronounced. In simpler terms, when the intercept BL value in the data rises, 
the amount of solute adsorbed on the boundary layer also increases. Table 1 presents the 
BL value, which is obtained by calculating the intercept of linear plots of qt versus t½ under 
all experimental conditions [59]. 

Figure 10. Pseudo-first-order (a), pseudo-second-order (b), Elovich (c), and intraparticle diffusion
(d) kinetics of the adsorption of MB on NGC.

The Elovich Equation, which is commonly used to describe adsorption capacity, is
presented in Table 1. A graphical representation in Figure 10c showcases the relationship
between qt and ln (t). The Elovich constants, α and β, were determined by analyzing
the intercept and slope, respectively, and their values are documented in Table 1. The
correlation coefficient value of 0.9252 indicates the suitability of the Elovich model [56].
Figure 10d illustrates the kinetics of MB intraparticle diffusion. From the plot of qt against
t½, the values of Kdif and R2 were determined as 0.0752 and 0.8912, respectively. The
linearity observed in the plots (Figure 10d) suggests that intraparticle diffusion significantly
contributes to the uptake of MB by NGC. This further confirms that the adsorption of MB
onto NGC involves a multi-step process within its interior [57].

Furthermore, this interdependent relationship also suggests that the adsorption of
MB on NGC occurred through a complex series of steps. When these steps are clearly
distinguishable, the graph typically exhibits multiple intersecting lines. The initial line
represents adsorption on the surface, while the subsequent lines illustrate intraparticle
diffusion. Conversely, the absence of such distinct features in the graph indicates that
the steps are not easily discernible, implying that intraparticle diffusion has been the
predominant process right from the beginning of the interaction between MB and NGC.
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However, this information alone does not provide sufficient details to determine which of
these two phases serves as the rate-limiting step [58]. Additionally, the intercept BL value
reveals that as the thickness of the boundary layer increases, the impact of the boundary
layer becomes more pronounced. In simpler terms, when the intercept BL value in the data
rises, the amount of solute adsorbed on the boundary layer also increases. Table 1 presents
the BL value, which is obtained by calculating the intercept of linear plots of qt versus t½

under all experimental conditions [59].

3.4. Isotherm Study of Adsorption

Evaluation of the transfer of dye molecules from a solution to adsorbent particles at
equilibrium is commonly conducted through an analysis of adsorption isotherms. Among
various approaches, adsorption isotherm analysis is widely recognized as the most efficient
and valuable method. In Figure 11, the adsorption of MB on NGC is visually depicted, while
the parameters for each isotherm are presented in Table 2. These parameters are derived
from the slopes and intercepts of the plots. To determine the most appropriate isotherm for
the experimental data, the isotherm exhibiting the highest correlation coefficient (R2) was
selected, indicating its strong correlation with the data [60].
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Table 2. The isotherm parameters for the adsorption of MB onto NGC.

Langmuir Parameters Freundlich Parameters Tempkin Parameters Dubinin–Radosevich
Temp. ◦C KL Qm R2 Kf n R2 AT BT bT R2 Qm KD-R R2

20 0.797 18.622 0.938 7.596 2.969 0.860 11.098 3.474 724.953 0.895 14.656 1 × 10−7 0.955
30 0.766 14.771 0.314 1.913 2.365 0.573 4.655 4.517 576.045 0.698 13.305 2 × 10−7 0.373
40 4.025 9.033 0.015 6.663 2.625 0.217 4.661 4.393 611.281 0.384 10.562 8 × 10−8 0.037
50 1.338 14.265 0.975 6.221 7.793 0.907 106.817 2.062 1100.561 0.867 13.356 4 × 10−8 0.893
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The results obtained indicated that the Langmuir model was followed by the ad-
sorption of MB due to the strong coefficient correlation (R2). Consequently, a monolayer
of MB is expected to be formed on the surface of the NGC as the potential adsorption
mechanism. Additionally, the (R2) values also demonstrated that MB adsorption on NGC
did not adhere to the Freundlich, Temkin, or Dubinin–Radosevich isotherms, as shown
in Table 2. Generally, if n > 1, it suggests that the adsorbate is favorably adsorbed on the
adsorbent. The fact that in our study n is significantly greater than unity at all investigated
temperatures indicates that NGC is a suitable adsorbent for the adsorption of MB from an
aqueous solution [61].

The Temkin model is not suitable for representing the equilibrium isotherms of MB
on NGC due to the low R2 values. In contrast, the Dubinin–Radushkevich (D–R) model
was employed to determine the apparent free energy of adsorption (E), which is commonly
used to differentiate between physical and chemical adsorption. The adsorption energy
calculated from the D–R isotherms for MB on NGC indicated physical adsorption [62–64],
with Qm values decreasing as temperature increased, suggesting an exothermic adsorption
process [65].

Table 3 presents a comparison of the adsorption capacities Qm achieved in this investi-
gation with various types of MB adsorbents in previous research studies.

Table 3. A comparative analysis of the adsorption capacities Qm for various types of adsorbents used
in previous studies to remove MB.

Adsorbent Material Qm Time pH [Ref.]
Cellulose nanostructure 4.369 120 min 6.0 [49]
PET-NF/MWCNTs 7.047 120 min 8.0 [19]
Modified PET-NF 13.774 100 min 6.0 [37]
Nanogold composite NGC 18.622 80 min 8.0 This study
CuO NPs 26.73 120 min 8.0 [15]
Fe3O4 @MIL-100(Fe) 49 400 min 2.0 [66]
Nanoparticles of microalgae 58.820 180 min 6.0 [67]

The adsorption of dyes involves various mechanisms such as ion exchange, hydrogen
bonding, Van der Waals forces, electrostatics, and dipole–ion interactions. The results from
the kinetic and isotherm studies suggest that physical attraction is the main adsorption
mechanism for MB onto NGC. Therefore, it can be inferred that the primary mechanism of
adsorption is electrostatic interactions [68].

4. Conclusions

A novel approach was employed to synthesize a nanogold composite (NGC) by com-
bining polyethylene terephthalate (PET) nanofibers with Auo@PPh2-PIILP. This ground-
breaking research marks the first successful integration of these materials, resulting in a
highly efficient NGC for the removal of methylene blue (MB) from wastewater.

Through the study, the optimal conditions for MB dye removal were determined to be
a pH of eight, an adsorbent dosage of 0.006 g, an initial MB concentration of 10 mg L−1,
and a treatment time of 80 min. The adsorption process followed a pseudo-second-order
kinetic model, providing a comprehensive description. Additionally, there was a strong
agreement between the calculated adsorption capacity (qe)cal. (4.3840) and the experimental
adsorption capacity (qe)exp. (4.6838). The Langmuir isotherm also demonstrated a good fit
to the data, indicating a maximum adsorption capacity of 18.622 mg g−1 for MB. The sole
constraint in this study lies in the utilization of gold and its costly nature. Therefore, we
urge researchers to explore alternative elements that offer comparable effectiveness at a
more affordable cost for the elimination of methylene blue.
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