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Abstract—Identifying individuals based on their gait is a 

crucial aspect of biometric authentication. It is complicated 

by several factors, such as altering one’s walking posture, 

donning a coat, and wearing high heels. With the advent of 

artificial intelligence, deep learning, in particular, has made 

significant strides in this area. The conditional Generative 

Adversarial Network (cGAN), together with hybrid Long 

Short-Term Memory (LSTM) and Convolutional Neural 

Networks (CNNs), are used in this research to create images 

using a novel technique. The framework comprises three 

parts. The first involves extracting silhouettes, necessitating 

computing the gait cycle and energy. The technique of 

creating images using discriminator models and cGANs is the 

second part. Image classification using hybrid LSTM and 

CNN networks is the third step. Experiments were conducted 

to assess our approach using the CASIA database, a publicly 

available gait recognition dataset. Our proposed approach 

achieved a high classification accuracy of 97.11%. Our 

results outperform state-of-the-art techniques, especially 

when it comes to carrying bags and donning coats.   

  

Keywords—gait recognition, Generative Adversarial 
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I. INTRODUCTION 

Biometrics is the science of using physical 

characteristics, such as fingerprints, faces, and gait, to 

identify people. It is a form of identification that uses 

unique biological traits to verify a person’s identity. 

Biometric authentication is used in many applications, 

including access control, computer security, and banking. 

These systems are becoming increasingly popular as they 

provide a secure and convenient way to identify 

individuals. Gait is the pattern of movement of the limbs 

of a person or animal during locomotion. Specific limb 

movement sequences characterize it and describe how a 

person or animal generally walks, runs, or moves [1].  
Gait recognition is a biometric technology that identifies 

individuals using their unique walking patterns. It is a non-
invasive and cost-effective way to authenticate people. 
The current gait analysis techniques are divided into two 

parts. The first is known as model -based [2], and the 
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second is known as appearance-based [3]. Model-based 
gait analysis techniques use mathematical models to 
analyze the motion of a person’s body. These models 
measure a person’s gait, speed, acceleration, and other 
parameters. This type of analysis is often used in clinical 
settings to diagnose and treat gait abnormalities. 
Appearance-based gait analysis techniques use computer 
vision algorithms to analyze the visual appearance of a 
person’s gait. This type of analysis is used to identify 
unique characteristics in a person’s walking pattern, such 
as stride length, step width, and foot placement. In addition, 
it can be used for applications such as biometric 
identification and motion capture for animation. Deep 
learning is a subset of machine learning that uses 
algorithms inspired by the structure and function of the 
brain’s neural networks. It is a form of Artificial 
Intelligence (AI) that enables machines to learn from large 
amounts of data, identify patterns, and make decisions 
with minimal human intervention. Deep learning models 
are used in a variety of applications, such as computer 
vision, natural language processing, speech recognition, 
and robotics [4, 5]. 

In contrast to machine learning, which commonly 

utilizes shallow architectures, deep learning closely 

mirrors the organizational structure of the human brain by 

adopting a deep architecture [6]. The information goes 

through several modifications because of these deep 

structures before it is finally displayed. The input is routed 

through several simulated neural network layers to attain 

greater precision. In this paper, we proposed a method to 

use an innovative technique based on the use of conditional 

Generative Adversarial Networks (cGANs) and a deep 

learning network (hybrid Long Short-Term Memory 

(LSTM) and Convolutional Neural Networks (CNNs)) to 

produce a more accurate system in determining the identity 

of the individual by his gait.  

The rest of the paper is arranged into the following 

sections. Section II discusses the related work. Section III 

introduces the gait recognition pipeline used in this paper 

and the dataset used in the experiments. Section IV shows 

the experiments, followed by Section V, which reveals the 

results and discussion of the experiments. Finally, Section 

VI concludes the paper. 
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II. LITERATURE REVIEW 

There are three fundamental steps in the gait recognition 

system. Image capture is the first phase, followed by initial 

processing, in which binary silhouettes are extracted from 

still or moving images; characterizing the silhouettes is the 

second step, and training or discrimination is the final  

step [7–10]. The earliest attempts at modeling the human 

body as a whole were made in the 1990s [11]. This 

technique is referred to as the “model-based method,” 

which may be summed up as an effort to depict all the 

significant body points, such as the length and width of the 

body, by locating the pelvis and knees along with the 

different body joints from bilateral silhouettes. In Ref. [12], 

the researchers took 22 significant spots from the human 

body and portrayed them using a deformable layer. For 

binary silhouettes, these characteristics can be changed 

over time. Although this technique has produced useful 

results for identifying human gait, it still has drawbacks, 

including difficulties collecting silhouette images from 

distant regions and challenges with shadows and light. 

Researchers have tried several techniques to increase 

accuracy, including creating two or three-dimensional 

models [13]. The sharpness of the image is not a factor in 

the model-free approach, another method of differentiation, 

because the images taken are from distant security cameras. 

The model-free approach is further broken down into 

sequential motion-based and spatiotemporal motion-based 

approaches. While sequential motion approaches depict 

gait as a time sequence of human positions, the 

spatiotemporal approach portrays gait by mapping the 

distribution of motion through space and time [14]. The 

sequential motion-based method presented in [15] entails 

capturing the history of these motions as well as displaying 

the motion through temporal templates that show where 

the motion has happened. The pre-processing, feature 

extraction, and classification methods applied to 

silhouette-based gait sequences are principally responsible 

for the discrepancies between the spatiotemporal 

approaches. The Gait Energy Image (GEI), a feature 

selection strategy that captures a history of gait movements 

in a single 2D template rather than storing them as a 

collection of templates, was proposed by Hu et al. [16]. 

The spatiotemporal GEI characteristic is calculated by 

averaging the pixels of the silhouette over many frames 

during a gait cycle. The statistical integration of both 

natural and artificially (distorted) gait templates was 

necessary for the recognition process. This technique 

reports excellent recognition performance while also 

saving space. A gait entropy image  that will be used as an 

automatic feature selection process is shown for the gallery 

(ground truth) and probing (testing) photos [17].  

The adaptive component and discriminant analysis, a 

fast recognition method, has been shown to lessen the 

effects of covariate walking. Various academics have 

conducted research and proposed different tactics to cope 

with recognition from distinct points of view in an 

identical circumstance. In Ref. [18], the authors used the 

silhouette sequence to create a deep learning algorithm 

based on ResNet and LSTM. Recently, researchers have 

used Generative Adversarial Networks (GANs) 

extensively to recognize the gaits on very large scales of 

data [19] with a two-stream GAN model. In the same 

context, Dupuis et al. [20] developed an architecture based 

on LSTM and autoencoder networks that employed RGB 

image sequences as input. With silhouette-based data 

captured by certain cameras, Alvarez and Sahonero-

Alvarez [21] proposed a Convolutional Neural Network 

(CNN) model for predicting the angle and also used it to 

detect the gait. The prediction results of several gait 

detection methods are convincing, yet there is still an 

opportunity to improve their effectiveness further.  

III. MATERIALS AND METHODS 

In this study, our primary goal was to find a solution to 

the issue of vision variations brought on by altered walking 

angles, the wearing of a coat, wearing high heels, or 

carrying a bag. Numerous earlier studies [22–25] 

suggested that altering any of the previously listed 

parameters results in a change in human gait. To lessen the 

impact of the problem of various visions, an approach 

relying on the employment of the cGAN in addition to the 

hybrid LSTM and CNN networks  

 to create images was presented. The side view angle 

was used because it reveals a wide range of qualities. The 

framework can be divided into three parts. The first part is 

the process of extracting silhouettes, calculating the gait 

cycle, and then calculating  gait energy images. The second 

part generates images through Generative Adversarial 

Networks (GANs) and discriminators’ models, and the 

third part classifies images using two networks. The first 

network is Patch GAN, and the second is a hybrid CNN 

and LSTM network. Fig. 1 shows the proposed algorithm. 

A. Preprocessing  

Obtaining silhouettes during a single walking cycle is 

the first stage in this technique. The approach described in 

[25] generates human silhouettes from the provided gait 

sequence. Size normalization and horizontal alignment are 

applied to all images. Noise is removed from the images 

using dilation and erosion. After that, the gait cycle 

segmentation is estimated by measuring the silhouette’s 

bounding box’s length and width and then calculating the 

interval between the two highest lengths. After that, GEI is 

calculated by using the samples in Fig. 1 and Eq. (1): 

 

𝐺(𝑥, 𝑦) = ∑  𝑁
𝑡=1 𝐼(𝑥, 𝑦, 𝑡)/𝑁                (1) 

   

where X and Y are the image coordinates, N is the number 

of images in a whole gait cycle, I is the image, and t is the 

gait cycle frame number.  
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Fig. 1. The proposed pipeline for gait recognition. 

B. Invariant Feature Generation  

We propose a conditional generative model to convert 

gait representations from any perspective and appearance 

condition to representations at side view under typical 

conditions using an architecture based on a U-Net. 

1) Input data 

Before the GAN can be applied, data must first be 

organized. As a result, the GEIs from all views in the 

regular walking, carrying a bag, and wearing a coat 

sequences are set as the source information. On the other 

hand, the GEIs from normal walking at 90° (side view) are 

set as the goal data. Then, 40M source-target 

representation pairings were gathered to train the GAN. 

2) Conditional generative adversarial nets 

Mirza and Osindero proposed the cGANs in [26]. 
Because attributes are not explicitly provided, simple 
GAN cannot be controlled. Thus, they introduced the 
conditional GAN version. When using external data, 
cGAN includes a condition y that decides whether an 
image is being produced or a distinction is being made. 
The class label or properties from several distinct 
modalities may be associated with these conditions. 
Conditioning is performed by adding extra data y as an 
additional input layer for the generator and discriminator. 

The cost function for cGAN is presented in [26] and is 
nearly identical to that for GAN. The only distinction 
between discriminator and generator networks is the 
addition of a condition y. Our conditional GAN’s objective 
can be summed up as follows: 

 
(𝐺, 𝐷) = 𝐸𝑥,𝑦[𝑙𝑜𝑔 𝐷(𝑥, 𝑦)] + 𝐸𝑥,𝑦[[𝑙𝑜𝑔(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))]] 

(2) 

In which the generator G tries to minimize this function. 
In contrast, the discriminator D aims to maximize it. Past 
studies have also demonstrated that combining the past 
loss with more traditional loss functions aids in obtaining 
results that are quite close to the truth. 

 

𝐿𝐿1(𝐺) = 𝐸𝑥,𝑧[∥ 𝑦 − 𝐺(𝑥, 𝑧) ∥1]                   (3) 

 

The final objective can be defined as: 

 

𝐺 ∗= 𝑎𝑟𝑔𝑚𝑖𝑛
𝐺

 𝑚𝑎𝑥
𝐷

 𝐿𝐶𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆𝐿𝐿1(𝐺)      (4) 

 

where λ is the regularizing hyperparameter. For example, 

when using λ, the cGAN generates high defined outputs, 

but the classification accuracy decreases. 

3) Classification 

A subject is classified to determine whether or not it 
belongs to a class in the database. A hybrid LSTM-CNN 
deep neural network was adopted to eliminate the 
weaknesses of traditional classification methods, as the 
discriminative information is not within the means of 
classes and a small sample size problem. The proposed 
image classification model is a layered deep neural 
network consisting of a CNN and an LSTM. The LSTM is 
a type of Recurrent Neural Network (RNN) that, in 
contrast to conventional feed-forward neural networks, has 
feedback connections. The ability to have feedback 
connections makes LSTM a type of “general purpose 
computer”, allowing it to perform all computations that a 
Turing machine can.  

a) Long Short-Term Memory (LSTM) 

According to Fig. 2, a unit of an LSTM is defined as a 

group of vectors consisting of a forget gate 𝑓𝑡 , an input 
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gate 𝑖𝑡, a memory cell 𝑐𝑡, an output gate 𝑜𝑡, and a hidden 

state ℎ𝑡 at each time step, where d is the magnitude of the 

memory dimension [24, 25]. The LSTM equations have 
numbers ranging from 5–10. The terms b and W in the 
equations represent the input gate, output gate, forget gate, 
memory cell, tanh layer, a hidden layer bias vector, and 

weight matrices, respectively. 𝜎  Indicates the logistic 

sigmoid function. 

 
Fig. 2. LSTM cell. 

In an LSTM unit, the input gate is in charge of deciding 
whether to remember the data it processes and is fed with 

a fresh stream of information at every time step 𝑡. On the 

other hand, the amount of information that should be 
erased from the memory cell is controlled by the forget 
gate. 

b) The CNN-LSTM neural network 

Fig. 1 represents the architecture of our proposed CNN-
LSTM model. Our system uses grayscale images as input 
images of 100×100 size. The network consists of three 
convolutional layers. A max pooling layer follows each 
layer, which is composed of three LSTM layers, followed 
by a fully connected layer and a dropout layer. The details 
of the network structures are shown in Table I. 

TABLE I. DETAILS OF THE CNN AND LSTM NETWORKS 

Layers 
Number 

of Filters 

Filter 

Size 

Windows 

Size 
Stride Padding 

Activation 

Function 

Conv.1 32 3×3 N N Same Relu 

MaxPool N N 2×2 2 N N 

Conv.2 16 3×3 N N Same Relu 

MaxPooll N N 2×2 2 N N 

Conv.3 32 3×3 N N Same Relu 

MaxPool N N 2×2 2 N N 

flatten N N N N N N 

LSTM 32 N N N N N 

LSTM 64 N N N N N 

LSTM 128 N N N N N 

Flatten N N N N N Softmax 

IV. EXPERIMENTS AND ANALYSIS 

This CASIA-B database [2] was captured indoors when 

the subject was walking, with 11 cameras positioned 

around the person’s left side. Eighteen degrees separated 

the two closest view directions. Fig. 3(a) shows the images 

captured by the cameras. The viewing angles are named 0°, 

18°, 36°, 54°, 72°, 90°, 108°, 126°, 144°, 162°, and 180° 

from left to right. Gait data from 124 subjects were 

captured, among whom 93 were men, and 31 were women. 

Every subject was asked to walk 10 times in the scene (6 

normal + 2 with a bag + 2 with a coat). Example frames 

are shown in Fig. 3(b).  

Thus, there were a total of 10×11×124 = 13,640 video 

sequences in the database [31]. Fig. 4 shows the GEI from 

one subject in all the conditions at 11 views.  

We applied the experimental approach recommended  

in [18, 19] in order to accurately compare the proposed 

strategy with cutting-edge methods. As a result, we 

divided the dataset in half.  

 

Fig. 3. Sample frames of CASIA database. (a) 11 different capturing 

views. (b) 3 different walking conditions. 

The first 62 participants, composed of six regular, two 
carrying-bag, and two wearing-coat sequences, made up 
the training set. The remaining 62 people were employed 
in the test phase. In order to evaluate the variations in view, 
carrying, and clothing circumstances, the first four normal 
sequences, denoted as “nm1”, were used as the gallery set, 
but the two left sequences, along with the “bg” and “cl” 
sequences, were used as the proving set. This is displayed 
in Table II. The generator and two discriminators make up 
the cGAN’s two components, as depicted in Fig. 1. The 
GEI generation process makes use of the generator. 

 

 
Fig. 4. Walking sequences at all the conditions at the 11 views of the 

CASIA-B dataset.  

TABLE II. THE EXPERIMENTAL DESIGN 

Training set Gallery set 
Probe set 

Probe NM Probe BG Probe CL Probe ALL 
ID: 001–062 

nm01–nm06, 

bg01, bg02, 

cl01, cl02 

ID: 063–124 

nm01–nm04 
ID: 063–124 

nm05, nm04 
ID: 063–124 

bg01, bg02 
ID: 063–124 

cl01, cl02 

ID: 063–124 

nm05, nm04 

bg01, bg02 

cl01, cl02 

 
It utilizes the U-Net architecture. We employed a 

similar setup to that of Isola [19]. It is composed of two 
elements, the first of which is the encoder and the second 

is the decoder. There are four convolutional layers in the 
encoder. Because we use a U-Net design, which 
concatenates activations from layer i to layer n-i, the 
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number of channels in the decoder doubled. The encoder’s 
first layer differs from the others because it does not use 
batch normalization. After the final decoder layer, a 
convolution and tanh function are added to match the 
channel number of the output. Table III presents specifics 
regarding the encoder and decoder structures. To 
distinguish whether created photos are fake or real, the first 
discriminator shown is utilized as in Fig. 1, which 
comprises three convolutional layers. In addition, we 
decided to use a marginally unique design known as Patch 
GAN [20]. The benefit of using this method is that it only 
penalizes specific areas of the images, i.e., it identifies 
whether a specific area of an image is real or fake. As a 

result, we can better focus on particular GEI regions that 
correlate to the parts more resistant to changes in 
appearance, such as the head and feet, which contain the 
most important features [21, 22]. The identification 
discriminator, which uses a hybrid LSTM-CNN 
architecture, is the second discriminator. The identification 
discriminator uses the initial gait image sequence and the 
generated output gait image sequence as one training data 
pair and then computes the likelihood that the data pair 
belongs to the same person. When the training data pair 
represents a single subject, the identification discriminator 
should output 1; otherwise, it should output 0. 

TABLE III. DETAILS OF THE ENCODER AND THE DECODER 

phases  Layers 
Number of 

Filters 

Filter 

Size 
Stride 

Batch 

Norm 
Dropout Concatenation 

Activation 

Function 

Encoder 

Conv.1 64 32×32 2 N N Y L-Relu 

Conv.2 128 16×16 2 Y N Y L-Relu 

Conv.3 256 8×8 2 Y N Y L-Relu 

Conv.4 512 4×4 2 Y N N L-Relu 

Decoder 
Conv.1 256 8×8 2 Y Y N Relu 
Conv.2 128 16×16 2 Y N N Relu 

Conv.3 64 32×32 2 Y N N Relu 

 
The generator and the first discriminator were trained 

using the Adam optimizer, with a learning rate of 0.0002 
and momentum parameters of β1 = 0.5 and β2 = 0.999. We 
discovered that after 20 training epochs, satisfactory 
performance was reached when using λ = 100. The second 
discriminator was trained using root mean square prop 
optimization with a learning rate of 0.001 and a binary 
cross entropy function. The weights were initially obtained 
from a Gaussian distribution with a mean of 0 and a 
standard deviation of 0.02 because U-Net and Path GAN 
were trained from scratch (the CASIA database only has a 
limited number of sequences for each subject). In U-Net 
and Patch GAN, the image size is 64×64, whereas in 
LSTM, it is 150×150×3 reshaped to 100×100×3 to fit the 
LSTM input shape layer. We utilized Python programming 
language in the Collaborator Pro Environment and the 
Windows 11 operating system. 

V. RESULTS AND DISCUSSION 

 In this paper, a method of hybrid CNN and LSTM 

classifiers on the spatiotemporal feature GEI generated 

using CGAN has been proposed for gait recognition 

systems. The CASIA-B [2] dataset has been used to assess 

the proposed method statistically. There are 124 people in 

the CASIA-B [2] dataset. The 124 individuals in the 

dataset were split into 62 individuals for the training set 

and 62 individuals for the testing set. The performance 

measure to evaluate the proposed model includes accuracy, 

score, precision, and recall [26]. Please see Table IV. 

TABLE IV. ACCURACY, PRECISION, RECALL, AND F1-SCORE RESULTS 

Class  Accuracy Precision Recall F1 Score 

Training Data 0.9700 0.9700 0.9700 0.9700 

Val. Data 0.9700 0.9700 0.9700 0.9700 

Testing Data 0.9700 0.9700 0.9700 0.9700 

 
First, an image segmentation process was conducted, 

employing the Gaussian mixture technique to separate the 

silhouettes from RGB gait images due to this method’s 
efficiency for fundus gait image segmentation, as shown 
in prior studies [25]. Some of the segmentation results are 
shown in Fig. 1. After this processing, size normalization 
and horizontal alignment are applied to each image, 
followed by removing all noise from the images using 
dilation and erosion. The estimation of the gait cycle 
segmentation that follows was done by first determining 
the length and width of the bounding box that is drawn 
around the silhouette and then by determining the interval 
between the two largest lengths. The samples in Fig. 1 are 
then used to calculate the GEI. To generate invariant 
features, GEI were created using cGAN for different 
conditions. This produced typical side view images for 
multiple views, wearing a coat and carrying a bag GEI, as 
shown in Fig. 5. After that, these views are discriminated 
using the first discriminator for the first 62 people. The test 
set was differentiated using a second discriminator, 

indicating whether the generated GEI belonged to the 

same person. Tables V–VII show the CCR that our model 
was able to attain. In the aforementioned tables, each 
column denotes a view angle from the probe set, whereas 
each row denotes a view angle from the gallery set. 
Because there are 11 views in the database, there are 121 
possible combinations. 

The accuracy of the hybrid CNN and LSTM classifier 

has been assessed based on previously discussed changing 

neural network parameters. The resulting accuracy, as 

determined by the testing dataset, is 97%. Fig. 6 shows the 

training details after 25 epochs. Based on the overall 

accuracy of the data obtained, as demonstrated in 

Table VIII, the performance of our suggested technique 

has been superior in comparison with existing methods. As 

can be observed from the comparative analysis in the table, 

our study is performing well when compared to the other 

studies. 
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Fig. 5. Side views images for multiple views, wearing a coat and carrying a bag GEI. 

TABLE V. CORRECT CLASSIFICATION RATE FOR NORMAL WALKING 

Probe Set View (bg01, bg02) 

Gallery Set View 

 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° 

0° 45.16 27.42 21.77 14.52 6.45 9.68 6.45 10.48 20.97 25.00 30.65 

18° 28.23 49.19 45.16 28.23 20.97 19.35 17.74 24.19 29.84 30.65 21.77 

36° 24.19 41.13 58.06 49.19 31.45 23.39 21.77 27.42 35.48 22.58 13.71 

54° 12.10 20.97 45.16 58.87 52.42 41.13 33.06 28.23 25.81 16.13 12.10 

72° 20.97 22.58 35.48 45.97 61.29 53.23 43.55 31.45 25.81 16.94 8.87 

90° 14.52 19.35 31.45 41.13 58.06 50.00 47.58 44.35 25.81 21.77 9.68 

108° 15.32 18.55 37.10 41.94 58.06 51.61 59.68 53.23 43.55 28.23 15.32 

126° 19.35 21.77 32.26 40.32 38.71 40.32 42.74 54.84 45.97 24.19 12.90 

144° 23.39 22.58 32.26 32.26 31.45 29.84 39.52 50.81 58.87 40.32 19.35 

162° 18.55 16.13 19.35 22.58 19.35 12.10 16.94 23.39 29.84 41.94 19.35 

180° 29.03 16.13 11.29 8.87 8.06 7.26 4.84 8.06 12.10 22.58 38.71 

TABLE VI. CORRECT CLASSIFICATION RATE FOR CARRYING WALKING 

Probe Set View (cl01, cl02) 

Gallery Set View 

 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° 

0° 99.19 67.74 46.77 29.03 23.39 18.55 18.55 28.23 30.65 47.58 68.55 

18° 80.65 99.19 93.55 62.90 48.39 35.48 33.06 43.55 45.16 66.13 50.81 

36° 48.39 91.94 96.77 86.29 69.35 54.84 58.06 62.10 66.94 57.26 28.23 

54° 34.68 59.68 91.13 97.58 92.74 89.52 83.06 82.26 66.13 39.52 24.19 

72° 16.94 35.48 66.13 93.55 99.19 97.58 93.55 77.42 55.65 30.65 12.90 

90° 20.16 37.90 54.03 77.42 98.39 99.19 97.58 83.06 58.06 32.26 20.16 

108° 24.19 39.52 55.65 81.45 93.55 95.97 99.19 92.74 82.26 39.52 26.61 

126° 22.58 45.97 59.68 75.00 81.45 83.87 93.55 97.58 95.16 56.45 25.00 

144° 32.26 45.97 60.48 61.29 62.90 59.68 82.26 94.35 98.39 77.42 41.13 

162° 63.71 61.29 62.10 50.81 34.68 35.48 48.39 66.13 77.42 99.19 71.77 

180° 99.19 67.74 46.77 29.03 23.39 18.55 18.55 28.23 30.65 47.58 68.55 
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TABLE VII. CORRECT CLASSIFICATION RATE FOR CLOTHING WALKING 

Probe Set View (nm05, nm06) 

Gallery Set View 

 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° 

0° 99.19 67.74 46.77 29.03 23.39 18.55 18.55 28.23 30.65 47.58 68.55 

18° 80.65 99.19 93.55 62.90 48.39 35.48 33.06 43.55 45.16 66.13 50.81 

36° 48.39 91.94 96.77 86.29 69.35 54.84 58.06 62.10 66.94 57.26 28.23 

54° 34.68 59.68 91.13 97.58 92.74 89.52 83.06 82.26 66.13 39.52 24.19 

72° 16.94 35.48 66.13 93.55 99.19 97.58 93.55 77.42 55.65 30.65 12.90 

90° 20.16 37.90 54.03 77.42 98.39 99.19 97.58 83.06 58.06 32.26 20.16 

108° 24.19 39.52 55.65 81.45 93.55 95.97 99.19 92.74 82.26 39.52 26.61 

126° 22.58 45.97 59.68 75.00 81.45 83.87 93.55 97.58 95.16 56.45 25.00 

144° 32.26 45.97 60.48 61.29 62.90 59.68 82.26 94.35 98.39 77.42 41.13 

162° 63.71 61.29 62.10 50.81 34.68 35.48 48.39 66.13 77.42 99.19 71.77 

180° 79.03 47.58 28.23 21.77 16.94 15.32 20.97 22.58 41.13 68.55 99.19 

 

TABLE VIII. COMPARISON WITH STATE-OF-THE-ART METHODS 

Authors Proposed Method Accuracy Database 

Wang et al. [27] Ensemble Learning 0.92% CASIA-B 

Wang et al. [27] LSTM 0.95% CASIA-B 

Amin et al. [28] Conv-BiLSTM 0.96% CASIA-B 

Proposed  cGAN + CNN + LSTM 0.9711% CASIA-B 

 

  
(a) 

 
(b) 

Fig. 6. The accuracy on CASIA-B experiments, (a) Legends are training 

loss vs validation loss; (b) Legends represent training accuracy vs 

validation accuracy.  

On the CASIA-A and CASIA-B datasets,  

Wang et al.’s [27] ensemble learning approach for 

classifying human gait produced values of 0.95 and 0.92 

CPR, respectively. On the CASIA-B dataset, the same 

technique achieved 0.95 CPR by using the LSTM model 

on the CASIA-B dataset to learn the sequential patterns of 

the input images. Amin et al. [28] achieved 0.96 CPR (0.88, 

human with bag and 0.92, normal) using the CNN-

BiLSTM model for the classification of different types of 

humans. 

Due to the adoption of the identical databases and data 

division, a comparison was made with the earlier works 

listed in Table VIII. It was demonstrated that creating 

images using CGAN was highly successful and effective, 

making it a superb method for differentiating the human 

gait. 

VI. CONCLUSION 

This work developed a technique for a gait 

identification system based on cGAN using both U-Net 

architecture and hybrid CNN and LSTM classifiers to 

overcome appearance fluctuations owing to changes in 

clothes, carrying conditions, and view angle. Due to the 

specificity of the data, it is difficult to distinguish the 

human gait, so we proposed an algorithm consisting of a 

generator that is used to generate standard images at a 90° 

angle. The first discriminators were proposed to 

distinguish between real and fake images produced by the 

generator. The second generator determines whether these 

images are for the same person. 

The accuracy of gait recognition was improved by this 

design, as we have shown through the results. Performance 

is better using the suggested framework than in earlier 

proposals. In addition, our solution overcame the issues of 

previous studies that suffered from variations in carry bags 

and clothing outerwear. Because of this quality, our 

technology is suitable for advanced surveillance systems, 

among other practical applications. This model will be 

updated to handle more difficult circumstances, including 

temporal fluctuations, and show how benchmarking has 

improved when massive databases are used. 

Additional subjects are necessary to produce more 

accurate results, and these additional subjects improve 

accuracy when there are major view changes between the 

prove set and the gallery. In addition, we will need to use 

more advanced and powerful models to handle cross-view 

identification. It is also noteworthy that the limitations of 

 

 

 

Journal of Image and Graphics, Vol. 12, No. 2, 2024

174



current gait analysis techniques include inhibited 

environmental conditions and long processing duration. 

Future work will consider these limitations to improve the 

performance of the gait recognition system further. 
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