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Abstract

In this paper, we study the truncated of classical Beta operators £, 5 (x) and the error
occurs by the approximation. We estimate the truncated error in terms of modulus of
continuity and the weighted norm of the function being approximated.

Keywords: MKZ Truncated operators, approximated order, Beta operators, modulus of
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Introduction

A study of truncated of sequence of
linear positive operators is a branch of
approximation theory. In [4],[9],[12],[11]
and [5] there is a review of truncated of
some  especially Szasz  —Mirakyan
operators. Here, we study the truncated of
the sequences of linear positive operators
(Beta operatorsf,, y(x)).Then, we find the

error occurs by this approximation of
truncated of Beta operator in terms of
modulus of continuity of a function being
approximated. For more properties of Beta
operators you can read the articles
[11.[2].[3].[6] and [7].

In the beginning, we give some
preliminaries as follow:

Bu(fi ) = 2 busc () £, (1)
where
b =n (" F ) k(1 4 )k @)

n € Nand x € Ry = [0, o).

For the functions f belonging to the weighted space C,,

C, ={f €C[0,o) : f(x)=0(1+ xP)forsomep € N},

Ifllp = 1Ol = supxer,up OIf (I,

u, (DB (If () — FOO; %) < Ky (P)aw, <fC J"“*")+"(Z"“)), @3)

for f €
properties of S, y(f ) as follows:

n2

Cp,n €N, x € R, where w,(f; Cp,) is the modulus of continuity of f, we can get the

Bun(f ;%) = ZN: bk (X)f (g)
k=0

We can evaluate that:

Z b (x) =1,for x €[0,1) ,n €N, (4)

Ba(f();0) = f(0) = Bon(f(t);0)

and

By (f ()i %) = f(x) = Bpn (f (&) = fF(x); ) = f(X) Xyl brie (%) (®)

forevery f € C(I),x € (0,1) andn, N € N.

In some papers ([4],[9],[11]and[12]) the authors investigated the truncated Szasz-Mirakyan

operators defined as:
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N

k

Sun(fix) = ey T (K Ry, € N

wn(fx)=e k' f ~) xERgnEN,
k=0

where f: Ry = R, and N = N(n, x) are positive integers depending on n and x. The results
presented in some papers [4],[9]and [12] show that if x > 0 is a fixed pointand N = N(n, x)

are integers such that N > nx for n € N and lim,,_, o, N_—\/;x = oo, then

lim, o Sy (f;x) = f(x) forevery f € C,,, p € N,.
The aim of this note is to derive similar results for the truncated MKZ operators.

L. Rempulska and M. Skorupka in [10] are considered a strong approximation of f € C,for
some linear positive operators.

The well-known Meyer-Konig and Zeller operators that we called MKZ is given by

(o] k .
M, (f; %) = kZOpn"‘(’C)f (n T k) fo=sx<d (6)
f(1) if x=1
Pric () = (" )k (1 — ) (7)

Where feC(),x el =[01] and neN={1,2,..},C()is the space of continuous
functions on I with the fallowing norm

If1l = sup{lf (x)|: xel}
and [M,,(f) ~ fl < S (f, =) n € N. )

In [10] Rempulska were examined the strong approximation of by MKZ operators and he
proved the inequality

My (If(8) = %) < S0 (fi =) (©)
for x € [0,1], n € N.

In this paper, we show that an analog of MKZ operators connected with Beta
operators.

Theorem (1). [5]
Let x € (0,1) and n € N be fixed, and let N = N(n, x) be an integer such that

N > (n+ 1) Then

N
-nx+1-x

Mo (F0;2) = f@)| <200 (Fi2) + If O = am (10)
holds for every f € C(I).

Corollary(1). [5]
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Let x, € (0,1) and let N = N(n, x,) be integers such that

(i) N>% forn € N,
—A0
(i) (N /n);-, is a bounded sequence,
_(n+1)xp
1-x9

(i) limy e = =

Then
limy, 0 My, v (f; x0) = f(x9)holds for every f € C(1). (12)
Corollary(2). [5]

Let x, € (0,1)and let N = [1 "
—A0

conditions (i)-(iii) are satisfied, and consequently the convergence (8) holds for every f €
C(I). Moreover, we have

n+xp

] for n € N.([y] denotes the integral part of y € R). Then the

3 1 .
Mo (f320) = FGxo)] < 50 (fi =) + KaCeo) o)

for f € C(I) and n € N, where K, (x,) = const.> 0.

Corollary(3). [5]

If xo € (0,1)and N = [(n +1) 22+ ,/nan] forn € N, where (a,,) is a non- bounded

1—XO

sequence of positive numbers such that (3—%);" is bounded , then (i)-(iii) and

(11) are satisfied , and the inequality

3 1
Mo (f320) = FGe0)| < 500 (13 72)

holds for every x f € C(I) and n € N, where K5(x,) = const. > 0.

+ K3 (xo) If (o) |-

Here, we want to prove the above results in the space C, with weighted norm:

Theorem (2).

Suppose that p € Ny, n € N and x € (0,). For N = N(n, x) be an integer such that
N > nx , then the inequality

x(1+x) x(2x+1)
+ 2
n

Uy (0| Bun (F (£, %) = f(x); 0)| < Ki(D)wa | f5C ;\/

Jn(l+x)+1 (x+1)N

J2m(nix —nx) N +nx

+Hfllp : (12)

holds for every f € C,,, where K;(p) > 0 is constant and is given in (3).
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Proof:
For given, f € C(I),x € (0,1)and n, N € N we get by (1),(3),(4) and (5):

Ban(F(); %) = f(x) = Bon (F (©) — fF(x); %) — f(x) (13)
U, () | By (F (0); %) — F ()|
4(f ) ) bu®)

k=N+1

< Ki(pw <fi Cp; \/X(x t + x(2x D) + u, ()| f (x)| Z bpnk(x)
k=1

< Up (OB n(If () = fFO; %) +

n n2

< K(p)o (f; c, \/x(x +1) N x(2x + 1))

n n2

o

+uy, () |f () [n(1 4+ x)™ 1 Z (n "1\',1_\{_?{‘ k) xN+R(1 4 x)7F

k=1

< K)o <f; , \/x(x +1) N x(2x + 1))

n n2

N+1)(n+N+2)...(n+N+k)( x )k
1+x

= (n+
Fu, () |f () [ by (%)
P N kZl (N+1D(N+2)..(N+k)

< K)o <f; , \/x(x +1) N x(2x + 1))

n n2

k

+up(x)|f(x)|bn1v(x)2 (1+75) (+75) -~ A+ ()
. <f; .. \/x(x 1) e 1))
k

A @I @b Y [(1+ 7)) - (14)
k=1

N+1/1+

By the assumptions: x € (0,1) and N > nxwe can write

Z e <bnN(x>Z A+ =)

k=N+1

k
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o k
< by (x) kZl <(1 )T x)

(N + n)x
N+nx

= bn,N(x)
If N > nx and x > 0, we have

s <un(2) ) o By

_n(n+N)! NNe ™™ (n+4 N) " N-lg—n-N-1 ) nte n1
~N'(n—-1)! N! (n+ N)! )

).

n!

By using the Stirling formula, consequently

n n
n! =+2nn (Z) , Wwe have

1 1
by () < n+1 ( 1 ) < 1 ) 1
MO TN+ n+1\V2rN) \2r(n— 1)) J2rm AN+ 1)

_J2mr(n+N+1) Vn+N+1
- JanN(n—-1) J2nN(n- 1)

Therefore,

- VRt N+1 (N+n)x
2, (D) ()| ,; ) < Wl e (15)

Putting N = nx then we get x = g x>0

(o]

vn+nx+1 (xn+n)N
b <
tp(@If I z ) = e (W oo

Jn(l+x)+1 (xn+n)N

J2n(n?x —nx) (N +nx)n

Jn(l+x)+1 (x+1)N

J2rn(m?x —nx) (N +nx)

< Ifllp

< Iflly

from (13),(14), (15) we haveresults (12) m
Corollary(4).

Let x, € (0,0) and let N = (n, x,)be positive integers such that for every n € N:

(1) N > nx,,
(i)  (N/n);~; isabounded sequence,

20
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N—-nx

(lll) limn_,oo W =
Then the convergence
limy, o .Bn,N (f; Xo) = f(xo) (16)
holds for every f € C, ,p € Ny,.

Corollary(5

For afixed x, > 0 let N = [n (x, + 1)]for n € N. Then the conditions (i), (ii) and (iii) are
satisfied, and hence (16) holds for f € C,. Also, we have

X + xg N x0(2x9 + 1)
n n?

1
Up (%0) | By (5 %0) = f (x0)| < Kalw(f; € :J +II£l, ﬁ))

forevery f € C,and n € N, where K, = K,(p, x,) is a positive constant depending on p and
Xg-
Corollary(6)

Let x, € (0,) and let N = [nx, + vna,] for n € N, where (a,,) is a

non-bounded sequence of numbers a,, > 1 such that (j—%);‘f:lis bounded. Then (i), (ii) and (iii)
are satisfied and hence (12) holds for every f € C,,. Moreover, we have

Up (x)lﬁnN(f; Xo) — f(xo)l

x2 + X, N xo(2xy + 1)
n n?

1
< Ks(p, x0) (w(f; C ;j ,a—) +I£1l)

for n € N, where Kz = K<(p, x,) = constant > 0.

There are similar conditions of convergence of partial sums of truncated MKZ
operators and Beta operator from theorem (1) and theorem (2). In our opinion, this is an
expected result because both sequences are convergent to the function as n - co.
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