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A B S T R A C T   

This research focused on synthesizing a CdIn2Se4@Ch nanocomposite by doping CdIn2Se4 into chitosan using a 
photolysis assisted ultrasonic process. The aim was to enhance the photodegradation efficiency of ofloxacin and 
2,4-dichlorophenoxyacetic acid under sunlight. The synthesized CdIn2Se4@Ch nanocomposite was investigated 
via different techniques, including XRD, XPS, FTIR, TEM, DSC, TGA, UV–Vis and PL. The study also investigated 
the influence of various reaction parameters, including the effects of inorganic and organic ions. The synthesized 
nanocomposite demonstrated exceptional efficiency, achieving 86 % and 95 % removal rates, with corresponding 
rate constants of 0.025 and 0.047 min-1. This performance surpasses that of CdIn2Se4 by approximately 1.35 and 
2.25 times, respectively. The values of COD were decreased to 78 and 86 % for ofloxacin and 2,4-dichlorophe
noxyacetic, while the TOC values decreased to 71 and 84 %, respectively, from their premier values. The 
improvement in performance is associated with the introduction of CdIn2Se4 into chitosan, resulting in the self- 
integration of Cd into the catalyst. This creates a localized accumulation point for electrons, enhancing the ef
ficiency of charge separation and further reducing the surface charge of chitosan. Experimental evidence suggests 
that superoxide and hydroxyl radicals play a significant role in the photodegradation of pollutants. Additionally, 
the nanocomposite exhibits excellent stability and can be reused up to five times, indicating remarkable stability 
and reusability of the developed photocatalyst.   

1. Introduction 

In recent years, a significant amount of chemical substances, such as 

personal care products, dyes, and organic pollutants, have been released 
into the environment without proper treatment due to human civiliza
tion’s advancement [1–5]. The diminishing availability of potable water 
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poses a potential global threat to humanity. Furthermore, many of these 
pollutants are resistant to biological decomposition and persist in the 
environment [6–9]. Ofloxacin is a pharmaceutical material related with 
the family of fluoroquinolone and is vastly utilized as antimicrobial 
compound. The human body cannot completely metabolize fluo
roquinolone compounds, with 25–80 % of them being excreted as bio
logically active compounds [10–12]. Bacteria may undergo genetic 
changes due to exposure to remnants of antimicrobials present in 
environmental matrices, leading to the development of drug-resistant 
bacteria. As a result, these microorganisms require the use of more 
potent drugs for treating diseases. Additionally, antibiotics are not 
completely eliminated in wastewater treatment facilities, leading to 
increased environmental toxicity and bioaccumulation [13–14]. Oflox
acin can persist in aquatic environments and may enter the human body 
through the food chain or drinking water if pharmaceutical waste and 
animal waste are not effectively treated. Due to its resistance to 
biodegradation, it can linger in the environment for extended periods. 
As a result, conventional methods of removal are limited. It is essential 
to employ treatment techniques to eliminate the residual antibacterial 
activity of these compounds. Additionally, 2,4-dichlorophenoxyacetic 
acid is an organic pollutant that is used as an herbicide to control 
broadleaf weeds. It is highly toxic and harmful to both humans and 
animals. Conversely, it shares similarities with the compound Ofloxacin 
in terms of high chemical stability and low biodegradability, which 
contributes to its persistent presence in both surface and groundwater. 
Furthermore, traditional methods such as oxidation, liquid phase 
adsorption, physicochemical treatment, filtration, coagulation, and 
biological degradation have been demonstrated to be ineffective in 
efficiently removing this pollutant [15–17]. Several studies focus on 
reducing 2,4-dichlorophenoxyacetic acid using reducing agents that 
contribute to pollution. This approach has various drawbacks, including 
the requirement for high pressure and temperature [18–20]. Conse
quently, scholars and scientists are continuously developing techniques 
to eliminate pollutants from aqueous solutions without generating sec
ondary products, while also achieving high efficiency at a low cost. 
Advanced oxidation processes have been recognized as an effective 
method for degrading or mineralizing pollutants and have garnered 
significant attention due to their affordability and simplicity [21–23]. 
Recently, there has been an increasing use of advanced oxidation pro
cesses (AOPs) that utilize heterogeneous photocatalysts to generate 
reactive free radicals. These radicals then undergo reactions with pol
lutants, leading to their degradation in wastewater [24–26]. In general, 
in AOPs, the generation of photoinduced electron-hole pairs (e–h+) 
occurs when the photocatalyst is exposed to irradiation with energy that 
is equal to or greater than its bandgap [27–29]. These pairs engage with 
adsorbed O2 and H2O, initiating a sequence of reactions that result in the 
formation of reactive oxygen species (free radicals). These free radicals 
then facilitate the decomposition of harmful waste into smaller prod
ucts. To enhance the efficiency of this degradation process, it is essential 
to effectively separate the photoinduced pairs by either transporting 
charges or through adsorption on the photocatalyst surface [30–31]. 
This mechanism enables the conversion of severe organic pollutants into 
smaller, less harmful substances such as carbon dioxide and water. AOP 
is corroborative as an effective wastewater treatment technology 
because of its enhanced efficiency of degrading, convenient operating 
conditions and low cost. The Photo-Fenton-like process is a type of AOP 
widely utilized for the removal of pollutants [32–35]. Hydrogen 
peroxide is utilized in the Photo-Fenton-like process to induce the gen
eration of reactive oxygen species, which effectively eliminate organic 
contaminants in water. Nanomaterials have garnered increased atten
tion as potential agents for wastewater treatment owing to their physi
cochemical properties, high surface area, and catalytic activity [36–38]. 
Because of its stability, non-toxicity and low cost-activity, TiO2 has been 
used as photocatalyst for different photocatalytic implementation 
[39–42]. However, its high bandgap value and rapid recombination rate 
limit its functional applications. Therefore, the development of an 

improved active photocatalyst in the visible region is necessary for 
effective utilization of solar irradiation. Various methods such as het
erojunction reduction, incorporation, doping, or utilization of support
ing compounds for photocatalyst stabilization could reduce the 
recombination rate of charges and enhance the efficiency of these ma
terials [43–45]. In recent years, there has been significant interest in 
ternary composites due to their unique catalytic properties. For 
example, AgIn5Se8, ZnIn2S4, CdIn2S4, etc., have been employed for 
different photocatalytic implementations [46–48] where CdIn2Se4 
appeared as a good bandgap with 1.87 eV, making it a suitable photo
catalyst [49]. 

Dhruv et al., [22] prepared Znln2Se4 by hydrothermal method for 
photocatalytic employment. Chander et al., [23] employed solvothermal 
to prepare CdIn2S4 for organic synthesis application. CdIn2Se4 synthe
sized through a hydrothermal method was employed for the photo
catalytic degradation of dyes in aqueous solutions [24]. 

Mohammad et al., used Bi2WO6-CoFe2O4 in cefixime removal [25]. 
Subhiksha et al., employed Ag doped γ-Bi2O3 coupled with CoFe2O4 in 
ciprofloxacin degradation [26]. Ojo et al., utilized TiO2-WO3@GO 
composite in Oilfield-produced water treatment [27]. Rajeshwari et al., 
used g-C3N4 incorporated α-MoO3 in p-chlorophenol and rifampicin 
photodegradation [28]. Kaiqu et al., utilized 2D/2D Bi2Fe4O9/ZnIn2S4 
as photocatalyst for degrading antibiotic contaminants [29]. It is syn
thesized through a hydrothermal process, was employed for the photo
degradation of dyes in aqueous solutions. This ternary compound, 
known as a chalcogenide, exhibits efficient photocatalytic properties. 
However, its effectiveness is hindered by a high rate of charge recom
bination, leading to reduced efficiency. To enhance its capability, the 
incorporation and maintenance of CdIn2Se4 could be advantageous in 
inhibiting charge recombination. Additionally, researchers have also 
developed an integrated approach by maintaining CdIn2Se4 on the sur
face of organic compounds for photodegradation applications [50–52]. 
In this study, a CdIn2Se4@chitosan nanocomposite has been prepared by 
a photolysis modified ultrasonic methods for photodegradation of 
Ofloxacin and 2,4-dichlorophenoxyacetic. The addition of CdIn2Se4 to 
chitosan resulted in the formation of a hybrid photocatalyst compound. 
The synthesized nanocomposite was characterized by utilizing DSC, 
TEM, XRD, EDX, XPS, DRS and PL. The photoactivity of prepared 
compounds have been investigated for photodegradation of loxacin and 
2,4-dichlorophenoxyacetic under sunlight. 

2. Experimental part 

2.1. Materials 

Indium chloride tetrahydrate (InCl3.4H2O), selenium chloride 
(SeCl4), chitosan, oleic acid (C18H34O2), hydrochloric acid (HCl), so
dium hydroxide (NaOH), 2,4-dichlorophenoxyacetic (C8H6Cl2O3) and 
ofloxacin (C18H20FN3O4) were purchased from Merck Co. and used 
without future purification. During experiments, de-ionized water was 
employed in different phases. Despite the focus of photocatalytic studies 
on ecological applications, the majority of experiments are conducted 
using pure water. There is a lack of research on how real water samples 
affect the catalytic degradation of harmful pollutants. Various individual 
compounds and ions, in addition to water salinity, have been investi
gated to understand the influence of different components on the pho
todegradation of pollutants. This was followed by testing the 
performance in factual H2O samples such as tap and river water on toxic 
pollutants such as ofloxacin and 2,4-dichlorophenoxyacetic. Further
more, the canned mineral H2O, with a pH 7.02, was bought from nigh 
store. The systems of local H2O supported simple arrival to tap water 
with pH 7.65, while the Khersan river in Iraq’s Diyala state served as the 
sample for the H2O matrices with pH 8.4. 
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2.2. Synthesis of CdIn2Se4/chitosan nanoparticles 

The pure CdIn2Se4 was synthesized via the photolysis method 
employing selenium chloride as the selenium source (Fig. 1). 0.2 mmol 
of InCl3.4H2O and 0.1 mmol of CdCl2.H2O were combined in 40 ml of 
ethanol and stirred for 15 min to form Solution A. Solution B was then 
prepared by adding 0.4 mmol of SeCl4 to ethanol before mixing with 
Solution A. The resulting mixture was transferred to a manual irradia
tion system with a power output of 125 W, and the entire procedure was 
detailed by Zaid et al., [31]. The irradiation process was sustained for 3 h 
while 3 ml of ethylene glycol was added. The brown precipitate was 
separated, rinsed, and dried at 60 ◦C for 2 h, followed by calcination at 
550 ◦C for 3 h. The entire process was repeated prior to subjecting it to 
ultrasound with chitosan for 30 min at a 1:1 ratio, and then drying it for 
3 h at 80 ◦C. 

2.3. Photodegradation experimental 

The photocatalytic performance of pristine and CdIn2Se4 was 
examined via oxidative degradation of exemplary pollutant ofloxacin 
and 2,4-dichlorophenoxyacetic solution with and without H2O2. The 
experiments were conducted in 150 ml beakers with a working capacity 
of 100 ml, utilizing a 15 W irradiance source emitting light at 365 nm. 
To maintain a constant temperature in the reactor, circulating cooling 
water was employed. The experimental setup took place in a wooden 
room, with an irradiance source positioned at the top of the chamber and 
the reactor situated at the base, 15 cm away from the light source. 
Additionally, a magnetic stirrer was used to regulate the speed during 
the photocatalytic reaction. For this study, 10 mg of photocatalyst was 
dispersed separately in 100 ml (10 ppm) of ofloxacin and 2,4 dichlor
ophenoxyacetic acid solution. The dispersion was achieved with mag
netic stirring and the mixture was kept in a dark place for 30 min to 
achieve adsorption-desorption equilibrium. Subsequently, the solution 
underwent irradiation in 10-min intervals, and 5 ml aliquots of the 
suspension were withdrawn and their absorption at specific wavelengths 
was measured. The experiments were conducted under optimized con
ditions including H2O2 concentration, pH level, catalyst dosage, and 
pollutant concentration for both ofloxacin and 2,4-dichlorophenoxyace
tic acid at room temperature. An adsorption state of approximately 2 % 
was observed for the contaminant, which was considered negligible in 
all experiments. The chemical oxygen demand (COD) was investigated 
employing traditional method. For solution including H2O2, an excess 
7 % Na2SO3 was appended, and the mixture was heated to oxidize 
additional to limit peroxide hydrogen intervention in COD experiments 
[32]. The efficiency of photodegradation was defined via the following 
equation (Eq.1): 

η =
Co − Ct

Co
(1)  

where Co: initial concentration, Ct: the concentration of pollutants at 
different time. On the other hand, the photocatalytic process kinetic is 
determined according to the following equation (Eq.2): 

Fig. 1. Schematic process for synthesis of CdIn2Se4@Ch nanocomposite.  
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Fig. 2. XRD of pure and CdIn2Se4@chitosan.  
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ln
Co
Ct

= Kt (2)  

where k: constant of reaction rate. The mention two equations were used 
to calculate quantum yield and figure of Merit (FOM) [33] from 
following equation (Eq.3 and 4): 

Φ =
decay rate

Photon Flux
(3)  

FOM =
conversion energy (%)

m (g)*Co (ppm)*t(min)*P (W)
(4)  

3. Results and discussion 

3.1. Structure characterization 

Fig. 2 demonstrates the XRD results obtained to assay the Cdln2Se4 
and Cdln2Se4@Chitosan crystal structure respectively. The diffraction 
peaks and corresponded Millar indices for pure and Cdln2Se4@chitosan 
nanocomposite are in agreement with (JCPDS: 08–267). However, in 
the synthesized Cdln2Se4@Chitosan nanocomposite, a little shift in the 
diffraction peaks was revealed because of the chitosan in the Cdln2Se4 
[34]. Conversely, the change might be connected to the modification in 
particle size and the interaction between chitosan and CdIn2Se4. 
Moreover, when CdIn2Se4 was treated with chitosan, a rearrangement 
of the lattice occurred, leading to conflicting stress and resulting in a red 
shift of peaks. The findings revealed the emergence of a new diffraction 
peak at 20.21 (220), corresponding to chitosan in the fabricated nano
composite [34,53–55]. After the synthesis of a photocatalyst nano
composite, the intensities of some peaks were observed to change, while 
others decreased due to the incorporation of chitosan, resulting in an 
alteration in the electron density of atoms [35]. The crystallite size of 
pure CdIn2Se4 and the nanocomposite was determined using the Scherer 
equation [36,56–58]. The reduction in size was found to be associated 
with lattice strain and a red shift in peaks. Additionally, it was observed 
that pure CdIn2Se4 exhibited higher crystallinity compared to the 
nanocomposite due to the addition of chitosan biopolymer, which 
enhanced its amorphous characteristics and consequently reduced the 
signal-to-noise ratio. 

The compound CdIn2Se4 has a structure of A2+B2
3+X4

− 2, with cations 
in tetrahedral and octahedral positions, and anions arranged in a cubic 
closed-packed (CCP) lattice. The CCP structure consists primarily of four 
octahedral and eight tetrahedral sites. A ions occupy 1/8 of the tetra
hedral voids, while B ions occupy 1/2 of the octahedral voids 
[37,59–61]. In this arrangement, Cd ions are situated in the tetrahedral 
sites, while in ions are situated in the octahedral sites. When encapsu
lated by chitosan, lattice strain occurs, causing doping of Cd ions in 
octahedral or unoccupied tetrahedral sites, leading to interstitial 
incorporation. The decrease in lattice parameters indicates the creation 
of CdIn2Se4@Chitosan. 

The oxidation state and chemical composition of synthesized 
Cdln2Se4@chitosan were examined employing the XPS. As exhibited in 
Fig. 3a, the spectrum demonstrated the existence of Cd, In, Se, N, O and 
O elements. All atomic concentrations have been determined from the 
lowest base peaks and the findings are outlined in Table 1. Two binding 
energy related to 3d5/2 and 3d3/2 of Cd2+ centered at 405.23 eV and 

412.13 eV in selenide environments are shown in Fig. 3b [38]. For In 3d 
(Fig. 3c), two binding energy located at 444.23 and 452.05 eV assign to 
3d5/2 and 3d3/2 respectively [39]. It was also observed that the peaks of 
Cd and in 3d showed a redshift, indicating a decrease in energy 
compared to normal values [39]. This finding may be linked to the in
fluence of chitosan, which has a lower band gap than CdIn2Se4, resulting 
in increased electron density around it and reduced binding energy. 
Fig. 3d shows the binding peak for Se 3d which are located at 54.83 and 
55.90 eV and correspond to 3d5/2 and 3d3/2 [40]. This shows that Se 
dopant quickly forms bonds with In3+ and Cd2+ before combining with 
chitosan. In the C 1 s spectrum, as seen in Fig. 3e, three distinct binding 
peaks were observed at 284.05, 286.00, and 287.89 eV, indicating the 
presence of various types of bonds within the chitosan matrix such as 
C–C, C–H, C–N, C-O-C, C-OH, C––O, and O-C=O [41]. In Fig. 3f, two 
binding energies at 531.82 and 533.02 eV, which are associated with 
C––O, O-C=O, C–O, and O–H bonds. Additionally, the binding peaks of 
O 1 s were above 530 eV, indicating the production of a nanohybrid 
[41]. In Fig. 3 g, you can see the XPS spectrum of N 1 s, showing three 
peaks at 398.95, 400.03, and 401.05 eV, indicating the presence of sp3 

C–N, NH2, and O=CH-NH bonds in chitosan [42]. There was a slight 
change in the binding energy of N 1 s, O 1 s, and C 1 s, suggesting that the 
accumulation of CdIn2Se4 on the surface of chitosan may be due to 
chemical reactions. 

For more structural investigation, FTIR technique was used to check 
the functional groups in chitosan and CdIn2Se4@Chitosan surface and 
the results are shown in Fig. 4. The chitosan sample (Black spectrum) 
exhibits a shoulder peak at 1150 cm− 1, which corresponds to the 
asymmetric stretching of C-O-C bonds. Two peaks located at 1026 and 
1060 cm− 1 back to C–O stretching mode, while a small band at 
895 cm− 1 assign to the bending mode of C–H bonds in the rings of 
monosaccharide. CdIn2Se4@Chitosan (Red spectrum) displays similar 
spectrum to chitosan with a strong peak with range 3000–3650 cm− 1, 
which assign to the overlapping N–H and O–H bands [43,62–34]. 

Table 1 
chemical parameter of synthesized photocatalyst.  

Sample 2θ D nm Metal Peak BE FWHM eV Area (P) CPS.eV Atomic % 

CdIn2Se4  30.23  12 Cd  405.23  2.25  64,480  11.86 
In  444.23  3.20  76,470  14.24 

CdIn2Se4@Ch  30.39  10 
Se  54.83  3.35  108,070  19.88 
C  284.05  4.65  136,770  25.13 
O  531.82  4.10  160,108  29.51  

500 1000 1500 2000 2500 3000 3500 4000

%
 T

Wavenumber (cm-1)

 Chitosan
 CdIn2Se4@chitosan

Fig. 4. FTIR spectrum of chitosan and CdIn2Se4@chitosan.  
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Furthermore, there are two distinct bands at 2871 and 2952 cm− 1 cor
responding to the symmetric and asymmetric modes of C–H, which are 
characteristic of polysaccharides. Additionally, the spectrum reveals 
two bands at 1320 and 1650 cm− 1 attributed to the stretching modes of 
C––O and C–N, respectively, confirming the presence of an acetyl 
group. A distinctive band at 1552 cm− 1 is indicative of N–H bending 
mode in amide groups, along with two additional bands at 1376 and 
1425 cm− 1 corresponding to the symmetrical and bending modes of CH3 
and CH2 [43,65–67]. 

The elements ratio in the CdIn2Se4@Ch nanocomposite surface were 
characterized by EDX-Mapping and the results are shown in Fig. 5(a,b). 
In Fig. 5a, the results appeared that the atomic ratio are 49.8, 9.89, 
24.25, 9.33, 3.10 and 3.72, which assign to C, N, O, Se, Cd respectively, 
without any impurities. On the other hand, the percentage ratio of Se, Cd 
and In proposed that the ratio are closed to 1:2:4, as well as, the exis
tence of C, N and O atoms are attributed to incorporating of chitosan in 
the prepared photocatalyst. 

3.2. Morphology analysis 

The prepared materials underwent morphology analysis through the 
use of TEM, HR-TEM, and FE-SEM in order to assess their morphology 
and size. The findings revealed irregularly shaped particles with distinct 
grain boundaries, as illustrated in Fig. 6. Fig. 6b depicted the nanometer- 
scale interplanar spacing, which was in agreement with the diffraction 
peak (222) and correlated with the X-ray diffraction (XRD) data. 

The polycrystalline feature of prepared Cdln2Se4@Chitosan nano
composite was illustrated via SAED pattern and the results are shown in 
Fig. 6c. Although the obtained results showed high peak intensity in 
XRD, they did not entirely align with the d-spacing values. This 
discrepancy can be attributed to the red shift observed in the XRD 
spectra, which indicates a relationship between 2θ and d-spacing values 
as per the Bragg’s law. Specifically, an increase in 2θ leads to a decrease 
in d-spacing. Additionally, certain rings observed in the image of SAED 
were widely distributed, suggesting the relatively small crystal size. The 
presence of shining concentric rings was attributed to the high crystal
linity of the CdIn2e4 photocatalyst [44,68–72]. The SAED pattern aligns 
with the miller index planed d-spacing obtained from the examination of 
XRD data. Fig. 6d illustrates a histogram with a quantitative analysis 
plotted using the Lorentzian function, indicating an average grain size of 
approximately 5 nm. The topography of the prepared CdIn2Se4@Chi
tosan, which includes mesoporous and microporous structures, was 

investigated using FE-SEM, revealing a sheet-like morphology as 
depicted in Fig. 6e. This suggests that the chitosan encapsulated 
CdIn2Se4 following agglomeration on its surface. Additionally, the re
sults presented in Fig. 6f indicated that the prepared photocatalyst 
exhibited irregular morphology, with the surface of CdIn2Se4 being 
relatively rough and featuring some surface fractures attributed to 
nanocomposite formation. It is hypothesized that Cdln2Se4 and chitosan 
contributed to the roughness of the surface [45,73–76]. The disparate 
and porous shape increased pollutant adsorption, boosting the activity 
of photocatalytic. 

3.3. Thermal analysis 

The thermal analysis of prepared compounds was investigated by 
using DSC/TGA and the results are shown in Fig. 6. The change in 
sample weight was calculated using data, and the DSC was used to 
ascertain whether the reaction was endothermic or exothermic. The rate 
at which weight changes in relation to temperature was provided by the 
derivative of weight [46,77–80]. The TGA curve shows that the syn
thesized CdIn2Se4@Chitosan nanocomposite succumb three stages of 
degradation. A weight loss of 9.12 % was observed initially, attributed to 
water evaporation. Subsequently, at 220 ◦C, a second degradation stage 
resulted in a slightly higher mass loss of 19.34 %, ascribed to the 
disruption of physical interactions between the inorganic and organic 
components. The third stage, occurring at 340 ◦C, involved the degra
dation of chitosan, leading to a weight loss of approximately 6.54 %. The 
prepared CdIn2Se4@Chitosan nanocomposite exhibited consistent 
weight stability at temperatures up to 700 ◦C, with a heating rate of 
15 ◦C/min. However, at 70–80 ◦C, the sample experienced weight loss 
due to water evaporation. The evaporation of water ligands and adsor
bed water resulted in an endothermic peak at approximately 70–80 ◦C. 
Conversely, no endothermic transition was observed when the temper
ature was raised from 25 to 30 ◦C, indicating no phase alteration in the 
synthesized CdIn2Se4@Chitosan nanocomposite [47,81–94]. At a tem
perature of 320 ◦C, the results indicate a pronounced exothermic peak 
attributed to the oxidative degradation of the sample due to the struc
tural stability of the self-assembling CdIn2Se4@Chitosan, which was 
largely influenced by the chelation process involving the amine chitosan 
group. Additionally, the TGA curve correlated with the DSC, thus con
firming the sudden change in weight during both endothermic and 
exothermic degradation of the nanocomposite at 75 ◦C and 320 ◦C. 

The absorbance spectra of pure CdIn2Se4 and CdIn2Se4@Chitosan 
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were analyzed in the 200-800 nm range using Diffuse Reflectance 
Spectroscopy (DRS) to gain insight into their spectral characteristics. 
The results, depicted in Fig. 7a, revealed that pure CdIn2Se4 exhibited a 
broad band with an edge at approximately 600 nm. In contrast, the 
composite sample showed a shift in the edge towards longer 

wavelengths, indicating the formation of a heterojunction composite. 
This shift in edge absorption suggested the transfer of electrons from the 
valence band (VB) to the conduction band (CB), thereby inhibiting the 
recombination process. Furthermore, Tauc curve analysis was utilized to 
determine the indirect bandgap of the synthesized compounds. The 
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findings in Fig. 7b indicate that the bandgap of the chitosan- 
incorporated sample increased compared to the pristine sample, sug
gesting a smaller particle size. To further investigate, PL spectroscopy 
was used to analyze the spectrum characteristics of the synthesized 
photocatalysts. PL is a reliable method for assessing the recombination 
process of electron-hole pairs in the synthesized compounds. In Fig. 7c, 
the emission spectra resulting from exciting the compounds at 330 nm 
were examined. The results showed that the spectra of CdIn2Se4@Chi
tosan are similar to those of the pristine compound but with lower in
tensity. The study showed that a lower PL intensity can lead to better 
separation of charges and a slower recombination process [48,85–89]. 
Additionally, the results revealed a distinct peak at 373 nm, which is 
associated with the excitation of electrons from VB to CB in the original 
sample [49,90–92]. These findings suggest that the synthesized 
CdIn2Se4 may have greater charge separation and photocatalytic activ
ity compared to the original sample. 

4. Photocatalytic performance 

4.1. Impact of H2O2 dosage 

H2O2 plays a significant role in the oxidation process. When H2O2 is 
irradiated, it produces OH* and interacts with the photocatalyst to form 
them. Therefore, it’s important to study and understand its impact on 
the photodegradation of ofloxacin and 2,4-dichlorophenoxyacetic using 
synthesized pristine and CdIn2Se4@Chitosan. For this purpose, H2O2 
was varied within the range of 0.3–1.5 μL/ml in a solution containing 
(50 mL, 15 ppm) of ofloxacin and (50 mL, 10 ppm) of 2,4-dichlorophe
noxyacetic. The findings (Fig. 9a,c) showed that the photocatalytic ac
tivity increased up to 0.6 μL/mL and 0.9 μL/mL for ofloxacin and 2,4- 
dichlorophenoxyacetic, respectively. However, there was a noticeable 
decrease after increasing the H2O2 dosage. The initial increase may be 
attributed to the decomposition of H2O2 due to sunlight exposure, 
leading to the formation of hydroxyl free radicals (Eq.5). On the other 
hand, the decrease in efficiency with higher H2O2 dosage could be due to 
the self-scavenging of OH free radicals by excess peroxide (Eq.6) 
[50,93–96]. 

H2O2 →hv 2OH* (5)  

H2O2 +OH*→H2O+O2H* (6) 

Additionally, the synthesized photocatalyst also contributes to the 
generation of hydroxyl free radicals in sunlight [51], which leads to the 
production of e–h + pairs that interact with OH ions and H2O2 to pro
duce hydroxyl free radicals as shown in Eq. (7–10). The findings indicate 
that the photodegradation efficiency reached 82 % and 92 % for oflox
acin and 2,4-dichlorophenoxyacetic acid, respectively, when using 0.6 

and 0.9 μl/ml of H2O2 dosage with reaction rates of 0.017 and 
0.023 min-1 (Fig. 9b,d). 

CdIn2Se4@Chitosan →hv e− + h+ (7)  

H2O+ e− →OH* +OH− (8)  

H2O→OH− +OH* (9)  

OH− + h+→OH* (10)  

4.2. pH impact 

The pH of the solution is mainly determined by the surface charge of 
the prepared CdIn2Se4@chirosan nanocomposite. It is important to find 
the best pH for degrading pollutants in wastewater, taking into account 
the types of contaminants present [52,97–101]. The pH at which the 
solution has a zero-point charge was determined by adjusting the pH 
from 2 to 12 using 1 M HCl and NaOH through the DLS technique. The 
investigation revealed that when using 0.01 g of CdIn2Se4@Chitosan, 
the ZPC is 6.5. The pH level plays a crucial role in the effectiveness of the 
catalytic photodegradation process, and it also affects the efficiency of 
the synthesized catalyst. The pH of the solution is set before exposing it 
to sunlight, and it remains unchanged during the reaction. The study 
utilized a pH range of 2–12 to observe how it impacts the photo
degradation of ofloxacin and 2,4-dichlorophenoxyacetic. The initial 
concentration of ofloxacin was 15 ppm, and the CdIn2Se4@Chitosan 
dose was maintained at 0.08 g with 0.6 ml of hydrogen peroxide. The 
results indicated that the optimal pH for high degradation efficiency was 
7, achieving an 82 % degradation rate with a constant rate of 
0.017 min− 1. An improvement in efficiency was seen up to pH 7, but a 
decrease in performance was noticed after that (Fig. 10a). This is 
because there is a nitrogen atom present in position 4 of the piperazinyl 
group, making it anionic above pKa2 = 8.11, cationic below 
pKa1 = 6.05, and neutral (zwitterion) between pKa1 and pKa2 
[53,102–105]. The pH effect on ofloxacin is not shown in terms of 
ionization state for CdIn2Se4@chitosan and ofloxacin, as both can carry 
positive or negative charges in acidic or alkaline conditions [54]. When 
the pH is high, the OH free radicals are considered as the initial oxida
tion species, while at low levels of pH, the positive holes are considered 
as the initial species [55]. Based on the findings and the excess of hy
droxyl free radicals due to H2O2, it can be concluded that the oxidative 
transition of ofloxacin is primarily caused by free radicals rather than 
holes. The impact of pH on the photodegradation of 2,4-dichlorophe
noxyacetic was investigated using 10 ppm of pollutant in a 50 ml solu
tion with 0.08 mg of CdIn2Se4@Chitosan and 0.9 ml of H2O2.The 
findings show that the catalyst’s ability to break down under light de
creases as the pH level rises from 2 to 12 (Fig. 10c). The best pH level is 
3, where it achieves a maximum efficiency of 94 % and a rate constant of 
0.033 min− 1. The decrease in efficiency as the pH increases might be due 
to the presence of hydroxyl ions, which hinder radical formation by 
either overlapping or reacting with it. Moreover, at low pH levels, 
peroxide breaks down to form hydroxyl radicals, while the recombina
tion rate of radicals decreases [56,106–110]. 

4.3. Catalyst dosage impact 

The H2O2 dosage, reaction premier pollutant concentration and pH 
were fixed at 0.6 and 0.9 ml, 15 and 10 ppm and 7 and 3, respectively, to 
investigate the CdIn2Se4@chitosan impacts on the ofloxacin and 2,4- 
dichlorophenoxyacetic photodegradation. The amount of CdIn2Se4@
chitosan used ranged from 0.03 to 0.16 g in a 50 ml solution [107–110]. 
The results displayed in Fig. 11a,c indicated that the photodegradation 
activity increased as the catalyst dosage was raised, reaching its peak at 
0.1 and 0.13 mg for ofloxacin and 2,4-dichlorophenoxyacetic, before 
slightly decreasing. A higher efficiency in photocatalysis can be 
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attributed to an increase in active sites generated by the addition of 
more photocatalyst. However, adding more photocatalyst resulted in 
reduced effectiveness of photocatalysis due to the increased opacity of 
the solution, leading to scattered light which hindered the introduction 
of photons into the suspension [57,111–113]. Also, due to the presence 
of H2O2, increasing the amount of photocatalyst resulted in an increase 
in the production of OH free radicals. However, an excess of OH free 
radicals may lead to a recombination process at high doses 
[58,114–118]. Therefore, it can be inferred that the enhancement of 
CdIn2Se4@chitosan is significant as it reduces the excessive use of the 
catalyst. As shown in results, the increased dosage led to a maximum 
efficiency of 88 and 96 % for ofloxacin and 2,4-dichlorop. 

4.4. Pollutants concentration impact 

To study how ofloxacin and 2,4-dichlorophenoxyacetic acid affect 
the environment, we set the best conditions: pH at 7, catalyst dosage at 
0.1 and 0.13, H2O2 volume at 0.3 and 0.6 ml, and pollutant concentra
tion from 5 to 30 ppm. Ofloxacin and 2,4-dichlorophenoxyacetic acid 
are found in water at concentrations ranging from μg/L to mg/L. Even 

though these high initial concentrations are commonly used in studies 
on the photodegradation process to determine concentration changes 
and identify transformation products, they can be delicate to estimate 
[119–121]. Following an initial increase in ofloxacin and 2,4-dichloro
phenoxyacetic acid concentrations, a slight improvement was 
observed up to 20 and 15 ppm (ppm), after which a slight decrease 
occurred (Fig. 12a,c). The narrow paths for the movement of light 
through the photos may be mainly responsible for the slight decrease in 
the breakdown of ofloxacin and 2,4-dichlorophenoxyacetic acid when 
their concentrations are increased [59,122–123]. Additionally, higher 
concentrations of pollutants would need an additional catalyst, make the 
solution more opaque, and hinder the breakdown process through 
exposure to light [60,124–126]. Also, As the levels of ofloxacin and 2,4- 
dichlorophenoxyacetic acid rose, the pollutants began to take up more 
active sites, gradually pushing out the O2 and OH ions that had been 
adsorbed on the surface. This caused the catalyst to produce fewer OH 
free radicals and superoxide anion radicals over time, leading to 
decreased efficiency. All reaction parameters improved, resulting in a 
higher degradation efficacy of ofloxacin and 2,4-dichlorophenoxyacetic 
acid through CdIn2Se4@chitosan, reaching 85 % and 96 % respectively 
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with rate constants of 0.0251 and 0.047 min− 1 (Fig. 12b,d). 

4.5. Exposure time impact 

The irradiation time impact was investigated in optima conditions 
for ofloxacin and 2,4-dichlorophenoxyacetic at CdIn2Se4@chitosan 

dosages of 0.1 and 0.13 g and a pollutant concentration of 5 and 10 ppm. 
In Fig. 13a,b, all different groups were studied to understand how the 
photocatalytic activity changes over time. It was found that there was no 
further decrease in the concentration of ofloxacin and 2,4-dichlorophe
noxyacetic after 90 min. These results may be due to the exhaustion of 
CdIn2Se4@chitosan active sites. The findings indicate that using 

Table 2 
Quantum yield and FoM for removing of ofloxacin and 2,4-dichlorophenoxyacetic at different system.  

Cata. Quantum efficiency 
(molecules/photon) 

Figure of Merit (FoM) 

Ofloxacin 2,4-dichlorophenoxyacetic Ofloxacin 2,4-Dichlorophenoxyacetic 

Photolysis 5*10− 7 3.3*10− 3 1.2*10− 6 4.8*10− 6 

Photolysis+H2O2 7.3*10− 7 4.2*10− 6 1.8*10− 6 5.9*10− 6 

CdIn2Se4 4.3*10− 5 1.6*10− 4 1*10− 4 2.4*10− 4 

CdIn2Se4+ H2O2 6.5*10− 5 2.5*10− 4 1.6*10− 4 3.7*10− 4 

CdIn2Se4@Ch 6.7*10− 5 2.1*10− 4 1.6*10− 4 3.1*10− 4 

CdIn2Se4@Ch + H2O2 8.1*10− 5 5.3*10− 4 2*10− 4 7.7*10− 4  
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CdIn2Se4@chitosan nanocomposite with hydrogen peroxide led to 
maximum degradation of 85 % for ofloxacin and 96 % for 2,4-dichloro
phenoxyacetic. No changes in pollutant concentration were observed 
during photolysis, indicating that photodegradation only occurred in the 
presence of CdIn2Se4@chitosan or H2O2. In Fig. 13c, we can see how 
different systems compare in terms of degradation efficiency. It was 
observed that CdIn2Se4@chitosan, when combined with hydrogen 
peroxide, achieved degradation efficiencies of 86 % for ofloxacin and 
95 % for 2,4-dichlorophenoxyacetic. Additionally, as shown in Fig. 13d 
and e, the total COD decreased by 80.6 % and 88.3 % from their original 
concentration values for ofloxacin and 2,4-dichlorophenoxyacetic. 
During the photodegradation of these compounds, intermediate prod
ucts are formed which can be identified through LCMS analysis. The 

chemicals in the middle of the process may have helped to protect 
against the large amount of harmful substances produced by the pho
tocatalyst, which could have limited how much COD decreased. The 
catalyst that was created was also used to break down other chemicals 
like congo red, methylene orange, rhodamine B, and sulfomethaxozole. 
The pollutants’ levels were 20 ppm and they broke down at pH 7 using 
10 mg of photocatalyst. There was a slight decrease in the efficiency of 
breaking down 2,4-dichlorophenoxyacetic when the pH was higher than 
optimal. Even though the created photocatalyst worked well for 
breaking down dyes, this project focused on getting rid of harmful 
pollutants (ofloxacin and 2,4-dichlorophenoxyacetic) after a period 
where there wasn’t much research done (see Fig. 13f). It’s also safe to 
say that the catalyst that was prepared is effective at getting rid of almost 
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all pollutants and can be used in water treatment. 

4.6. Effect of temperature 

The study looked at how different temperatures affect the efficiency 
of photodegradation, focusing on a temperature range of 10 to 40 de
grees Celsius. The results in Fig. 14a,c indicate that the performance of 
the synthesized CdIn2Se4@ch photocatalyst decreases slightly as the 
temperature increases for ofloxacin and 2,4-dichlorophenoxyacetic. 
While higher temperatures lead to more collisions and improved per
formance over time, this only contributes a small amount to the overall 
increase in reaction rate [61,127–130]. The depressed adsorption of the 
ofloxacin and 2,4-dichlorophenoxy on the CdIn2Se4@Chitosan is 
attributed to the high energy of kinetic, which obscures the advantage 
effect of higher collision recurrence. This causes the recombination of 
the ROS that have been generated, leading to a decrease in the efficiency 
of degradation [62]. The Fig. 14b,d show the reduction in rate of 

photodegradation. 
Additionally, there was a significant decrease in the degradation 

efficiency in other composites such as pure CdIn2Se4 with and without 
hydrogen peroxide, and CdIn2Se4@Chitosan as depicted in Fig. 15. The 
study of photodegradation of ofloxacin and 2,4-dichlorophenoxyacetic 
revealed that the relatively fast recombination of electrons and holes 
contributed to the reduction in efficiencies, which can be highlighted by 
PL spectroscopy (Fig. 8c). One effective way to improve the performance 
of the synthesized CdIn2Se4@Chitosan nanocomposite is by adding 
H2O2, which can help reduce the recombination of e–h + pairs by 
accepting electrons [63]. Additionally, researchers looked into the 
removal efficiency of TOC for ofloxacin and 2,4-dichlorophenoxyacetic 
in different systems. The CdIn2Se4@chitosan nanocomposite showed the 
highest mineralization with hydrogen peroxide, reaching 73 % and 86 % 
activity for ofloxacin and 2,4-dichlorophenoxyacetic under optimal 
conditions. The effectiveness of mineralization was confirmed through 
LCMS analysis, revealing the breakdown of large pollutant molecules 
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into smaller ones. Additionally, quantum yield and FOM calculations 
were used to assess the performance of CdIn2Se4@chitosan in the 
presence and absence of hydrogen peroxide. The study found that the 
nanocomposite produced the highest quantum yield and FOM of 
8.12*10− 5 molecules/photon and 2.06*10− 4, and 5.38*10− 4 molecules/ 
photon and 7.78*10− 4 for ofloxacin and 2,4-dichlorophenoxyacetic, 
when H2O2 was present, compared to lower quantum yield and FOM 
of 6.71*10–5 molecules/photon and 1.69*10− 4, and 2.16*10− 4 mole
cules/photon and 3.14*10− 4 in the absence of H2O2. The degradation of 
ofloxacin and 2,4-dichlorophenoxyacetic in the presence of different 
compounds was investigated to support previous findings. When 
comparing the synthesized nanocomposite with previously published 
papers (Table 2), it was observed that our synthesized photocatalyst 
demonstrated effective degradation at low dosage and sunlight expo
sure, unlike the earlier studies where degradation occurred at higher 
levels or under different conditions. 

4.7. Effect of scavenger 

It is widely known that the electrons and holes produced by light 
have a direct impact on the speed of the process that breaks down certain 

chemicals when exposed to light [64]. To determine which of these 
particles plays a major role in breaking down ofloxacin and 2,4-dichlor
ophenoxyacetic acid during photodegradation, various scavenger agents 
were added during the degradation process to capture them. This study 
aimed to provide a thorough and accurate assessment of how ROSs are 
involved. Scavengers such as benzoic acid, benzoquinone, silver nitrate, 
and triethanolamine were used to capture hydroxyl radicals, superoxide 
anions, electrons, and holes respectively. The study found that using 
OH* and *O2

− scavengers reduced the efficiency of ofloxacin photo
degradation to 25 % and 32 %, as shown in Fig. 16. For 2,4-dichlorophe
noxyacetic, the reduction was to 35 % and 40 %. However, silver nitrate 
and triethanolamine had a minimal impact on the performance of 
photocatalytic for CdIn2Se4@chitosan nanocomposite in degrading 
ofloxacin and 2,4-dichlorophenoxyacetic. This research provides 
important information about the role of hydroxyl free radical and super 
oxide anion in the photodegradation of these compounds [65], while 
also indicating the limited involvement of electron-hole pairs. 

4.8. Effect of co-existing species 

Various cations are present in wastewater, so their impact was 
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examined using 0.02 M solutions of potassium, magnesium, and 
aluminum sulphate. These ions are stable and do not interfere with the 
photodegradation process [66]. Fig. 17 illustrates the photodegradation 
performance of the synthesized CdIn2Se4@chitosan nanocomposite in 
the presence of specific cations. The degradation of Ofloxacin was 
inhibited to varying degrees in the presence of these ions. It can be 
inferred that the SO4

2− ions may have contributed to the inhibition due to 
their limited influence. Notably, aluminum salt exhibited the most sig
nificant suppression of photocatalysis (38 %), possibly attributed to Al3+

ions binding to the catalyst surface, thereby obstructing active sites and 
reducing photocatalytic efficiency. Additionally, calcium ions showed a 

higher repression in photodegradation capability (51 %) compared to 
sodium ions (55 %), likely due to their larger ionic size [67]. In this 
study, a 0.02 M concentration of I− , Cl− , and SO4

2− was introduced to 
examine the impact of various inorganic anions on the photo
degradation capacity of the synthesized CdIn2Se4@Ch nanocomposite 
(Fig. 17b). A decrease in efficiency was observed with the introduction 
of these specific anions. It was found that these anions interacted with 
hydroxyl free radicals, leading to the quenching of pollutant degrada
tion and a reduction in efficiency. Additionally, upon adsorption to the 
surface, these anions reacted with holes to generate Cl− and SO4

2− rad
icals, which then interacted with electrons to regenerate the anion, as 
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demonstrated in Eqs. (11)− (13). 

I−
/

SO4
2− + h+→*I

/
SO4*− (11)  

*OH+ I−
/

SO4
2− →*I

/
SO4*−

+OH− (12)  

*I
/

SO4*−
+ e− →I−

/
SO4

2− (13) 

Iodine anions exhibited greater photocatalytic activity than sulfate 
anions, attributed to their larger size. Conversely, F− ions are note
worthy for their exceptional resistance to oxidation by holes [68]. They 
have the capacity to coat the catalyst surface, hindering the production 
of hydroxyl free radicals. The decrease in efficiency was observed to be 

directly linked to the increase in surface coverage by Cl− ions as their 
concentration increased. Thus, in the presence of iodine, the initial 
production of hydroxyl free radicals in the solution slightly reduces 
efficiency. 

4.9. LC-mass analysis 

A LC-MS analysis was conducted to investigate potential degradation 
pathways and intermediates resulting from the breakdown of ofloxacin 
and 2,4-dichlorophenoxyacetic acid. Fig. 18 shows three reasonable 
pathways and eighteen intermediate products for the transformation of 
ofloxacin. The initial pathway involves removing fluorine and breaking 
the morpholine ring, then proceeding with reduction and decarboxyl
ation to produce OF5 (m/z = 233). The ring splitting results in the 
cleavage of large molecules into smaller OF8 and OF9 (m/z = 69 and 
118), which are further mineralized into CO2 and H2O⋅In the second 
pathway, removal of fluorine leads to OF10 (m/z = 358), followed by 
collapse into smaller aliphatic (OF14; m/z = 141) and aromatic mole
cules (OF13; m/z = 85) through two distinct pathways. The third 
pathway involves carboxyl group removal, followed by piperazine ring 
elimination, resulting in the formation of OF15 (m/z = 218). Subsequent 
removal of a fluorine atom leads to dissociation into smaller molecules, 
OF17 and OF18 (m/z = 110, 97). Furthermore, the smaller molecules 
obtained from different pathways underwent mineralization to produce 
CO2 and H2O. The LC-MS analysis of the photodegradation of 2,4- 
dichlorophenoxyacetic acid revealed several products, including 2- 
chlorophenol, 2-chlorohydroquinone, 2,4-dichlorophenol, 4-chloro- 
1,3-benzenediol, p-benzoquinone, 4,6-dichlororesorcinol, and various 
small-molecule acids such as oxalic and glycolic acids. The previous 
research also identified a range of intermediate compounds that could 
be linked to different oxidation processes utilized in these experiments. 
Based on the compounds identified during the CdIn2Se4@Chitosan 
oxidation process, it was possible to propose the transformation 
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pathways of 2,4-dichlorophenoxyacetic through AOPs (Fig. 19). As 
depicted in Fig. 20, the activated radicals (OH* and SO4*) primarily 
targeted the C–O bond in the phenoxy group of 2,4-dichlorophenoxy
acetic to break the side chain, resulting in the formation of 2,4-dichlor
ophenol glycolic acid. Subsequently, the generated glycolic acid could 
undergo conversion to oxalic acid through the elimination of hydrogen 
and hydroxyl groups, and finally be transformed into CO2 +H2O. 

4.10. Reusability 

The study examined the recyclability of the synthesized CdIn2
Se4@chitosan to determine its stability and reusability as shown in 
Fig. 21a. For each subsequent cycle, the CdIn2Se4@chitosan photo
catalyst needed to be separated by centrifugation, washed with acetone 
and deionized water multiple times, and then dried at 70 ◦C for 3 h. The 
results indicate that the synthesized photocatalyst could be reused up to 
five times without a significant decrease in performance. However, the 
alteration of the porous structure of chitosan and the hindrance of sur
face sites may result in a slight decrease in efficiency. The active 

separation of charges and support of the chitosan matrix play a signifi
cant role in maintaining the stability of CdIn2Se4@chitosan. It was 
remarkable to observe that, even after five cycles, the prepared nano
composite exhibited a high performance with 60 % and 75 % efficiency, 
demonstrating excellent reusability. Furthermore, the reused photo
catalyst was analyzed using TEM after five cycles to assess its stability. 
The TEM findings revealed that the morphology of the synthesized 
photocatalyst remained unchanged after 5 cycles, as depicted in 
Fig. 21b. 

4.11. Photodegradation mechanism 

Fig. 22 presents a schematic representation of the photodegradation 
mechanism of ofloxacin and 2,4-dichlorophenoxyacetic acid under 
sunlight. Upon exposure to sunlight, CdIn2Se4@chitosan facilitates the 
excitation of electrons from the valence band to the conduction band, 
resulting in the formation of holes. Photoluminescence analysis high
lights the role of the dopant in scavenging electrons and suppressing 
recombination between holes and electrons when exposed to sunlight. 
The photocatalytic capability is significantly enhanced by inhibiting the 
recombination of electron-hole pairs. The potentials of the conduction 
band and valence band can be determined using the following equations 
[69] [108–110]: 

ECB = X − Ee − 0.5Eg (14)  

EVB = ECB +Eg (15)  

where X values for CdIn2Se4 and chitosan are 4.97 and 4 respectively. 
The Eg values for CdIn2Se4 and chitosan were estimated as 2.1 and 3.4, 
respectively, through UV–Vis analysis and Tauc plot. As a result, the ECB 
and EVB values for CdIn2Se4 were calculated to be − 0.77 eV and 
1.33 eV, while for chitosan they were found to be − 2 eV and 1.5 eV. The 
energy gap of chitosan encapsulated the edge sites of the CB and VB for 
CdIn2Se4, leading to prominent properties characteristic of a type-1 
heterojunction. Based on the reactive oxygen species obtained from 
the scavenger experiment mentioned earlier and the bandgap analysis, 
the charge transfer mechanism for ofloxacin and 2,4-dichlorophenoxy
acetic was calculated. The CdIn2Se4 and chitosan, due to their effec
tive sunlight capture capabilities, are activated by sunlight to generate 
electrons and holes in the valence band and conduction band respec
tively. The calculated values for *OH/H2O and *OH/OH− at 1.99 and 
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Fig. 21. (A) Reusability of CdIn2Se4@Ch for the degradation of ofloxacin and 2,4-dichlorophenoxyacetic, (B) TEM images of CdIn2Se4@Ch after 5 cycle.  

Fig. 22. Schematic representation of the photodegradation mechanism for 
ofloxacin and 2,4-dichlorophenoxyacetic by synthesized CdIn2Se4@Ch 
nanocomposite. 
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2.40 eV/NHE, respectively, indicate that the holes generated in CdIn2Se4 
and chitosan do not readily interact with OH− or H2O in the solution, 
preventing the formation of hydroxyl free radicals which would be ul
timately collected in the valence band (VB). Thus, it can be inferred that 
the holes in the synthesized CdIn2Se4@chitosan nanocomposite do not 
lead to the production of hydroxyl free radicals. The potential for chi
tosan is more positive than that of CdIn2Se4, while the CB potential for 
chitosan is more negative than that of CdIn2Se4 in the heterostructure. 
As a result, electrons in the CB of chitosan can transfer to the CB of 
CdIn2Se4 due to the internal electric field, and holes formed in the VB of 
chitosan can transfer to the VB of CdIn2Se4. This type-1 e-h pairs 
emigration mechanism significantly enhances the separation of e-h pairs 
at the interface of the heterojunction, despite differences in migration 
rates between electrons and holes from chitosan to CdIn2Se4 [70]. The 
(e-) present on the conduction band of CdIn2Se4 can combine with O2, 
resulting in the formation of superoxide anion *O2

− . This anion then 
promptly interacts with ofloxacin and 2,4-dichlorophenoxyacetic due to 
the more negative potential of the conduction band of CdIn2Se4 
compared to O2/*O2

− .The harmful compounds of ofloxacin and 2,4- 
dichlorophenoxyacetic can be efficiently oxidized through the va
cancies in the CdIn2Se4 valence band. Additionally, in order to increase 
the concentration of hydroxyl radicals (*OH), H2O2 was introduced into 
the photodegradation system. H2O2 acts as an electron scavenger, 
interacting with electrons transferred from chitosan conduction band to 
CdIn2Se4, leading to the production of *OH radicals. The capture of 
electrons enhances the rate of charge carrier transfer. However, exces
sive H2O2 may consume other ROS and reduce the efficacy of photo
degradation for ofloxacin and 2,4-dichlorophenoxyacetic. Therefore, the 
optimal dose of hydrogen peroxide was determined to ensure accurate 
concentration for application in the degradation system. Eqs. 16–21 
describe the reaction processes under sunlight illumination. 

H2O+ e− (CdIn2Se4@chitosan)→*OH+OH− (16)  

H2O2 + h+(CdIn2Se4@chitosan)→O2+ 2H+ (17)  

H2O2 + *O2
− →O2 +OH− + *OH (18)  

OH− + h+(CdIn2Se4@chitosan)→*OH (19)  

As debated in the comparison the CdIn2Se4@chitosan photocatalyst 
with different published studies in Table. 3, the ofloxacin and 2,4- 
dichlorophenoxyacetic were degraded prior, but our prepared 

photocatalyst appeared high efficiency even at low dosage with sunlight 
irradiation. 

5. Conclusion 

This study investigated the photodegradation process of ofloxacin 
and 2,4-dichlorophenoxyacetic using pristine CdIn2Se4 and CdIn2Se4 
incorporated with chitosan. The inclusion of chitosan significantly 
enhanced the speed of photodegradation and mineralization of both 
ofloxacin and 2,4-dichlorophenoxyacetic compared to using only 
CdIn2Se4. It was observed that the degradation of ofloxacin was more 
favorable in a natural environment, while the degradation of 2,4- 
dichlorophenoxyacetic was more effective under acidic conditions. 
The efficacy of photodegradation for ofloxacin and 2,4-dichlorophe
noxyacetic acid increased as the dosage of the photocatalyst was 
raised and the temperature was lowered. Also, the presence of benzoic 
acid had a significant inhibitory effect on the degradation of pollutants 
through photodegradation. The quenching studies suggested that both 
SO42− and OH* played a role in the degradation of pollutants in the 
CdIn2Se4@Ch system, with hydroxyl free radicals potentially being the 
predominant radical species. Based on scavenger studies and LC-Mass 
analysis, a potential mechanism for pollutant degradation was pro
posed. The reusability assessments indicated that the synthesized 
CdIn2Se4@Ch maintained its activity even after several cycles. 
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Table 3 
Photodegradation performance by using different catalyst.  

Pollutants Catalyst Conc. Cata. dose 
(g/L) 

Time 
(min) 

Light source Efficiency 
(%) 

Ref. 

Ofloxacin 

CdS/TiO2 5 0.45 180 Sunlight 86 [71] 
Gd2Ti2O7/SiO2 20 0.4 90 UV 79 [72] 
BPQDs/OV-BiOBr 10 1 90 Xe-lamp 98 [73] 
BaTiO3/WS2 20 1 75 Sunlight 90 [74] 
CdIn2Se4@Ch 5 0.1 90 Sunlight 86 Our study 

2,4-Dichlorophenoxyacetic acid 

N/TiO2 40 0.1 180 Sunlight 83 [75] 
Sr/TiO2 50 1 150 UV 46 [76] 
Pt/TiO2 20 0.5 40 UV 91 [77] 
rGO/TiO2 50 0.2 120 UV 96 [78] 
CdIn2Se4@Ch 10 0.13 90 Sunlight 98 Our study  

*OH+(ofloxacin/2, 4-dichlorophenoxyacetic)→degradation by product+CO2 +H2O (20)  

H+ + (ofloxacin/2, 4-dichlorophenoxyacetic)→degradation by product+CO2 +H2O (21)   
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