APPLICATIONS OF THE GENERALIZED HOMOGENEOUS q-SHIFT OPERATOR IN q-POLYNOMIALS

SAMAHER A. ABDUL-GHANI ${ }^{1 *}$, HUSAM L. SAAD 1, §

Abstract. In this paper, we construct the generalized homogeneous q-shift operator ${ }_{r} \Phi_{s}\left(\begin{array}{c}a_{1}, \cdots, a_{r} \\ b_{1}, \cdots, b_{s}\end{array} ; q, c D_{x y}\right)$. Then, we apply this operator to derive some q-identities such as: the generating function and its extension, Rogers formula and its extension, Mehler's formula and its extension, Srivastava-Agarwal type bilinear generating functions for the polynomials $\phi_{n}^{(\mathbf{a}, \mathbf{b})}(x, y, c \mid q)$. Also, we obtain a transformation formula involving generating functions for $\phi_{n}^{(\mathbf{a}, \mathbf{b})}(x, y, c \mid q)$. We provide some special values for $\phi_{n}^{(\mathbf{a}, \mathbf{b})}(x, y, c \mid q)$ in order to establish identities for the polynomials $\phi_{n}^{(a)}(x)$ and $\phi_{n}^{(\mathbf{a}, \mathbf{b})}(x, y \mid q)$.

Keywords: the homogeneous q-difference operator, the homogeneous q-shift operator, q Hahn polynomials, the generalized Al-Salam-Carlitz q-polynomials, generating function, Rogers formula, Mehler's formula.

AMS Subject Classification: 05A30, 33D45.

1. Introduction

In this paper, we will follow common notations and definitions for the q-series that used in [8]. We assume that $|q|<1$.

For $a \in \mathbb{C}$, the q-shifted factorial is defined by [8]

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)
$$

and the multiple q-shifted factorials by:

$$
\left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{m}=\left(a_{1} ; q\right)_{m}\left(a_{2} ; q\right)_{m} \cdots\left(a_{r} ; q\right)_{m}
$$

where $m \in \mathbb{Z}$ or ∞.
The basic hypergeometric series ${ }_{r} \phi_{s}$ is presented as follows [8]:

$$
{ }_{r} \phi_{s}\left(\begin{array}{c}
\alpha_{1}, \ldots, \alpha_{r} \\
\beta_{1}, \ldots, \beta_{s}
\end{array} ; q, x\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}, \ldots, \alpha_{r} ; q\right)_{n}}{\left(q, \beta_{1}, \ldots, \beta_{s} ; q\right)_{n}}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{1+s-r} x^{n}
$$

[^0]
[^0]: ${ }^{1}$ University of Basrah, College of Science, Department of Mathematics, Basrah, Iraq. e-mail: samaheradnanmath@gmail.com; ORCID: https://orcid.org/0000-0001-5125-3399.

 * Corresponding author.
 e-mail: hus6274@hotmail.com; ORCID: https://orcid.org/0000-0001-8923-4759.
 § Manuscript received: June 19, 2022; accepted: October 30, 2022.
 TWMS Journal of Applied and Engineering Mathematics, Vol.14, No. 2 © Işık University, Department of Mathematics, 2024; all rights reserved.

