GENERALIZED q-DIFFERENCE EQUATION FOR THE GENERALIZED q-OPERATOR ${ }_{r} \Phi_{s}\left(D_{q}\right)$ AND ITS APPLICATIONS IN q-INTEGRALS

F. A. RESHEM ${ }^{1}$, H. L. SAAD $^{1 *}$, §

Abstract

In 2014, Fang [12] discovered a general q-exponential operator identity by solving a q-difference equation. Fang [12] developed some generalizations of q-integrals using this q-difference equation. Reshem and Saad [20] presented the solution to a generalized q-difference equation in q-operator form, which is a generalization of Fang's work [12]. Using the q-difference equation technique, Reshem and Saad [20] discussed some properties of q-polynomials. In this paper, the generalized q-difference equation technique is used to generalize some well-known integrals such as fractional q-integrals, the q-Barnes contour integral, and Ramanujan q-integrals.

Keywords: q-difference equation, q-operator, q-integral, fractional q-integrals, q-Barnes contour integral, Ramanujan q-integrals

AMS Subject Classification: 05A30, 33D45

1. Introduction

In this paper, the notations that was used in [13] is followed, and we assume that $|q|<1$. We mention to some notations that we depend on during this paper.

The q-shifted factorial is defined by [13]:

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right) \quad \text { and } \quad(a, q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right) .
$$

Also the multiple q-shifted factorials:

$$
\left(a_{1}, a_{2}, \ldots, a_{m} ; q\right)_{n}=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \ldots\left(a_{m} ; q\right)_{n}
$$

The basic hypergeometric series $t \phi_{s}$ is given by [13]:

$$
{ }_{t} \phi_{s}\left(\begin{array}{c}
a_{0}, a_{1}, \ldots, a_{t-1} \\
b_{1}, b_{2}, \ldots, b_{s}
\end{array} ; q, x\right)=\sum_{n=0}^{\infty} \frac{\left(a_{0}, a_{1} \ldots, a_{t-1} ; q\right)_{n}}{\left(q, b_{1}, b_{2} \ldots, b_{s} ; q\right)_{n}}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{1+s-t} x^{n},
$$

[^0]
[^0]: ${ }^{1}$ University of Basrah, College of Science, Department of Mathematics, Basrah, Iraq. e-mail: fa7786@yahoo.com; ORCID: https://orcid.org/0000-0003-1403-7800. e-mail: hus6274@hotmail.com; ORCID: https://orcid.org/0000-0001-8923-4759.

 * Corresponding author.
 § Manuscript received: May 06, 2022; accepted: October 10, 2022. TWMS Journal of Applied and Engineering Mathematics, Vol.14, No. 2 © Işık University, Department of Mathematics, 2024; all rights reserved.

