DIFFERENT OPERATORS FOR THE POLYNOMIALS $S_{n}(\delta, \zeta, \lambda \mid q)$

SAMAHER A. ABDUL-GHANI ${ }^{1}$, MOHAMMED A. ABDLHUSEIN ${ }^{2}$, HUSAM L. SAAD ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, University of Basrah, Iraq
${ }^{2}$ College of Education for Women, Shatrah University, Thi-Qar, Iraq
*Corresponding author: hus6274@hotmail.com

Received Mar. 7, 2024

Abstract

In 2010, Saad and Sukhi defined the polynomials $S_{n}(\delta, \zeta, \lambda \mid q)$. They simply derived its generating function by utilizing the operator $L\left(b \theta_{x y}\right)$. In this study, we provide Rogers' formula using the q-exponential operator $T\left(b D_{q}\right)$, Mehler's formulas using the operator $L\left(b \theta_{x y}\right)$, and a linearization formula for the polynomials $S_{n}(\delta, \zeta, \lambda \mid q)$. In addition, we employ the Cauchy companion operator $E(a, b ; \theta)$ to recover the generating function and provide the Rogers formula, Mehler's formula, and an extended Rogers formula for the polynomials $S_{n}(\delta, \zeta, \lambda \mid q)$.

2020 Mathematics Subject Classification. 05A30; 33D45.
Key words and phrases. q-operator; the generating function; Rogers formula; Mehler's formula; linearization formula.

1. Introduction

We assume that $0<|q|<1$. The q-shifted factorial is given for every $a \in \mathbb{C}$ as [10,13]:

$$
\begin{gathered}
(\beta ; q)_{0}=1, \quad(\beta ; q)_{r}=\prod_{k=0}^{r-1}\left(1-\beta q^{k}\right), \quad(\beta ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-\beta q^{k}\right) . \\
(\beta ; q)_{r}=(\beta ; q)_{\infty} /\left(\beta q^{r} ; q\right)_{\infty} . \\
(\beta ; q)_{r+k}=(\beta ; q)_{k}\left(\beta q^{k} ; q\right)_{r} .
\end{gathered}
$$

and [1]

$$
\begin{equation*}
\left.\left(\beta q^{-r} ; q\right)_{n}=(-1)^{r} \beta^{r} q^{\substack{r \\ 2}}\right)^{2}(q / \beta ; q)_{r} . \tag{1.1}
\end{equation*}
$$

The multiple q-shifted factorials is [13]

$$
\begin{aligned}
\left(\beta_{1}, \beta_{2}, \cdots, \beta_{m} ; q\right)_{r} & =\left(\beta_{1} ; q\right)_{r}\left(\beta_{2} ; q\right)_{r} \cdots\left(\beta_{m} ; q\right)_{r} . \\
\left(\beta_{1}, \beta_{2}, \cdots, \beta_{m} ; q\right)_{\infty} & =\left(\beta_{1} ; q\right)_{\infty}\left(\beta_{2} ; q\right)_{\infty} \cdots\left(\beta_{m} ; q\right)_{\infty}
\end{aligned}
$$

DOI: 10.28924/APJM/11-53

