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Abstract 

In this paper, we study the truncated of classical Beta operators         and the error 

occurs by the approximation. We estimate the truncated error in terms of modulus of 

continuity and the weighted norm of the function being approximated. 
 

Keywords: MKZ Truncated operators, approximated order, Beta operators, modulus of 

continuity. 
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Introduction              
     A study of truncated of sequence of 

linear positive operators is a branch of 

approximation theory. In [4],[9],[12],[11] 

and [5] there is a review of truncated of 

some especially Sz ̃sz –Mirakyan 

operators. Here, we study the truncated of 

the sequences of linear positive operators 

(Beta operators       ).Then, we find the 

error occurs by this approximation of 

truncated of Beta operator in terms of 

modulus of continuity of a function being 

approximated. For more properties of Beta 

operators you can read the articles 

[1],[2],[3],[6] and [7]. 

In the beginning, we give some 

preliminaries as follow: 

        
 

 
∑           

 

 
 

 

   

                                         

where 

          (
   

 
)                (2) 

    and           . 

 For the functions   belonging to the weighted space   , 

   {                                  }  

‖ ‖  ‖    ‖         
     |    |, 

        |         |           (     √
      

 
 

       

  )  (3) 

for     ,    ,      where          is the modulus of continuity of   , we can get the 

properties of          as follows: 

           ∑         (
 

 
)

 

   

  

We can evaluate that: 

∑                              

 

   

                               

                                  

and 
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for every                  and      . 

In some papers ([4],[9],[11]and[12]) the authors investigated the truncated Sz ̃sz-Mirakyan 

operators defined as: 
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where        , and          are positive integers depending on   and  . The results 

presented in some papers [4],[9]and [12] show that if     is a fixed point and          

are integers such that      for     and       
    

√ 
  , then  

                     for every     ,      . 

The aim of this note is to derive similar results for the truncated MKZ operators. 

L. Rempulska and M. Skorupka in [10] are considered a strong approximation of      for 

some linear positive operators. 

The well-known Meyer-Kӧnig and Zeller operators that we called MKZ is given by  
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Where                   and     {     },    is the space of continuous 

functions  on   with the fallowing norm  
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and ‖       ‖  
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In [10] Rempulska were examined the strong approximation of by MKZ operators and he 

proved the inequality  

   |         |    
 

 
    

 

√  
     (9) 

for        ,    . 

In this paper, we show that an analog of MKZ operators connected with Beta 

operators. 

Theorem (1). [5] 

Let         and      be fixed, and let          be an integer such that  

       
 

   
. Then  
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holds for every       . 

Corollary(1). [5] 
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Let          and let           be integers such that    

(i)   
       

      
  for    , 

(ii)    ⁄     
  is a bounded sequence,  

(iii)       

  
       

    

√  
   

Then 

                      holds for every       .                                 (11)      

Corollary(2). [5] 

Let         and let   *
    

    
+ for    .([ ] denotes the integral part of     ). Then the 

conditions (i)-(iii) are satisfied, and consequently the convergence (8) holds for  every   
    . Moreover, we have 
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Corollary(3). [5] 

If                 *     
  

    
 √   + for    , where (    is a non- bounded 

sequence of positive numbers such that  
  

√ 
  
  is bounded , then (i)-(iii) and 

(11) are satisfied , and the inequality 
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holds for every           and    , where                    

Here, we want to prove the above results in the space    with weighted norm:  

Theorem (2). 

Suppose that     ,     and        . For          be an integer such that 

     , then the inequality  

     |                   |         (     √
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holds for every     , where         is constant and is given in (3).  
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Proof: 

For given,       ,       and       we get by (1),(3),(4) and (5): 
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By the assumptions:         and     we can write  
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By using the Stirling formula, consequently  
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Putting      then we get   
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from ( 13 ) ,( 14), ( 15 ) we have results ( 12 )      

Corollary(4). 

Let          and let         be positive integers such that for every     :  

(i)       , 

(ii)    ⁄     
       a bounded sequence,  
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(iii)       
    

√ 
  . 

Then the convergence 

                                               (16) 

holds for every           .  

Corollary(5) 

For a fixed      let             for     . Then the conditions (i), (ii) and (iii) are 

satisfied, and hence (16) holds for     . Also, we have    
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for every     and    , where             is a positive constant depending on   and 
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Corollary(6) 

Let          and let        √     for    , where      is a  

non-bounded sequence of numbers      such that  
  

√ 
    
 is bounded. Then (i), (ii) and (iii) 

are satisfied and hence (12) holds for every       Moreover, we have  
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for    , where                         

There are similar conditions of convergence of partial sums of truncated MKZ 

operators and Beta operator from theorem (1) and  theorem (2).  In our opinion, this is an 

expected result because both sequences are convergent to the function as    . 
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                                   المستخمص

والخطأ الناتج من التقريب. وضمنا خطأ القطع موصوفا"          في هذا البحث؛ درسنا قطع مؤثر بيتا العادي
 بمقياس الاستمرارية والمعيار الوزني لفضاء الدالة المقربة.

 , رتبة التقريب , مؤثر بيتا , مقياس التقارب .MKZقطع مؤثر   :الكممات المفتاحية 
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